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Abstract 

This study aims at ‘predicting’ the occurrence of lane-change related freeway crashes using the traffic surveillance data collected from a pair 
of dual loop detectors. The approach adopted here involves developing classification models using the historical crash data and corresponding 
information on real-time traffic parameters obtained from loop detectors. The historical crash and loop detector data to calibrate the neural network 
models (corresponding to crash and non-crash cases to set up a binary classification problem) were collected from the Interstate-4 corridor in Orlando 
(FL) metropolitan area. Through a careful examination of crash data, it was concluded that all sideswipe collisions and the angle crashes that occur 
on the inner lanes (left most and center lanes) of the freeway may be attributed to lane-changing maneuvers. These crashes are referred to as lane-
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hange related crashes in this study. The factors explored as independent variables include the parameters formulated to capture the overall measure 
f lane-changing and between-lane variations of speed, volume and occupancy at the station located upstream of crash locations. Classification tree 
ased variable selection procedure showed that average speeds upstream and downstream of crash location, difference in occupancy on adjacent 
anes and standard deviation of volume and speed downstream of the crash location were found to be significantly associated with the binary 
ariable (crash versus non-crash). The classification models based on data mining approach achieved satisfactory classification accuracy over the 
alidation dataset. The results indicate that these models may be applied for identifying real-time traffic conditions prone to lane-change related 
rashes. 

. Background	 tions (just prior to crash occurrence). The basic premise is that 
these relationships may be used to ‘predict’ crashes by monitor-

The only conceivable reason for the generic nature of the 
models developed in these studies was that the crashes are rare 
events and until sufficient effort has been devoted to data col
lection and preparation, the sample size would not be sufficient 

(PNN), log–linear model, and Bayesian classifier, respectively. 
However, the conditions preceding crashes are expected to differ 
by type of crash and therefore the approach towards proactive 
traffic management should be type (of crash) specific in nature. 

Real-time assessment of crash risk on the freeways has ing the surveillance data in real-time. 
ecently received much attention. This is a diversion from the Such relationships have so far been explored to develop 
ast when the research in traffic management was focused on generic crash ‘prediction’ models, i.e., single generic model was 
ncident detection algorithms. Recent technological advances adopted to identify all crashes (such as rear-end, sideswipe, or 
ave brought about this change. Not only have the increased angle). These models were proposed by Abdel-Aty et al. (2004), 
sage of cell-phones rendered the incident detection somewhat Abdel-Aty and Pande (2005), Lee et al. (2002, 2003), and Oh 
rrelevant, the enhancements in data collection, storing, and et al. (2001). These studies employed interesting methodologies 
nalysis capabilities have encouraged the traffic management for analyzing the crash and loop detector data, i.e., matched 
uthorities to look into proactive safety strategies. Real-time 
dentification of crash prone conditions on freeways would be 
he first step towards proactive traffic management. It requires 
stablishing relationship(s) between historical crash occurrences 
nd the loop data recorded at stations surrounding the crash loca-

case–control logistic regression, probabilistic neural network 



for disaggregating crash data by type. This is especially true 
for the crashes that are not as frequent as the rear-end crashes. 
The majority of crashes on freeways are rear-end collisions and 
tend to dominate the sample of the crashes used for develop
ing the generic models. Thus, the real-time traffic parameters 
identified as indicative of crash prone conditions on freeways 
through these generic models can by in large be associated with 
rear-end crashes. In fact, the list of traffic parameters found sig
nificantly associated with rear-end crash occurrence (Pande and 
Abdel-Aty, 2006) included the variables constituting the generic 
logistic regression model developed by Abdel-Aty et al. (2004). 

While the cause for this ‘bias’ (i.e., high frequency of rear-
end crashes) in the generic models may also be the justification 
for it; other types of crashes (e.g., sideswipe or angle crashes) 
also occur on the freeway in significant numbers. To identify 
the real-time traffic conditions associated with crashes other 
than rear-ends, the data must be segregated by type of crash. 
The other advantage of the models developed using segregated 
crash data would be that the outcome of these models may 
help with the application of specific countermeasures, e.g., the 
application of variable speed limits for rear-end crashes or a tem
porary “no lane-changing” sign to avoid an impending sideswipe 
crash. 

In this regard, Golob and Recker (2004) did assemble data 
for more than 1000 crashes from five instrumented corridors of 
California freeways and associated traffic flow characteristics 
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randomly selected non-crash cases to set up a binary classi
fication problem. Neural network based classification models 
have been trained and validated using the historical crash data 
collected over a period of 5 years (1999–2003). The multi
layer perceptron (MLP) and normalized radial basis function 
(NRBF) based neural network architectures are explored for 
classification. The outputs of the best models within both archi
tectures were combined in order to examine the performance 
of the resulting ‘hybrid’ model. The input variables to the neu
ral networks were finalized based on the variable importance 
measure (VIM) estimated through a classification tree based 
variable selection procedure. The step-by-step approach to mod
eling adopted in this study is sometimes referred to as the data 
mining process. 

2. Modeling methodologies: components of the data 
mining process 

Data mining is the analysis of large “observational” datasets 
to find unsuspected relationships potentially useful to the data 
owner (Hand et al., 2001). It typically involves analysis where 
objectives of the data analysis have no bearing on the data collec
tion strategy. Freeway traffic surveillance data, collected through 
loop detectors, is one such “observational” database maintained 
for various Intelligent Transportation Systems (ITS) applica
tions, such as travel time prediction, etc. In this research, data 
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ith different types of crashes. In one of their earlier studies 
Golob and Recker, 2001), they also demonstrated that colli
ion type is the best-explained crash characteristic and is related 
o the median speed and the left and interior lane variations 
n speed. It was also pointed out that some collision types are 

ore common under certain traffic conditions. However, no 
on-crash data were used in their studies. Therefore, while they 
ere able to establish traffic conditions which precede certain 

ypes of crashes it was without any measure of ‘exposure’ for 
uch conditions. Therefore, their findings albeit insightful, are 
ot applicable in the framework of a proactive system capable 
f separating real-time ‘crash prone’ conditions from ‘normal’ 
reeway traffic. 

A comprehensive analysis of rear-end crash occurrence 
nd its relationship with the freeway loop detector data was 
onducted by Pande and Abdel-Aty (2006). The crash and 
oop detector data from instrumented corridor of Interstate-4 
Orlando, FL) were used in the study. Crashes most commonly 
bserved after rear-ends on the aforementioned corridor are 
ideswipe, angle, and single vehicle crashes, respectively. Angle 
rashes on freeways are classified as such by the enforcement 
fficers but are in fact a slight variant of the sideswipe crashes. 
hese crashes should not be confused with the right-angle colli
ions on intersections which are commonly referred to as “angle 
rashes” in the traffic safety literature. 

Sideswipe crashes along with the angle crashes that occur 
n the inner lanes of the freeway are the focus of this study. It 
as found that these two groups of crashes tend to occur while 
rivers attempt lane-changing maneuvers. Traffic data from loop 
etector stations located immediate upstream and downstream 
f the location of these crashes are compared to a sample of 
ining process is used to relate the surrogate measures of traffic 
onditions (data from freeway loop detectors) with the occur
ence of lane-change related crashes on freeways. Note that 
ata mining based analysis is preferred here since techniques 
rom traditional statistics are more suitable for handling the data 
btained through an experimental design, which is clearly not 
he case here. The data mining process has two key components, 
amely, variable selection procedure based on classification tree 
nd neural network based modeling procedure with parameters 
dentified through the preceding classification tree as inputs. 
hese components of the data mining process are described in 

he ensuing section. 

.1. Decision tree based classification and its application 
or variable selection 

A classification tree represents segmentation of data created 
y applying a series of simple rules. Each rule assigns an obser
ation to a group based on the value of an input. One rule is 
pplied after another, resulting in a hierarchy of groups within 
roups. The hierarchy is called a tree, and each group is called a 
ode. The final or terminal nodes are called leaves. For each leaf, 
 decision is made and applied to all observations in that leaf. 
ecision trees are the most widely utilized tools in data mining 

pplications. Classification trees can be used to automatically 
ank the input variables based on the strength of their contribu
ion to the tree. This ranking may act as the basis for variable 
election for subsequent modeling procedures such as the neural 
etworks. In the following subsection theoretical details of the 
lassification tree are described along with its application for 
ariable selection. Since target variable of interest is binary in 
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nature (crash versus non-crash) the details of the methodology 
are provided in the context of a binary target. 

2.1.1. Decision tree methodology for binary classification 
The basic idea in classification tree construction is to split 

each (non-terminal) node such that the descendent nodes are 
‘purer’ than the parent node. To achieve this, a set of candidate 
split rules is created, which consists of all possible splits for all 
variables included in the analysis. These splits are then evaluated 
and ranked based on one of three criteria, namely Chi-square 
test, entropy reduction, or Gini reduction, to choose amongst the 
available splits at every non-terminal node. According to Chi-
square test criterion, the split resulting in the cross-frequency 
table with maximum −log(p-value) (i.e., minimum p-value) is 
selected. Note that the selection of the split with minimum p-
value would ensure that Child nodes resulting from the selected 
split are more homogeneous in nature. Entropy reduction and 
the Gini reduction criteria measure the “worth” of each split in 
terms of its contribution toward maximizing the homogeneity 
through the resulting split. If a split results in splitting of one 
parent node into B branches, the “worth” of that split may be 
measured as follows: 

B 

Worth = Impurity(Parent node)− P(b) × Impurity(b) (1) 
b=1 
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having maximum worth, which in turn become the parents to 
successive splits, and so on. The splitting process is continued 
until there is no (or less than a pre-specified minimum) reduction 
in impurity and/or the limit for minimum number of observation 
in a leaf is reached (SAS Institute, 2001). 

2.1.2. Application of classification trees for variable 
selection 

Breiman et al. (1984) devised a variable importance measure 
(VIM) for trees. This measure may be applied as a criterion to 
select a promising subset of variables for other modeling tools, 
especially for flexible tools such as neural network. 

In a classification tree with T total nodes, let S(xj, k) be the  
split at the kth internal node using the variable xj. The variable 
importance measure for variable xj is the weighted average of 
the reduction in the Gini impurity measure (defined in Eq. (3)) 
achieved by all splits using the variable xj across all internal 
nodes of the tree and the weight is the node size. If N is the total 
number of observations in the training sample, then the formula 
for the importance for variable xj may be given by the following: 

T 
ntVIM(xj) = �Gini(S(xj, t)) (4)
N 

t=1 

where �Gini(S(xj, t)) is the reduction in Gini measure of impu
rity (defined in Eq. (3)) achieved by splitting the variable xj at 
n
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here Impurity(Parent node) denotes the entropy or Gini mea
ure for the impurity (i.e., non-homogeneity) of the parent node 
nd P(b) denotes the proportion of observations in the node 
ssigned to branch b. The impurity measure, Impurity(node), 
ay be defined as follows: 

According to the entropy criteria: 

Impurity(node) 

= −  pclasslog2pclass
 

all classes
 

= −(pcrash × log2pcrash + pnon-crash × log2pnon-crash) (2) 

where log2 represents log to the base 2, pcrash represents the

proportion of crash cases in the node and pnon-crash represents

the proportion of non-crash cases in the node.
 
According to the Gini measure:
 

classes( )2number of class i cases 
Impurity(node) = 1 − 

all cases in the node 
i 

= 1 − [(pcrash)2 + (pnon-crash)2] (3) 

If a node is ‘pure’, i.e., consists of only crash or only non-
rash cases than these measures (Eqs. (2) and (3)) will have 
inimum values, and their values will be higher for less homoge

eous nodes. If one considers the definition of “worth” according 
o Eq. (1), a split resulting in more homogeneous branches (Child 
odes) will have more “worth”. 

While developing a classification tree, one of these criteria is 
pplied recursively to the descendents, to achieve Child nodes 
ode t, and nt/N represents the proportion of the observations in 
he dataset that belong to node t. 

Eq. (4) depicts the variable importance measure as proposed 
y Breiman et al. (1984). In this study, however, the VIM used 
as been scaled by maximum importance for the tree so that 
t lies between 0 and 1. One may conveniently use a threshold 
f 0.05 on VIM to separate variables critically associated with 
he binary target from the variables that are not. These critical 
ariables can then be used as inputs to the classification models in 
ubsequent step(s) of the data mining process. Moreover, a closer 
xamination of the resulting classification tree structure, based 
n which the VIM is calculated, may also provide insight into 
rash precursors and their relationships with crash occurrence. 
he variables selected through this procedure would be used 

o develop classification models belonging to MLP and NRBF 
eural network architectures. 

.2. MLP neural network architectures and training 
rocedure 

.2.1. MLP neural network architecture 
A neural network may be defined as a massively parallel-

istributed processor made up of simple processing units having 
atural propensity for storing experimental knowledge and mak
ng it available to use (Christodoulou and Georgiopoulos, 2001). 
he ability to learn and generalize provides neural networks 
ith the computing power it possesses. Generalization refers 

o the ability of a “trained” network to provide satisfactory 
esponses even for the inputs that it has not seen during the train
ng process. Neural network models may usually be specified 
y three entities, namely, model of processing elements them



Fig. 1. MLP neural network architecture with feed-forward connections 
(Christodoulou and Georgiopoulos, 2001). 

selves, model of interconnections and structures (i.e., network 
topology), and the learning rules. In this section, we describe 
multi-layer perceptron (MLP) network with feed-forward con
nections. It is one of the most commonly used neural network 
architectures. 

An MLP neural network shown in Fig. 1 has input layer of 
size K (Index 0), a hidden layer of size J (Index 1) and out
put layer of size I (Index 2) along with input and output bias. 
In the MLP architecture shown here, the connections are of 
feed-forward type; it means that the only connections allowed 
between nodes are from a layer of a certain index to the next 
layer with higher index. The net input to hidden layer neu
rons is determined through inner product between the vector 
of connection weights and the inputs. The activation function 
is applied to this net input of hidden neurons. The weights 
from the hidden to output layer are then used to estimate the 
output of the network. These weights are the parameters recur
sively estimated during the supervised learning (i.e., training) 
process and are used to ‘score’ unseen observations following 
calibration. The activation function of hidden neurons is non
linear in nature and is critical in the functioning of the neural 
network. It allows the network to ‘learn’ any underlying rela
tionship of interest between inputs and outputs. The procedure 
adopted for training is also crucial in the performance of a neural 
network. 
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be referred to as the ‘combination function’. In the MLP neu
ral network architecture, the combination function was simply 
the inner product of the inputs and weights. A radial basis 
function (RBF) network is a feed-forward network with a sin
gle hidden layer for which the ‘combination function’ is more 
complex and is based on a distance function (referred to as 
width) between the input and the weight vector. Ordinary RBF 
(ORBF) networks using radial combination function and expo
nential activation function are universal approximators in theory 
(Powell, 1987), but in practice they are often ineffective in esti
mating multivariate functions. To avoid the pitfalls of ORBF 
networks, softmax activation function may be used. It essen
tially normalizes the exponential activations of all hidden units 
to sum to one. The network with softmax activation functions 
is called a “normalized RBF” or NRBF network. The distinc
tion and advantages of NRBF networks (over the ORBFs) are 
discussed in detail by Tao (1993). It was argued by Tao (1993) 
that the normalization not only is a desirable option but is in fact 
imperative. 

In NRBF networks, one may add another term “altitude” to 
the Gaussian combination function. It determines the maximum 
height of the Gaussian curve over the horizontal axis. Based on 
the two parameters (width and altitude) defining the shape of 
combination function, the NRBF networks may be categorized 
into five different types: 
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.2.2. Normalized radial basis function neural network 
In feed-forward neural network architectures, the activation 

unction of hidden neurons is applied to a net single value 
hat is obtained by combining input vectors with the vector of 
onnection weights between input layer and the hidden layer. 
he function that combines the inputs with the weights may 
1) NRBFUN: Normalized RBF network with unequal widths 
and heights. 

2) NRBFEV: Normalized RBF network with equal volumes 
(ai = wi). 

3) NRBFEH: Normalized RBF network with equal heights 
(and unequal widths) (ai = aj). 

4) NRBFEW: Normalized RBF network with equal widths 
(and unequal heights) (wi = wj). 

5) NRBFEQ: Normalized RBF network with equal widths and 
heights (ai = aj) and (wi = wj). 

here wi and ai represent the widths and altitudes, respectively, 
f the neurons in the hidden layer. Note that the last four cat
gories of networks are special cases of the first and are more 
arsimonious in nature. It essentially means that with certain 
ssumptions about the shape of the combination functions they 
educe the number of parameters that need to be estimated. In 
his study, the networks belonging to the first category would 
e used. NRBFUN networks are preferred over other architec
ures because no assumptions regarding the form of combination 
unctions are needed. 

The NRBF networks may be trained by “hybrid” methods, 
n which the hidden weights (centers) are first obtained by 
nsupervised learning and then the output weights are obtained 
y supervised learning. However, according to Tarassenko and 
oberts (1994), the supervised training will often let one use 

ewer hidden units (with fewer training cases) for a given accu
acy level of the approximation than the hybrid training. Hence, 
ully supervised training is adopted for NRBF and MLP neural 
etworks. Supervised training for these networks can be accom
lished using Levenberg–Marquardt algorithm. 
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2.2.3. Training of MLP-NN: Levenberg–Marquardt (LM) 
algorithm 

Training a neural network essentially involves numerical 
optimization of a non-linear function. Error back-propagation 
(EBP) algorithm proposed by Rumelhart et al. (1986) still 
remains the most widely used supervised training algorithm. 
It, however, has been known to have a poor convergence rate 
for more complex problems (Wilamowski et al., 2001). A 
significant improvement in the performance of the network 
may be achieved by using second-order approaches such as 
the Levenberg–Marquardt (LM) optimization technique. For 
LM algorithm, the objective function takes the following form 
(Wilamowski et al., 2001): 

P K 

F (w) = (dkp − okp)2 (5) 
p=1 k=1 

where w = [ w1 w2 . . .  wN ]
T consists of the interconnec

tion weights in the network, dkp and okp are the desired and actual 
values of the target, respectively, for kth output and pth pattern. 
N is the total number of weights, P the number of patterns, and 
K is the number of network outputs. The above equation may be 
rewritten as: 

F (w) = ETE (6) 
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neural networks. According to Wilamowski et al. (2001), with 
increase in number of independent variables the computational 
complexity of the algorithm grows exponentially. 

To overcome this limitation of the training algorithm, a 
reliable classification tree based variable selection algorithm 
has been employed in this study. It will ensure that a limited 
number of the most significant variables are used as inputs 
to the neural networks, thereby controlling the size of the 
network. 

3. Data description and preparation 

3.1. Study area and crash data composition 

The Orlando area Interstate-4 (I-4) corridor under consid
eration is 36.25 miles long and has a total of 69 loop detector 
stations (numbered 2–71, with no station numbered as 39) in 
each direction. Distance between the two consecutive stations 
is approximately 0.5 miles. Each of these stations consists of 
dual loops and measures average speed, occupancy, and vol
ume over 30 s period on each of the three through travel lanes 
in both directions. The loop detector data were continuously 
transmitted and archived by the UCF data warehouse. The 
source of crash and geometric characteristics data for the free
way is Florida Department of Transportation (FDOT) intranet 
server. 
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 = [e11 . . . eK1 e12 . . . eK2 . . . e1P . . . eKP ]T , 

kp = dkp − okp, k  = 1, . . . , K,  p = 1, . . . , P  

here E is the cumulative error vector. Based on Eq. (6), the 
acobian matrix of the output errors with respect to the N inter
onnection weights will be: ⎡ ⎤∂e11 ∂e11 ∂e11 

. . .  ⎢ ∂w1 ∂w2 ∂wN ⎥ ⎢ ⎥ ⎢ ∂e21 ∂e21 ∂e21 ⎥ ⎢ . . .  ⎥ ⎢ ⎥ = ∂w1 ∂w2 ∂wN (7) ⎢ ⎥ ⎢ ⎥ . . .  . . .  . . .  . . .  ⎢ ⎥ ⎣ ⎦∂eKP ∂eKP ∂eKP 

. . .  
∂w1 ∂w2 ∂wN 

The interconnection weights are adjusted after each iteration 
sing the following equation: 

−1 
t+1 = wt − (JTJ t − λtI) JTEt (8)t t 

here I is the identity unit matrix, λ the learning parameter, 
nd J is the Jacobian of the output errors with respect to the 
eights of the neural network (Eq. (6)). It should be noted that 

f λ = 0, then the above equation becomes the Gaussian–Newton 
ethod while for very large λ, the algorithm is equivalent to 

he error back-propagation algorithm. The learning parameter 
s automatically adjusted after every iteration in order to secure 
onvergence. 

Obviously the algorithm requires computation of Jacobian 
atrix and inversion of the JTJ matrix at each iteration step. 
ince the dimension of the matrix to be inverted is N × N, the LM 
lgorithm becomes computationally impractical for large size 
According to the database maintained by Florida Department 
f Transportation, there were 4189 mainline crashes reported 
n the Interstate-4 corridor under consideration over the 5
ear period (1999–2003). However, out of these, only 3124 
ad any corresponding loop data available. Among these, about 
1% were identified as sideswipes while 10% of them were 
lassified as angle crashes. Based on the study by Wang and 
nipling (1994), it could be safely assumed that the crashes 

lassified as sideswipe crashes occur when one vehicle inten
ionally changes lane and sideswipes or is sideswiped by a 
ehicle in the adjacent lane. This postulation was verified by 
xamining the actual reports filed by law enforcement officers 
t the scene of these historical crashes. Among the angle crashes, 
hose on the inner through lanes (the center and left-most lane) 
f the freeway were hypothesized to be lane changing related 
ecause of the rare interaction of the vehicles on these lanes 
ith the vehicles approaching from other directions. A closer 

xamination of the reports for angle crashes led to the con
lusion that such crashes on the center and left through lanes, 
lthough reported as angle crashes, in fact show more resem
lance to sideswipe crashes in their mechanism and can be 
ssociated with lane changing (Lee et al., 2006). Hence, the 
rashes that are intended to be identified by the models devel
ped in this paper include crashes that can be attributed to 
ane changing, i.e., all sideswipe crashes and the angle crashes 
n center and left lane. These crashes make up about 16% 
f the 3124 crashes with some corresponding loop data avail
ble and are referred to as lane-change related crashes in this 
tudy. 

Variables explored as potential inputs include differences 
n traffic flow parameters between the three through lanes at 



the station immediately upstream of the locations of historical 
crashes. The reason for including measures of between-lane vari
ations is that the interaction between traffic flows in individual 
lanes might affect the lane changing behavior of drivers as well 
as the risk involved in lane changing maneuvers. Traffic flow 
parameters from all three lanes would be required to deduce the 
input variables representing the between-lane variations. It was 
noticed that out of 69 stations, data from all three lanes of the 
freeway were never available simultaneously from eight stations 
located on the two extremities (five on the west end and three on 
the east end) of the freeway corridor. Therefore, the corridor for 
this study, which only deals with lane-change related crashes, 
was limited to 32.37 miles instead of the 36.25 instrumented 
corridor of Interstate-4. A similar data availability problem was 
observed at stations 38, 40, and 41 and the crashes at those loca
tions also could not be considered for analysis. In conclusion, 
lane-change related crashes in the vicinity of 58 loop detector 
stations were used in the analysis. 

3.2. Loop data corresponding to crashes and non-crash 
cases 

After assembling the crash data, the next step was to extract 
loop data corresponding to these crashes. First of all, the loop 
detector stations nearest to the location of each crash in upstream 
and downstream direction were determined. Station nearer to 
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mated time of crash occurrence concurred with the reported time. 
These pieces of information indicated that the time obtained 
from the crash reports is in fact very close to the actual time 
of crash occurrence and can be used for collecting the loop 
data. 

The aim of this research is to develop models with the ability 
to separate conditions prone to lane-change related crashes from 
‘normal’ freeway traffic. Lane-change related crashes with cor
responding loop data available constitute the sample that would 
‘teach’ the neural network models about crash prone conditions. 
A random sample of non-crash loop detector data would be used 
to provide the models with a-priori information on what consti
tutes ‘normal’ traffic on the freeway. These non-crash data were 
selected from a sample of 150,000 random non-crash cases. To 
generate random non-crash cases, 5-year period may be divided 
into 2,629,440 1-min periods (60 min × 24 h × 1826 days over 
5 years = 2,629,440 1-min periods), which would be the number 
of options available to choose the “time of non-crash”. Similarly, 
we have 116 stations (58 stations in two directions: eastbound 
and westbound) to choose as “station of non-crash”. In all, 
we can choose from 305,015,040 (2,629,440 1 min periods × 2 
directions × 58 stations) options to draw a random combina
tion of time, station, and direction to assign as random non-
crash case. One lakh and fifty thousand such combinations were 
selected randomly as the non-crash cases. These cases were also 
assigned a random milepost location as per the corresponding 
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he crash location out of these two stations was named as “sta
ion of crash”. Loop data were then extracted for every crash 
n a specific format. If a crash, for example, occurred on April 
2, 1999 (Monday) 06:00 p.m., I-4 eastbound and the nearest 
oop detector in the upstream and downstream directions were 
t stations 30 and 31, respectively, then this crash case will 
ave loop data table consisting of the 30 s averages of speed, 
olume, and occupancy for all three lanes at stations 30 and 
1 (on eastbound direction) from 05:40 p.m. to 06:00 p.m. on 
pril 12, 1999. Variable “y” was created with its value as 1 

or all the crashes. It would later be used as the binary target 
ariable. 

It is worth mentioning that the reported time of crashes 
btained from individual crash reports has been used for collect
ng the corresponding loop data. The accuracy of the reported 
ime of crashes is a critical issue identified in some of the 
elevant literature (Lee et al., 2002, 2003). Fortunately, there 
s an automated system in place in Florida that records the 
xact time when a crash is reported to the Police. According 
o Florida Highway Patrol (FHP) officials, due to wide spread 
se of mobile phones, difference between time of crash occur
ence and its reporting is minimal. It was also pointed out by 
ocal traffic management authorities that the reported time of 
he crash in accident reports is corroborated through the video 
urveillance system available on the freeway. To validate their 
laim, before proceeding with the collection of loop data accord
ng to the reported time of crashes, its concurrence with the 
ctual time of crash was verified through a rule based shock-
ave methodology developed in one of our previous studies 

Abdel-Aty et al., 2005a). It was found that most of the crashes 
here the methodology could be successfully applied, the esti
station of non-crash”. Randomly selected combinations of time, 
tation, and direction were used to extract sets of 20 min loop 
ata prior to the assigned time of the non-crash from the sta
ion immediate upstream as well as immediate downstream of 
he random milepost assigned to it. It constituted a random non-
rash sample. The variable “y” was given the value 0 for these 
ases. Out of these 150,000 random non-crash cases, a non-crash 
ample of appropriate size may be drawn depending on the sam
le size requirements of the methodology used for analysis. It 
as ensured that no crash cases were included in these random 
on-crash cases. 

The milepost location of the ramps on the Interstate-4 cor
idor was known from the FDOT database. Using this infor
ation, along with the milepost location of each crash, the 

istances of nearest on and off-ramp from crash location, in 
oth upstream and downstream direction, were determined. 
ssentially, we created four variables, namely “upstreamon”, 
upstreamoff”, “downstreamon”, and “downstreamoff” for each 
rash case; indicating the distance of nearest ramp of the respec
ive type from crash location. These variables for non-crash 
ases were obtained based on the assigned milepost loca
ion. 

.3. Loop data aggregation and preliminary analysis 

The raw 30 s loop data have random noise and are difficult to 
ork with in a modeling framework. Therefore, the 30 s raw data 
ere combined as 5 min level averages and standard deviations 
f these traffic parameters. For 5 min aggregation, 20 min period 
as divided into four time-slices. The stations were named as 

U” or “W”, with “U” being station upstream of the crash loca
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Fig. 2. Nomenclature for the factors used for analysis of lane-change related 
crashes. 

tion and “W” being the downstream station. Similarly, the 5 min 
intervals were also given “IDs” from 1 to 4. The interval between 
time of the crash and 5 min prior to the crash was named as time-
slice 1, interval between 5 and 10 min prior to the crash as time-
slice 2, and so on. These parameters were further aggregated 
across the three lanes and the averages (and standard deviations) 
for speed, volume, and lane-occupancy at 5 min level were cal
culated based on 30 (10, 30 s observations in 5 min × 3 lanes) 
observations. The nomenclature for these independent variables 
is exemplified in Fig. 2. The variable “SSU2”, for example, rep
resents the standard deviation of 30 speed observations during 
the 5 min period of 5–10 min prior to a crash at station “U”, 
which is the upstream station. According to the nomenclature 
shown in the figure, the same parameter measured at the sta
tion downstream of crash site would have been named “SSW2”. 
The random non-crash data were also aggregated to 5 min level 
and traffic parameters similar to crash cases (refer to Fig. 2) 
were generated. These parameters explored as input variables 
were similar to the ones used for identification of conditions 
prone to rear-end crashes. The critical difference, of course, is 
that the rear-end crashes are related to formation/dissipation of 
queues as opposed to lane-changing maneuvers. Therefore, for 
rear-end crashes data from a series of stations upstream and 
downstream of crash location were analyzed. For lane-change 
crashes we are more interested in traffic conditions at or very 
close to the crash location. The traffic parameters from the sta
t
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changes in specific lane to average flow ratios (AFR) in the cor
responding lane but does not consider the total number of lane 
changes in all lanes in the form of overall AFR (OAFR). How
ever, OAFR might be important in representing general traffic 
stability on freeways and its consequent impact on crash risk. 
Therefore, AFR calculated for each subject lane should be com
bined to reflect the total number of lane changes (Lee et al., 
2006). 

The objective of the study by Lee et al. (2006) was to be  
able to differentiate between rear-end and lane-change related 
crashes. First, the average flow ratios for the individual lanes 
were defined as follows: 

v2(t) NL2,1(t)
AFR1(t) = × 

v1(t) NL2,1(t) + NL2,3(t) 

v1(t) v3(t)
AFR2(t) = + (9) 

v2(t) v2(t) 

v2(t) NL2,3(t)
AFR3(t) = × 

v3(t) NL2,1(t) + NL2,3(t) 

where AFR1(t) is the average flow ratio in lane 1 (left lane) 
during time interval t; AFR2(t) is the average flow ratio in lane 2 
(center lane) during time interval t; AFR3(t) is the average flow 
ratio in lane 3 (right lane) during time interval t; v1(t), v2(t), 
and v3(t) are the average flow in lane 1, 2, and 3, respectively, 

 
 

 
 
 
 
 

 

 

 

 

 
 
 
 

ions located immediately upstream and downstream of the crash 
ocation are used as inputs to the models for lane-change related 
rashes. 

Flow ratios representing a measure for the number of lane-
hanging maneuvers, identified by Chang and Kao (1991) and 
ee et al. (2006), were also attempted as the input variables. 
he flow ratio devised by Chang and Kao (1991) was based 
n their field studies to identify macroscopic traffic factors 
elated to lane changing behavior. Lee et al. (2006) proposed 
ome modifications to the aforementioned flow ratio to over
ome the limitations in applying this factor to investigate its 
ffects on lane-change related crashes. It was noted that the 
ork by Chang and Kao (1991) only relates the number of lane 
√ ( ) ( ) ( ) 

√ 

( ∏ 

during time interval t; NL2,1(t) and NL2,3(t) are the number of
lane changes from lanes 2 to 1 and lanes 2 to 3, respectively,
during time interval t. 

In above equations, since the fractions of lane changes from
lane 2 to lanes 1 and 3 were unknown, they were assumed
to be equal (i.e., NL2,1/(NL2,1 + NL2,3) = NL2,3/(NL2,1 +
NL2,3) = 0.5). In case of AFR in lane 2, since there is only
one way of lane-change from lanes 1 and 3, there is no need
to estimate the fractions of lane changes and OAFR (over
all average flow ratio) can be calculated using the following
expression: 

3 v2(t) v1(t) + v3(t) v2(t)
OAFR(t) = 0.5 × ×0.5 

v1(t) v2(t) v3(t) 

(10)

Eq. (10) in a more general form for an n-lane freeway may
be represented as follows: 

OAFR(t) = n AFR1(t) × AFR2(t) × . . . × AFRn(t) )1/nn 

= AFRi(t) (11)
i=1 

Note that Eqs. (10) and (11) represent geometric mean of the
individual average flow ratios shown in Eq. (9) (Lee et al., 2006).
This factor was found statistically significant in separating loop
data prior to lane-change related crashes from loop data observed
prior to rear-end crashes. 



In the present study, these flow ratios along with the off-line 
factors (e.g., presence of ramps, milepost lactation) were first 
subjected to a preliminary analysis for variable selection. As 
mentioned earlier, some locations had to be excluded from anal
ysis because the data from all three lanes at those locations were 
almost never available. Even among the remaining stations the 
loop failure pattern was not random. At some locations, detector 
at least one of the three lanes was more likely to fail. Hence, if 
among the randomly selected 150,000 cases one only consid
ers 47,693 cases (which had data from all three lanes available) 
some locations were under-represented than others even though 
the original 150,000 cases were almost uniformly distributed 
over all stations. 

It means that due to non-random failure patterns the sam
ple with all three lane data available was not random. In other 
words, the underlying distribution of the sample changed due 
to data availability issues. The loop failure pattern also affected 
the underlying distribution of the crash cases. To overcome this, 
a weighted sampling procedure was adopted by over-sampling 
the random non-crash cases from under-represented locations 
and vice versa. The weights used for making the non-crash 
distribution uniform were then adopted for crashes. The under
lying principle was that since the weighted sampling restored 
the underlying distribution (random with all locations uniformly 
represented) of non-crash cases; if applied it would do the same 
to crash cases. 
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on and off-ramps, milepost location on the freeway had signifi
cant VIM. This conclusion was further confirmed by analyzing 
the data using the within stratum matched case–control sam
pling for crashes. Under this scheme all the crashes are sampled 
first and then non-crash cases are sampled corresponding to 
each crash. The correspondence means that, for example, if a 
crash occurred on April 12, 1999 (Monday) 06:00 p.m., I-4 east
bound and the nearest loop detector was at station 30, data were 
extracted from the same location for the 5 min period 5–10 min 
prior to the time of the crash for all Mondays of the same sea
son for the year 1999 at the same time. This matched sample 
design controls for most of the critical off-line factors affecting 
crash occurrence such as time of day, day of week, location on 
the freeway, etc (thus implicitly accounting for these factors). A 
logistic regression model with step-wise variable selection pro
cedure was estimated following the sampling procedure. It was 
found that the variables included in the logistic regression model 
were in fact a subset of the variables identified by the classifica
tion tree based selection procedure. It essentially means that the 
off-line factors used to create the strata (i.e., the control parame
ters) for matched case–control sampling, adopted in some of our 
earlier studies (Abdel-Aty et al., 2004, 2005b), are not critical 
for identifying conditions prone to lane-change related crashes. 
More details on this preliminary analysis may be found in Pande 
(2005). 

In short, two critical conclusions were drawn from this pre
l
s
c
A
a
f
s
b
i

i
b
i
m
c
o
w
t
a
i
m
i
e
u
t

r
t
r
T
l

Note that the sample of crashes resulting from the weighted 
ampling is not supposed to be uniform but should be com
arable to what it was without taking data availability into 
onsideration. The distribution of crash cases over the free
ay locations was compared to their distribution in the orig

nal lane-change related crash sample (the later proportions 
ere based on actual frequency of crashes without taking 

oop data availability into consideration). It was found that 
t 95% confidence level there was no difference between the 
wo samples. The weighted sample of crash and non-crash 
ases was used for preliminary analysis. Note that without 
he weighted sampling we could not have simultaneously ana
yzed the effect of traffic parameters along with location spe
ific characteristics on lane-change related crashes. The loop 
ata availability would have affected the sample in such a 
ay that location represented in the crash sample would not 

xactly be the locations with high frequency of crashes but 
ould be locations with better functioning of the loop detec

ors. With such a sample the results of the analysis, about how 
he factors such as milepost location, presence of on and off-
amps affect the crash occurrence, would have been question
ble. 

The sample was subjected to the classification tree based 
ariable selection procedure for the binary target “y”. Variables 
ncluded as potential inputs were the average and standard devi
tion of the speed, volume, and occupancy (SSU2, SSW2, etc.). 
n addition, the flow ratio (represented by Eq. (10)) from the sta
ion located upstream of the crash location was also subjected to 
he selection process. It turned out not to be significantly asso
iated with the binary target, however. Also, none of the off-line 
actors, including the factors explicitly related to the presence of 
iminary analysis; one, geometric characteristics of the freeway 
egments are not as significantly associated with lane-change 
rashes as they were with the rear-end crashes (Pande and Abdel-
ty, 2006). Second, the flow ratios measured at 5 min level, 

lthough significant in separating lane-change related crashes 
rom rear-end crashes (Lee et al., 2006), are not sufficient to 
eparate crashes from random non-crash cases and therefore the 
etween-lanes variation of traffic parameters must be examined 
n more detail. 

The former conclusion leads to the inference that as far as 
dentification of conditions prone to lane-change related crashes 
ased on real-time traffic data is concerned, there is no signif
cant difference among different sections of the I-4 corridor. It 

eans that classification model(s) developed using data from 
ertain segments of the freeway corridor may be applied to 
ther segments of Interstate-4, loop data belonging to which 
ere not used at the modeling stage. Based on this inference, 

he under-represented locations in the dataset may be excluded 
ltogether from the sample at the modeling stage. Even without 
ncluding these locations in the modeling sample the estimated 

odel(s) would be able to assess crash risk at those locations 
n real-time provided requisite data are available. After this 
xclusion there were 162 crashes, loop data for which were 
sed for further analysis and neural network model calibra
ion. 

Following the preliminary analysis, variables more precisely 
epresenting between lane variations in traffic flow parame
ers were calculated to examine their effect on lane-change 
elated crashes. Two sets of such parameters were calculated. 
he first set of parameters measuring 5 min average of between 

anes variations of speed/volume/occupancy are defined in the 
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following equation: 

101 
ABLVSU2 = |LS − (LS + CS + RS)/3| + |CS − (LS + CS + RS)/3| + |RS − (LS + CS + RS)/3|

10 
i=1 

101 
ABLVVU2 = |LV − (LV + CV + RV)/3| + |CV − (LV + CV + RV)/3| + |RV − (LV + CV + RV)/3| (12)

10 
i=1 
101 

ABLVOU2 = |LO − (LO + CO + RO)/3| + |CO − (LO + CO + RO)/3| + |RO − (LO + CO + RO)/3|
10 

i=1 

LS, CS, and RS, respectively, represent left, center, and right 
lane speed values observed every 30 s. First, the average of 30 s 
speeds over the three lanes is calculated as (LS + CS + RS)/3. The 
absolute value of the difference between individual lane speeds 
and this average is then added together, which is the term inside 
the summation in Eq. (12). The parameter is then averaged over 
ten 30 s observations that are recorded during the 5 min slice. The 
parameters shown are calculated for station located upstream of 
the crash location for time-slice 2 (5–10 min period before the 
crash) as indicated by the term “U2” at the end of each parameter. 
The term “ABLV” represents “average between lane variations”. 
ABLV for volume and occupancy are calculated in an identical 
manner. Note that this is just one way to represent the between 
lane variation of traffic parameters. Another set of parameters 
calculated to represent them is provided below in Eq. (13): 

parameters from multiple time-slices were available, parame
ters from only one of the four slices (20 min period was divided 
into four 5 min time-slices) at a time were attempted in the vari
able selection process. At this stage the variables included as 
potential inputs from the downstream station were the average 
and standard deviation of the speed, volume, and occupancy 
(AS/SS/AV/SV/AO/SOW2). From the upstream station average 
of speed, volume, and occupancy (ASU2, AVU2, and AOU2) 
were included. In addition, three sets of between-lane varia
tion (speed/volume/occupancy) measures at the upstream station 
were also subjected to the selection process one at a time. The 
first set included SSU2, SVU2, and SOU2 and the other two 
were the ones represented by Eqs. (12) and (13), respectively. 
The list of significant variables identified by classification tree 
models employing entropy maximization criterion for optimal 
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ADALSU2 = 

ADALVU2 = 

ADALOU2 = 

101 |LS − CS| + |CS − RS|
10 

i=1
 
10
1 |LV − CV| + |CV − RV|

10 
i=1
 
10
1 |LO − CO| + |CO − RO|

10 
i=1 

(13) 

In Eq. (13), the absolute difference between speeds in adjacent
lanes is added together and averaged over the 5 min slice. The 
term “ADAL” represents “average difference between adjacent 
lanes”. 

The two sets of parameters are two different measures 
of representing the same traffic characteristics (i.e., variation
of speed/volume/occupancy between the three lanes) and as 
expected, the correlation coefficients between the parameters 
shown in Eqs. (12) and (13) were in the vicinity of 0.95. There-
fore, these parameters were not attempted together in the vari
able selection/modeling procedure and were tried one set at a
time. Note that data from all three lanes of the freeway would be 
required to compute the variables shown in Eqs. (12) and (13). 

3.4. Final variable selection process and results 

The dataset with 162 crashes and 3650 non-crash cases (after 
removing crash and non-crash observations belonging to under
represented locations) was then partitioned into training (70%) 
and validation (30%) datasets. The datasets were subjected to 
classification tree based variable selection process. While the 
plit is provided in Table 1. 
By examining the classification tree model closely it was 

oticed that high average speed downstream of crash site 
ASW2) along with low average speeds upstream (ASU2) 
ncreases the likelihood of lane-change related crashes. It indi
ates that when drivers perceive a chance to increase speed, 
hile traveling from low average speed regime (measured at 

he station upstream) to high average speeds (measured at the 
tation located downstream of the crash site) they might make 
ane-changing maneuvers, thereby, increasing chances of con
icts. It was also noticed that if both upstream and downstream 
re operating at high speeds (around or greater than 50 mph) 
mall average differences between adjacent lane occupancies 

able 1 
esults of variable selection procedure for lane-change related crashes 

ame Variable importance Variable description 
measure (VIM) 

SW2 

SU2 

OW2 

1.0000 

0.6179 

0.5142 

DALOU2 0.2692 

VW2 

SW2 

0.2591 

0.2006 

Average speed at station downstream 
of crash location 
Average speed at station upstream of 
crash location 
Average occupancy at station 
downstream of crash location 
Average of absolute difference 
between 30 s occupancy observations 
on adjacent lanes 
Standard deviation of volume at 
station downstream of crash location 
Standard deviation of speed at station 
downstream of crash location 



upstream of the crash site involve more risk than the sites with 
this parameter (ADALOU2) being high. Hence, if the differ
ence in occupancy between adjacent lanes is small then caution 
should be exercised while changing lanes. Standard deviation of 
volume and speed (SVW2 and SSW2) downstream of crash site 
were found to be positively associated with lane-change related 
crashes. 

4. Neural network based classification models 

Following variable selection neural network based modeling 
procedure was initiated with variables shown in Table 1 as inputs. 
The best models were identified through the lift plot having 
cumulative percentage of captured response for the validation 
dataset on the vertical axis. The output of the neural network 
based classification models for any observation is termed as the 
posterior probability of the event (i.e., a lane-change crash in 
this case). Posterior probability is a number between 0 and 1. 
The closer it is to unity the more likely, according to the model, 
it is for that observation to be a crash. In a lift chart, the obser
vations in the validation dataset are sorted from left to right by 
the output posterior probability obtained from each model. The 
sorted group is lumped into 10 deciles1 (one decile represents 10 
percentiles) along the horizontal axis. The left-most decile is the 
10% of observations with highest posterior probability, i.e., most 
l
m
c
a
r
w
a
d
v
w
m
o
v
p
p
o

c
t
t
i
t
c
p
i
n
t
o

s

Table 2 
Structure and percentage of captured response within the first three deciles for 
two classes of neural network models along with the validation root mean square 
error (RMSE) 

Neural network Number of Crash identification in Validation 
architecture hidden neurons first three deciles (%) error (RMSE) 

NRBF 2 31.42 0.2060 
NRBF 3 48.00 0.2039 
NRBF 4 32.87 0.2030 
NRBF 5 44.00 0.2033 
NRBF 6 44.29 0.2034 
NRBF 7 32.00 0.2042 
NRBF 8 37.26 0.2038 
MLP 2 38.73 0.2030 
MLP 3 44.44 0.2035 
MLP 4 50.00 0.2037 
MLP 5 40.44 0.2041 
MLP 6 33.26 0.2039 
MLP 7 34.26 0.2039 
MLP 8 45.90 0.2039 

was to estimate the number of neurons in the hidden layer. The 
underestimation of hidden neurons leads to a network having an 
incomplete representation of inputs and by contrast, the over rep
resentation reduces the network to a simple look-up table. The 
methodology adopted for selecting appropriate number of nodes 
in the hidden layer was to evaluate the performance of the models 
having hidden nodes varying from 2 to 8. Unconstrained normal
ized radial basis function neural network (NRBFUN) were also 
used for classification of lane-change related crashes. To select 
appropriate number of nodes in the hidden layer, performance 
of seven different NRBF networks (with hidden nodes varying 
from 2 to 8) was examined. 

Table 2 depicts the performance of various NRBF and MLP 
neural networks having varied number of hidden neurons. The 
performance is shown in terms of validation root mean square 
error (RMSE) as well as percentage of crashes identified within 
30% observations with highest posterior probability output. 
Note that being a binary classification problem there is not much 
difference between RMSE values for various models. It may be 
seen that NRBF network with three hidden neurons and MLP 
network with four hidden neurons provide the best crash iden
tification within the first three deciles of posterior probability. 
The row corresponding to the two models are highlighted in the 
table. 

In the next step, these two models were hybridized by aver
aging posterior probabilities from the individual models. For a 
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ikely to be a lane-change related crash. The performance of each 
odel may be measured by determining how well the models 

apture the target event across various deciles. From a practical 
pplication point of view it must be understood that crashes are 
are events and one would need to be parsimonious in issuing 
arnings for crashes. Therefore, it might not be reasonable to 

ssign more than 20–30% of observations as crashes and it was 
ecided to evaluate the individual neural network models at the 
alidation stage based on the percentage of crashes identified 
ithin first three deciles of posterior probability. The threshold 
ay be altered at the application stage based on desired number 

f warnings. A more elaborate discussion on this issue is pro
ided in the next section. It should also be noted the posterior 
robability is not the probability of crash occurrence at a given 
oint in time but is a measure providing the relative likelihood 
f crash occurrence given the composition of the sample. 

The first neural network architecture explored for classifi
ation is the multi-layer perceptron with Levenberg–Marquardt 
raining algorithm. The training procedure starts with an arbi
rary randomly chosen set of interconnection weights and then 
t tries to minimize the difference between network output and 
he desired outputs for the training dataset. All runs have been 
arried out with a maximum number of epochs (a complete list 
resentation) of 1500 and error goal of 0.01. It has been proven 
n the literature that an MLP network with one hidden layer and 
on-linear activation functions for the hidden nodes can learn 
o approximate virtually any continuous function to any degree 
f accuracy (Cybenko, 1989). Therefore, the most critical issue 

1 Decile is defined as any of nine points that divided a distribution of ranked 
cores into equal intervals where each interval contains one-tenth of the scores. 
inary target, a hybrid model may alternatively be achieved by 
lassifying the cases into the classes assigned to them by major
ty of the individual models. This method is called voting and 
s not equivalent to averaging posteriors. While voting could 
rovide a predicted target value, it would not produce posterior 
robability estimates consistent with the individual posteriors. 
hen an individual classifier assigns an output class label, the 

ecision is based on a pre-determined threshold. If the estimated 
osterior probability is less than this threshold then the classi
er would produce 0 indicating non-crash; otherwise, it would 
eturn a value of unity to indicate a crash. The output of a hybrid 



Fig. 3. Percentage of captured response lift plot for the best models belonging 
to different modeling techniques along with the hybrid model. 

classifier, according to the voting method, would be based on the 
majority of class labels from multiple classifiers. In that case, 
observations assigned as crash according to the “majority-rule” 
hybrid classifier cannot be compared amongst each other. In 
other words, there would be no way to judge which pattern is 
more crash prone among all the patterns that are identified as 
potential crashes. However, if the hybrid model is estimated by 
averaging the posterior probabilities, it is still possible to rank 
the observations in the validation dataset to create lift plots. It 
will in turn help in evaluating the performance of the hybrid 
model vis-à-vis the individual models. 

In fact, for the present research problem, a significant 
improvement in crash identification was achieved through the 
hybrid model created by averaging the outputs from the best 
MLP and NRBF models. Fig. 3 shows the lift plot for the two 
individual models (NRBF-3 and MLP-4) highlighted in Table 2 
along with the hybrid model. The curve shows the percentage 
of the lane-change crashes in the validation dataset captured 
within various deciles of posterior probability by each model on 
y-axis. On the x-axis the percentiles are shown at equal intervals 
of 10. Fig. 3 also demonstrates ‘performance’ of a random base
line model which represents the expected percentage of crashes 
identified in the validation sample if one randomly assigns val
idation dataset observations as crash and non-crash. A model 
can be assessed by examining the separation of its correspond
ing lift curve from the random baseline curve. It may be seen 
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Table 3 
Performance of the classification models over the validation dataset 

Percentiles of Percentage of crashes identified in 
posterior probability the validation dataset 

Baseline Hybrid NRBF-3 MLP-4 
model model 

10 10 20 (+10) 11 (+01) 22 (+12) 
20 20 42 (+22) 24 (+04) 36 (+16) 
30 30 57 (+27) 48 (+18) 50 (+20) 
40 40 70 (+30) 66 (+26) 59 (+19) 
50 50 77 (+27) 72 (+22) 68 (+18) 

The margin in the parentheses shows the differential between crashes identified 
by the corresponding model and the baseline model. 

ously improve but the percentage of non-crash cases correctly 
identified would decrease. Hence, there is a trade-off involved 
since as we declare more patterns as crashes we also increase 
the ‘false alarms’. Also, note that the performance of the hybrid 
model created by combining the outputs of the best individual 
models is much better than that of the best individual models. 
The comparison of the performance of the hybrid model with 
that of the baseline model suggests that the hybrid model is 
in fact capable of identifying conditions prone to lane-change 
related crashes. 

The performance of the hybrid model in terms of a tradi
tional classification table is depicted in Table 4. It shows that 
if the 30 percentile posterior probability value is used as the 
threshold to separate crashes from non-crash cases, 30% of 1145 
(=1096 + 49) validation dataset observations, i.e., 344 obser
vations, will be classified as crashes. Hence, according to the 
hybrid model, more than 57% of the crashes (i.e., 28 of 49) 
will be identified by declaring 344 patterns as crash. Among the 
rest 801 (=1145 − 344) observations, there will be 21 missed 
crashes and 780 non-crash cases which are correctly identified. 
It translates into about 71.17% (780 of 1096) non-crashes cor
rectly identified. Therefore, the model achieves more than 71% 
classification accuracy over non-crash cases and 57% accuracy 
over crash cases. The cells of Table 4 depicting these percentages 
are highlighted in Table 4. 
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hat in the first half (up to 50 percentiles) the lift curve for the 
ybrid model remains consistently above the curves for the best 
ndividual models. 

The performance of the best individual models, the hybrid 
odel, and the baseline model is summarized in Table 3. The 

erformance is measured in terms of the percentages of crashes 
dentified at various deciles (1–5). The percentage of crashes 
identified’ by the baseline model is equal to the corresponding 
ercentile values. For the other three models (MLP-4, NRBF-3, 
nd the hybrid model) the table shows the percentage of crashes 
dentified at the five deciles along with the differential of these 
ercentages vis-à-vis the baseline model in the parentheses. 

It may be seen from Table 3 that the hybrid model identifies 
7, 70, and 77% crashes in the validation dataset, respectively, 
t 30, 40, and 50 percentiles. As we increase the percentage of 
bservations declared as crash, the crash identification will obvi-
able 4 
lassification performance of the hybrid mode over the validation dataset if 30 
ercentile posterior probability output is used as the threshold 

Predicted Total 

0 1 

ctual 
0 Frequency = 780 316 1096
 

Percent = 68.12 27.60
 
Row Pct = 71.17 28.83
 
Col Pct = 97.38 91.86
 

1  21  28  49
1.83 2.45 
42.86 57.14 
2.62 8.14 

Total 801 344 1145 
100.00 



5. Discussion of results 

The hybrid model utilized traffic parameters from the stations 
located immediately upstream and downstream of the historical 
crash locations as inputs. Therefore, it may be used to assess the 
crash risk between the sections of the freeway located between 
a pair of loop detector stations. 

The formulation of the problem along with the solution 
approach adopted here is somewhat similar to incident detec
tion. However, the objective of the analysis is to identify crash 
prone conditions, i.e., the conditions in which drivers are more 
likely to make errors resulting in lane-change related crashes, 
rather than pin point the occurrence of a crash. It allows for more 
flexibility since conditions prior to crashes (present research 
problem) are not as readily identifiable (possibly due to signifi
cant human factor involvement) as the conditions following the 
crashes (approach for incident detection). Crashes being such 
rare events, it is not possible to fully avoid the false alarms. 
As depicted in Table 4, even the modest 30% positive deci
sions (resulting from using 30 percentile values as the threshold) 
would result in a significant number of ‘false alarms’. One may 
bring it down to an extent by using a higher threshold (e.g., 
20 percentile value for the posterior probability), it would still 
remain significant. Traffic parameters from time-slice 1, if used 
as inputs instead of the parameters from time-slice 2, are also 
expected to provide slight improvement. However, time-slice 
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6. Concluding remarks 

A data mining based approach to identify potential lane-
change related freeway crashes was presented in this paper. 
Based on the findings from Lee et al. (2006) and an exten
sive review of crash reports, it was concluded that all sideswipe 
crashes and angle crashes on inner lanes of the freeway may 
be attributed to lane changing maneuvers. These crashes were 
referred to as lane-change related crashes and are analyzed in this 
study. Based on variable selection procedures based on random 
as well as within stratum matched data it was concluded that the 
location specific characteristics do not have a significant effect 
on occurrence of a lane-change related crash. Note that it does 
not imply that all locations on the freeway are expected to have 
similar frequency of these crashes. It means that if locations with 
certain geometric characteristics experience more lane-change 
related crashes, these occurrences are better correlated with the 
traffic conditions existing before these crashes than the geomet
ric characteristics that might be causing the crash prone traffic 
conditions. It was also noticed that the intensity of lane changes, 
measured in terms of overall average flow ratio (OAFR), was 
not significant to separate crashes from non-crash cases. It is 
interesting because the OAFR was successfully used to classify 
lane-change related crashes from rear-end crashes by Lee et al. 
(2006). 

The variables found significant in the final analysis were aver
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 being too close to time of the crash would leave absolutely 
o leverage in terms of time available to process, analyze and 
isseminate the information that may in turn be used to avoid 
rashes. 

It should be noted that ‘false alarms’ are not as detrimental in 
he present application as they are in case of incident detection 
lgorithms. In fact, the ultimate goal of this research would, or 
t least should be, to ‘achieve’ a ‘false alarm’ every time a crash 
arning is issued. The goal would be based on the expectation 

hat with some form of proactive countermeasure or warnings to 
he motorists, potential crashes following the crash prone con
itions may be avoided. Such countermeasures are obviously 
 matter of detailed investigation but even without the coun
ermeasures it is neither improbable nor unacceptable to have 
hese ‘false alarms’. Crash prone traffic conditions, which could 
e identified by the hybrid model developed in this paper, would 
ot always result in a crash occurrence even though a significant 
roportion of historical crashes did occur under those condi
ions. These conditions are worth warning the drivers and drivers 
eed to be more attentive under such traffic conditions even if 
hey may not culminate in a lane-change related crash every 
ime. 

The justification or inevitability of false alarm does not mean 
hat an unlimited number of warnings could be issued; especially 
f the information based on the model output is being transferred 
o the drivers on the freeway. The reason for being judicious 
bout the number of warnings would be to ensure that the drivers 
o not perceive the number of warnings to be “too many” and 
ecome immune to them. The whole notion of warnings and 
rivers’ reaction to them are beyond the scope of the present 
ork and require further investigation. 
ge speeds upstream and downstream of the crash site. Average 
ifferences between adjacent lane occupancies upstream of the 
rash site (ADALOU2) along with standard deviation of volume 
nd speed (SVW2 and SSW2) downstream were also found to 
e associated with lane-change related crashes. These variables 
shown in Table 1) were used as inputs to classification models 
ased on two neural network architectures (MLP and NRBF). It 
as found that the MLP model with four and NRBF model with 

hree hidden neurons were the single best models in their respec
ive classes. The hybrid model created by combining these two 

odels bettered the performance of individual models in terms 
f crash identification over the validation dataset. This model is 
ecommended to assess the risk of a lane-change crash between 
wo loop detector stations on the freeway. It should be mentioned 
hat even though only the models using data from time-slice 2 
5–10 min before the crash) are described here, models using 
ata from time-slice 3 to 4 were also attempted but as expected 
hey did not achieve the performance comparable to the models 
escribed. Also, time-slice 1 traffic parameters might have pro
uced slightly better results, but being too close to actual time 
f crash they cannot be used in a real-time application due to 
ractical considerations. 

Through an online application of the final hybrid model the 
isk of a lane-change related crash may be continuously esti
ated between any two loop detector stations provided the data 

rom all three lanes are available at those stations. Based on 
he measure of risk, i.e., the posterior probability output from 
he model, decision can be made about warning the motorists 
n the freeway. A reasonable number of warnings based on the 
ybrid model output can potentially play a critical role in proac
ive traffic management. These warnings may be issued to the 



motorists driving on the freeway locations through variable mes
sage signs (VMS). Messages discouraging the drivers to change 
lanes could also be an alternative for reducing the risk of lane-
change related crashes. However, the frequency and impacts 
of such warnings/messages on driver behavior call for further 
research and should therefore be pursued in the future. 
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