

Mark Gabel and Michael Haungs - California Polytechnic State University,

San Luis Obispo

Pp. 49-62 of the Proceedings of the 21st Large Installation System

Administration Conference (LISA '07)

(Dallas, TX: USENIX Association, November 11-16, 2007).

Accurate performance testing of heterogeneous distributed systems, such as those created using GRID technology, requires
a consistent method for retrieving system performance data from multiple platforms. This paper presents CAMP [Note 1]: a
low-level platform independent performance data API designed for use with distributed testing frameworks.

CAMP is not necessarily tied to the distributed testing task: it provides a simple, low-level interface into operating system
performance data that can be used to build complex performance measurement applications. This paper discusses CAMP's
functionality and implementation in detail. It also contains a detailed analysis of the API's correctness, performance, and
overhead.

Performance testing is a critical part of the distributed system development cycle, and there is a clear need for robust,
automated, and reusable testing mechanisms. This task is made difficult by several factors, and each must be individually
addressed and resolved for a system to be generally applicable to an appreciable portion of the set of distributed systems.

Test beds often consist of heterogeneous systems composed of different platforms and capabilities. For purpose-built
systems, this can be intentional. However, for some system developers, this type of test bed may be the only resource
available. For GRID-based systems, this is inevitable.

With the increasing popularity of Java and other virtual machine or interpreter driven languages, application code is often
made "incidentally portable;" that is, the final system does not necessarily need cross-platform capabilities, but it gains that
ability through the features of the host language. This provides a unique opportunity for distributed system developers to test
code on expanded sets of test beds, including the previously mentioned heterogeneous systems. For developers to exploit
this advantage, a performance testing framework must be able to operate seamlessly and transparently on several platforms,
and it must not provide a burden to developers who are developing otherwise platform-independent code.

Aside from platform independence, a testing framework should be able to measure data that is both relevant and
meaningful. Unfortunately, distributed metrics are difficult to generalize. For example, developers of distributed agent
systems might be concerned with end-to-end processing time of requests, while a developer of a distributed computation
system might be interested in the efficient and total utilization of available network resources. However, certain metrics do
lend themselves to standardization: system performance counters on individual nodes. A platform-independent method of
accessing performance data on individual nodes could serve to supplement or even build larger, domain-specific metrics.

The source of system performance data varies. Some solutions make use of highly accurate hardware performance counters
[21], which are dependent on the underlying architecture of the tested systems. In addition, the interfaces to these hardware
systems usually require extension of the host operating system, making the framework doubly dependent on both the
operating system and the underlying architecture. While this provides very accurate data for specific systems on a
system-wide level, it is difficult to extrapolate isolated data for a single process.

At a higher level, modern operating systems provide interfaces to performance data, both on the system-wide and

per-process levels. These interfaces can take the form of a well-defined API, a high-level system of performance counting,
or simply exposed kernel structures that contain performance information. Operating system performance interfaces often
make use of hardware performance counters as well, further strengthening their accuracy. In addition, several operating
system-dependent metrics are of use to the distributed system developer. These can include virtual memory usage, page
fault counting, and network interface statistics.

This paper introduces CAMP: a cross-platform low-level API for measuring system performance, designed for use with
distributed testing frameworks. CAMP is grounded on a single proposition: modern operating systems function similarly, and
they keep track of their performance data in some externally-accessible way. CAMP standardizes access to this data through
a cross-platform interface, fully encapsulating the available operating system performance reporting services. It is
implemented across three major platforms in Python, a platform-independent interpreted language. The API and its
respective semantics are identical across each platform. While not a testing framework in itself, CAMPmakes a valuable
contribution to the task by solving the system data independence problem at the lowest level.

CAMP provides a common entry point and retrieval format for system-wide and per-process performance data. It is
implemented completely statically, holding no persistent state. It attempts to provide raw, unprocessed data wherever
possible. The implementation is substantial, production-ready, and uses the highest-performing, lowest-overhead method
available on each platform to provide data. CAMP provides novel solutions to several implementation-specific problems.
These include addressing a process consistently across multiple operating systems, encapsulating time-averaged data in a
single, stateless function call, and addressing locally-named devices in a platform independent manner.

CAMP is a versatile interface: it aims to be the foundation of a performance measurement system and can be used as is or
easily extended. It is usable in a variety of different scenarios.

Derived Functions

The data provided by CAMP is raw in nature; that is, it has no meaningful calculation performed on it. For example,
network connections are measured by total numbers of packets sent and received rather than a rate. CAMP's ability to
provide this low-level data across multiple platforms allows developers to create platform independent secondary functions.

01 # Calculate the current transfer rate (Both

02 # in and out) for the given network adapter.

03 def BulkByteTransferRate(adapter):

05 # Query CAMP for the initial state.

06 initial = GetNetBytesSent(adapter)

07 initial += GetNetBytesRecvd(adapter)

09 time.sleep(SAMPLE_INTERVAL)

11 # Query CAMP for the final state.

12 final = GetNetBytesSent(adapter)

13 final += GetNetBytesRecvd(adapter)

15 return (final - initial)/SAMPLE_INTERVAL

Figure 1: A derived function that measures network throughput.

For example, a developer needing rate or throughput data for network connections is free to implement the function in any
way: her or she can choose how the state is stored, what statistical functions will be used to determine the rate, and how
often the system will be polled. The developer is guaranteed reliable and consistent raw data from the CAMP interface. This
extension would not be tied to a specific platform. By selectively determining what extra processing and state are used, the
developer minimizes the overhead of the performance measuring system. A sample rate function appears in Figure 1.

System Monitoring

CAMP could also be used in a wide scale client-server monitoring system. The API's versatility and consistency would allow
implementation of a variety of cross-platform monitoring systems. System analysts might be interested in passive
performance logging systems, where CAMP's data could be used to make decisions about expanding capacity or more

efficient allocation of resources. System administrators could find derived functionality like active throughput and capacity
meters useful: spikes or drops in measured data could quickly indicate problems.

Using CAMP all of these systems could be built with little knowledge of the inner workings of the tested systems' kernels.
The simplistic model and implementation in a clear, scripting-like language allows non-developers to intuitively collect
desired performance data.

Distributed System Testing

Accurate operating system performance data would be a valuable addition to an existing distributed testing framework, and
CAMP would be able to provide this functionality with minimal overhead. Many existing testing frameworks rely on the
distribution of timestamped, domain-specific performance data [7, 11, 18]. In this scenario, timestamped data from CAMP
or CAMPderived functions could be collected along with the existing data and correlated by time. This could provide
powerful insight for the diagnosis of performance problems observed on a global level: developers could precisely quantify
their software's effect on various operating system services during periods of poor performance.

Other systems concern themselves with treating distributed systems as black boxes [1]. These systems test only externally
measurable values like global latency and throughput of provided services. CAMP provides a low overhead, non-intrusive
way of supplementing this domain-specific data with system performance data. The API allows developers to maintain this
black box model by utilizing the available operating systems to probe processes externally rather than instrumenting the
running code.

Global Functions

GetPercentProcessorTime(cpu) Global CPU usage. CPU parameter may be omitted.

GetFreePhysicalMemory() Global free physical memory

Network Functions

GetNetBytesSent(interface) Total bytes sent on interface

GetNetPacketsSent(interface) Total packets sent on interface

GetNetBytesRecvd(interface) Total bytes received on interface

GetNetPacketsRecvd(interface) Total packets received on interface

Disk IO

GetNumReads_Disk(disk) Number of read operations on the given disk

GetNumWrites_Disk(disk) Number of write operations on the given disk

GetNumReads_Partition(partition) Number of read operations on the given partition

GetNumWrites_Partition(partition) Number of write operations on the given partition

Per-process Functions

GetNumPageFaults(process) Number of major and minor page faults

GetCPUTime_Total(process) Process CPU utilization

GetCPUTime_User(process) Process user mode CPU utilization

GetCPUTime_Kernel(process) Process privileged mode CPU utilization

GetWorkingSetKb(process) Size of the process working set in KB

GetVMSizeKb(process) Size of the used virtual address space in KB

GetThreadCount(process) Number of threads contained in this process

Enumeration Functions

EnumDiskPartitions() Enumerates the available disk partitions

EnumPhysicalDisks() Enumerates the available physical disks

EnumNetworkInterfaces() Enumerates the valid inputs to the network functions

GetCPUCount() Returns the number of CPUs in the system

GetProcessIdentifier(pid) Returns a "process identifier" for the given pid

GetProcessIdentifiers(name)
Returns a "process identifier" for each running process launched from an
executable of the given name

All CPU-time functions have an optional second parameter: the sample interval.

Figure 3: The current API.

The architecture of a performance test can vary across different project domains, and it can evolve as a single project grows
over time. Because of this, the architecture must be flexible; that is, it must be applicable to any of the aforementioned
scenarios. To accomplish this, the interface must be created at the lowest level possible. Figure 2 shows the CAMP API in
relation to the surrounding implementation levels.

Performance measuring applications, testing frameworks

Possible CAMP extensions: derived functions, stateful counters

CAMP Low-level, stateless performance functions

Linux(proc) Win32(pdh) Solaris(kstat) Other

Figure 2: The CAMP system architecture.

CAMP's design uses a simple, low-level stateless interface. To the user, all performance data can be thought of as existing in
a set of permanent counters, and the API merely provides simple accessors to the data. The API is a set of solid, well-tested
building blocks that form the foundation of a platform-independent performance monitoring application.

The design is largely inspired by declarative languages like SQL. The data is assumed to exist in a changing but directly
inaccessible state, and the methods for accessing the data are thread-safe and consistent for a single point in time. CAMP
focuses on providing the simplest, most intuitive interface without prematurely optimizing it by forcing it into the mold that
best suits the performance data access patterns of a particular platform. As discussed in our empirical evaluation, this does
take a toll on performance in some cases. The simple, atomic request-response architecture allows a focus on correctness
and usability: CAMP defines distinct function contracts, and its proper use is not defined by a set of unnecessarily complex
access patterns.

Cross-Platform Coverage

For CAMP to be complete, it should be able to provide substantial coverage of each implemented platform's performance
statistics. This presents several challenges: some platforms provide more information than others, while some platforms
simply provide different information or different levels of granularity.

CAMP makes use of a lowest common denominator design. This approach, described in [5], is taken by the Java Abstract
Windowing Toolkit (AWT) [22]. The Java AWT takes the intersection of natively- available GUI components on several
platforms and generalizes them under a single interface. While effective, this method does limit the functionality to that of
the least functional platform. However, it is guaranteed to be fully consistent in any implementation.

While this intersection design has the potential to severely limit functionality, CAMP is still able to provide a comprehensive
API. As discussed previously, CAMP is based on the postulation that modern operating systems function similarly and
record similar data. While this data may be difficult to access, the common set of accessible data was more than enough to
provide a usable API. The current API appears in Figure 3.

Performance

CAMP is designed to be "as fast as possible," and this involves the elimination of some design alternatives - namely, the
ability to leverage preexisting native utilities to shorten CAMP's development time. Most [Note 2] of CAMP's functionality
can be collected from the output of a native, command line driven utility on the host. However, this is a potentially costly
layer of indirection: the forking of a process to satisfy a single function call, which may be called several times per second,
puts an unnecessary strain on operating system resources and is very time consuming.

This overhead may be acceptable for simple system monitoring tasks, as demonstrated by Eddie [12], but this level of
resource consumption is not satisfactory for a high-performance API that intends to form a foundation for performance
measuring applications. Instead, CAMP makes use of the fastest, most direct native interfaces into the kernel performance
data for each implemented platform. It does not make use of any other utilities or services.

CAMP's public interface is implemented in the Python language, and its internals consist of a mix of Python and native
code. It currently supports the Win32 (Windows NT/2000/XP), Linux 2.6, and Solaris (SunOS kernel 5.x) platforms. The
Win32 implementation interfaces to Microsoft's performance data handler (PDH) interface. In the Linux implementation,
CAMP interfaces with the proc filesystem. On Solaris, CAMP uses both the proc filesystem and the kernel statistics chain
(kstat).

This chapter discusses each platform's implementation in detail, and it also chronicles several global issues that affected all
platforms.

Python

Python is an open source, interpreted language that is available for most modern platforms. It is characterized by its
unusually clear syntax and strong set of libraries. Python lacks end-of-statement delimiters, forced declaration of variables,
and explicit types. It also uses the concept of "significant white space," with indentation actually indicating the nesting level
of a particular statement. These features lend to Python code's readability. Python combines the simplistic syntax and
excellent text processing capabilities of a scripting language with the robustness and maturity of a full, heavyweight
programming language.

CAMP uses Python for a number of reasons. Python has a fully wrapped interface to the Win32 interface using the pywin32
package. This included a wrapper around Microsoft's performance data handler interface, which was able to provide nearly
all performance measuring functionality in the Win32 implementation. Python is also ideal for text processing tasks.
Containing a full regular expression matching and replacement implementation, Python lessened the difficulty of parsing the
cryptic output of the proc filesystem.

Windows

Microsoft does provide a low-level interface to performance information: the HKEY_PERFORMANCE_ DATA registry
branch. However, it is not visible to the user and requires direct programmatic interaction with the registry hive. When using
the registry directly, access is not error-checked or thread safe. Incorrect use may provide false data rather than an
exception or error. Instead of accessing this data directly, Microsoft recommends the use of the performance data handler
interface.

The Win32 performance data handler interface is a high-level encapsulation around the concept of performance data
gathering. It revolves around the concept of a "counter," which is an object that is attached to particular performance
"concept" and can be called to periodically gather data about that concept. To retrieve data, the user calls either a raw or
formatted data retrieval function on the counter. The Windows "Performance" control panel administrative tool
demonstrates the direct use of this interface.

Windows provides counters for performance "objects." Examples of objects include "Memory," "Processor," "Paging File,"
and "Physical Disk." Each object is associated with one or more "counters." For example, the "Memory" performance
object contains around twenty counters, including instances such as "Pages/sec," "Available Bytes," and "% Committed

Bytes in Use."

Some counters are associated with "formatted" data, which involves a computation on raw data. "Pages/sec" is an example
of one of these: the counter itself contains a raw count of the number of pages written to and read from disk, but retrieving
the counter value causes an average rate to be calculated. One can bypass this calculation by retrieving the "raw"
performance data from a counter. Other, scalar counters like "Available Bytes" return the same value for both formatted and
raw outputs. CAMP almost exclusively uses the raw data, which may have its ultimate source in the NT kernel (in the case
of process information) or in an individual device driver (in the case of network or disk IO).

A counter can optionally be associated with an "instance." For the counters in the object "Process," the set of instances
consists of the set of running processes. For the counter "Network Interface," the set of instances consists of the set of
installed network adapters. Microsoft provides a function to enumerate the set of instances for a given counter, which
CAMP uses to implement each of the enumeration functions.

The Microsoft performance data handler interface is designed for higher-level usage than that provided by CAMP, but there
appears to be little overhead in using its clear, relatively simple interface.

Linux

On the Linux platform, CAMP collects operating system performance data through the proc pseudo-filesystem. proc is a
file-like interface to kernel data structures that show system information, which includes performance data. At the top level,
the filesystem contains three types of entries: status files, kernel-specific directories, and process directories [Note 3]. The
proc filesystem is referred to as a pseudo- filesystem because the "files" presented are actually file-like interfaces into
kernel data structures which reside completely in memory or are generated dynamically. As a result, access to the filesystem
is exceptionally fast. Several files are redundant: human- readable versions are supplemented by simple, one-line white
space delimited versions that can be parsed more quickly.

The status files contain useful information about the system configuration: information about the CPU, mounted filesystem,
attached devices, and memory. It also contains an accurate uptime count, which lists the current system uptime and how
much of that time has been spent in the idle process.

The kernel-specific directories are groupings of status files. For example, the net directory contains information about each
protocol in use as well as raw performance data for each network adapter. In addition, when granted root-level access,
several of these files are writable. Modifying one of these "files" causes the modification of the related kernel data structure.

CAMP uses these kernel-specific files for implementing all global functions. In many cases, the data provided by proc is
already in a sufficient format. In some cases, however, the data requires manipulation. For example, most memory
measurements in Linux are stored as page counts. CAMP converts these to a raw size by adjusting the value based on the
results of the POSIX getpagesize call.

The process directories contain useful information about each running process. They are named by the process identification
number (pid) of the related process. A process directory contains a symbolic link to the executable that spawned the running
process, information about memory and CPU usage, a list of open file descriptors, and varied information about the
process's environment.

The information provided by proc fit well into the CAMP interface. It is relatively low-level, accurate, and can be accessed
with little overhead.

Solaris

Performance data on Solaris comes from two sources: the proc filesystem and the kernel statistics chain (kstat). The Solaris
proc filesystem differs greatly from the Linux implementation, following a more standard UNIX pattern. It exports
performance data only for processes, not system-wide statistics, and the files contain binary data that must be read within a
C-compatible language and cast to the appropriate struct type. This effectively precluded direct access from Python. To
solve this problem, CAMP uses its own C to Python shared library that handles all data retrieval, marshaling, and error
checking. Once again, reads on the proc files are atomic and unbuffered to prevent data inconsistency.

Global system data comes from a large data structure within the SunOS kernel called the kstat chain. The data structure

consists of a linked list of performance counters, each of which can be one of several types: a set of name/value pairs, a
binary C structure, or an undefined "raw" type. The data is categorized hierarchically by "class," "module," instance
number, and name, but this organization is not reflected structurally; that is, no matter what the search criteria, finding an
appropriate kstat instance is always an O(n) operation.

A research-quality implementation of a Python to kstat bridge already existed [2], but it was not compatible with the current
version of the SunOS kernel and it was incapable of retrieving many of the P "kstat" instances that CAMP needed. Building
on this system, CAMP generalized the solution to all instances and introduced compatibility with modern kernels. CAMP's
version of the library also includes a faster search algorithm: the original author made several passes of the chain when one
would suffice. This library also includes several bug and data type conversion fixes, and it also adds the ability to produce
enumerations of all statistics structures of a certain class or module.

With these enhancements, all global and enumeration functions were able to be implemented with a relatively simple
interface. As in the Linux implementation, memory data in page units had to be converted to a byte count.

This section presents selected implementation issues and their respective solutions.

Raw Data on Windows

The pywin32 package that encapsulated the Windows performance data handler interface was incomplete. The existence of
the "raw" retrieval function was not implemented in the Python wrapper DLL, and its existence was not acknowledged or
documented.

CAMP includes an extended version of the pywin32 interface that includes this missing functionality. CAMP uses
Microsoft's documentation and header files as a strict contract for converting the raw native values into appropriately typed
Python objects, taking special care to avoid narrowing conversions that may cause loss of data.

Determining CPU Usage

Determining CPU usage from a single function call posed a unique problem. At any instant in time, the usage of a CPU in a
time-shared operating system is either zero or one hundred percent. Introducing a persistent polling thread into the system
was not a viable option; it would violate the design goals of the interface.

To solve this problem, the CPU functions query the current idle and uptime counters immediately, block for a specified
interval, and query a second time and return. This causes no additional performance overhead: the task can be unscheduled
while blocked, and there is no thread-spawning overhead. The sample rate is configurable at call time by applying an
optional second parameter to the call indicating the block interval. This value is set at 100 ms by default, and has proved to
be very accurate while keeping the function responsive.

The utilization is calculated as:

or, more simply, the percentage of time not spent in the idle process. The per-process CPU usage functions are implemented
similarly but with a finer granularity, as both kernel time and user time are reported separately.

Another issue arose with multi-CPU systems. CAMP should provide the ability to distinguish load on a single CPU from
global system load, so the global CPU measuring function allows an optional CPU parameter: a 0-based index that requests
the load for a specific CPU. Omission of the parameter causes the total system load to be returned. CAMP also provides a
CPU count function to provide information when the count is not known.

Enumeration Functions

The networking and disk functions must operate on a per-interface and per-disk or partition level to be useful. However,

device names are certainly not consistent across systems, and indexes, while consistent, are arbitrary and not meaningful.

One solution would be to use common device names to reference the devices. The logical candidate for this would be to
map Linux's standard eth* hd/sd naming scheme into Windows. However, this would provide an unnecessary burden and
layer of confusion for Windows developers. In addition, the mapping of English device names to a universal "code" could
prove to be nondeterministic, forcing developers to use empirical tests to determine what "code" referenced the relevant
network adapter or disk.

CAMP's solution is to use enumeration functions. In this particular context, the function enumerates the list of installed
network adapters and the list of installed disks. However, the semantics of the function is stronger than it appears on the
surface. Every output of the enumeration function is guaranteed to be a valid input to the performance measurement
functions; this means that the output will not only contain the correct name, but it will also be in the correct format required
by the underlying platform.

The Windows build of CAMP uses Microsoft's PDH object enumeration function. On Linux, this was implemented by
parsing a file in the proc filesystem and building a tuple of the results. On Solaris, this data is gathered over one traversal of
the kstat chain.

Process Addressing

The standard method of addressing a function in an operating system is the process identifier, or pid. However, Windows
does not have an O(1) method for programmatically accessing a process's performance counter based on its pid; one must
enumerate all processes and look for a match. This would be an unreasonable solution for CAMP: because the API does not
maintain a state, each call to a per-process function would take O(n) on a Windows machine (where n is the number of
currently running processes).

On Linux and Solaris, the opposite is true. Getting process information by pid is achievable in O(1) time, but finding a set of
pids from a name is an O(n) operation.

CAMP's solution to this is to introduce an abstract concept: the "Process Identifier." The developer can retrieve a process
identifier through a CAMP function that takes a pid as its input. Because this function ideally only runs once per session of
use, the O(n) running time is acceptable.

On the Windows side, this function is implemented by enumerating all current processes and finding the matching process.
CAMP then creates a process identifier, which, on this platform is a string, according to Microsoft's naming conventions.
The identifier consists of the name of the executable binary with its extension truncated, and an increasing numeral
appended for processes spawned from the same binary. CAMP returns an error value if the process is not found.

The Linux and Solaris functions are much simpler: they merely attempt to open the process's status file from its proc
directory. If it fails for any reason (existence of the process or lack of permissions), an error value is returned.

CAMP does not attempt to hide the value of a process identifier in an abstract class. If a developer is aware of the identifier
type for the current platform, he or she can bypass the process identifier step.

For convenience, CAMP also provides a function that returns a list of process identifiers given an executable file name. This
function returns a list because multiple processes can be running from the same executable - which may often be the case in
a distributed system. For example, the prefork variant of the Apache web server creates multiple processes to handle child
requests. A developer can simply run GetProcessIdentifiers(`httpd') to get an enumerable list of all running Apache
processes.

The objective of the result validation phase was to ensure that each performance function reports reasonable and
predictable behavior under the presence of controlled conditions. CAMP's test plan involves running the performance
monitoring functions against small programs that use a specific resource in a measurable amount.

Correct implementations of these programs would require kernel augmentation on all three platforms, as the operating

system is inherently in control of the distribution of resources. In spite of this, our programs were able to provide a
reasonable approximation for CPU, memory, network, and thread usage.

The test bed consisted of a high-end PC [Note 4] running VMWare workstation. Each test ran sequentially on three virtual
machines: Microsoft Windows 2000 Professional (kernel 5.0), SuSe Linux 9.3 (kernel 2.6.11), and Sun Solaris 10 (kernel
5.10). Each operating system ran only its essential services to minimize interference with tests. The virtual machine
configuration limited each to 256 MB of RAM and a 32-bit virtual processor.

CPU Time Verification

To test the various processor time functions, CAMP was set to monitor a simple Python program that generates a fixed load
on a single CPU. Put simply, this program divides a discrete interval into an "on time" and and "off time" based on the
desired load, and alternates between busywaiting during the "on time" and sleeping during the "off time." The code for this
function appears in Figure 4.

01 def waste(amount):

02 on_time = _INTERVAL*(amount/100.0)

03 off_time = _INTERVAL-on_time

04 ctime = clock()

05 while True:

06 if clock() - ctime >= on_time:

07 sleep(off_time)

08 ctime = clock()

Figure 4: The CPU load generation code.

The global CPU time function and the per-process equivalents were first individually tested against idle, 50% and full
system loads. Next, both functions were tested against two processes, each consuming approximately 30% of the CPU. The
optional "sample rate" parameter was omitted, leaving a default sampling period of 100 ms.

All reported values are averages of 200 samples taken at a 0.5 second interval. Each average is the center of a 95%
confidence interval on the mean, given that the overall sample distribution is normal. The algorithm used is described in
[10]. The range of each confidence interval never exceeded 0.5% and does not cause a visible difference on the scaled
graphs.

Before Alloc. After Alloc. Difference

Work. Set Size 9132 10120 988

Phys. Free 416244 415272 (972)

(a) Windows

Before Alloc. After Alloc. Difference

Work. Set Size 14128 15112 984

Phys. Free 10196 9324 (872)

(b) Linux

Before Alloc. After Alloc. Difference

Work. Set Size 13096 14084 988

Phys. Free 387440 386472 (968)

(c) Solaris

Table 1: Memory allocation results.

The results of these tests on appear in Figure 5. All platforms reported the idle and full loads without error, and each

platform was able to provide accurate results for all other intermediate loads. The global measurement of the two-process
test read slightly above the expected value; this is most likely due to scheduling overhead.

(a) 50% load, global and individual (b) Two 30% loads, individual

(c) Two 30% loads, global
Figure 5: CPU time verification results.

Memory Usage Verification

The memory usage tests operated on the functions GetWorkingSetKb and GetFreePhysicalMemory. The test program is a
simple, two-stage Java program. It first launches and immediately allocates a 976 KB array on the heap and waits. Upon
continuing, it allocates another 976 KB array and waits until terminated. Table 1 lists the results of the two CAMP functions
before and after the allocation on all three platforms.

CAMP reported consistent working set results for the program on all three platforms, albeit with a 4KB disparity on Linux.
The Linux virtual machine's page size is 4KB, so this represents a reasonable difference of just a single page.

However, while the working set function reported consistent results, it did not report the 976 KB allocation precisely.

Because Java programs run in a virtual machine that handles allocations on behalf of the running code, precise changes in
memory usage, from a program perspective, are not necessarily exactly reflected at the physical level. In practice, however,
the difference between the expected and actual values was just over 1% when using these short- lived test programs. This
was sufficient for verification.

The free physical memory validation was somewhat more informal. A precise test for this function is impossible to execute
in user space as the full working sets of all tested kernels seldom converge on a completely steady state. This is due in part
to each operating system dynamically controlling paging and various caches through periodically-running background
threads. Instead of a precise test, this measurement was a verification that this function reasonably reflected the expected
changes in free physical pages. In all cases, CAMP's free memory function reported a value within 10% of the expected
result.

Network Utilization Verification

CAMP's network functions report the cumulative bytes and packets sent and received on a single interface. To verify these
values, the functions were run against a Java program that sent and received a fixed number of packets and terminated.
Each test packet consisted of a plain, addressed UDP packet with a 32 byte payload. UDP traffic was ideal for this test
because it allowed a precise prediction of the number of packets sent and received; there was no extraneous ACK or
connection setup overhead to skew the results. Testing occurred on a private network consisting of only the CAMPtested
virtual machines and their host.

Table 2 shows the results of this test. All platforms reported identical packet counts, but Windows reported a different bytes
received count. The offending byte count was 600,000, which amounts to 60 bytes per packet. All other byte counts were
740,000, or 74 bytes per packet, which gives a difference of 14 bytes per packet. Several more tests with increased packet
sizes showed that this discrepancy always remained at exactly 14 bytes per packet.

Before Send After Send Difference

Packets Sent 37412 47412 10000

Bytes Sent 2175911 2915911 740000

Packets Received 58299 68299 10000

Bytes Received 13001375 13601375 600000

(a) Windows

Before Send After Send Difference

Packets Sent 60968 70968 10000

Bytes Sent 4157951 4897951 740000

Packets Received 112454 122454 10000

Bytes Received 154652907 155392907 740000

(b) Linux

Before Send After Send Difference

Packets Sent 1762 11762 10000

Bytes Sent 160145 900145 740000

Packets Received 3379 13379 10000

Bytes Received 386700 1126700 740000

(c) Solaris

Table 2: Network test results.

The composition of each 74 byte packet is likely 14 bytes of Ethernet header, 28 bytes of UDP overhead, and the 32 bytes

of payload. A likely explanation for the 14 byte difference is that the network driver for the virtual machine's network
adapter is not adding the Ethernet header to its incoming byte counter. CAMP's network functions reflect this discrepancy
because the byte counts come directly from the respective network drivers. Informal tests on non- virtual Windows
machines did not show this same asymmetry.

Despite this difference, the key metrics for evaluation were the packet count and the verification that the byte counts were
incremented by at least 320,000 bytes (payload × packet count). In addition, the test programs verified that the payload was
delivered in full.

Thread Count Correctness

Verifying the thread count function was a straightforward task. The function GetThreadCount recorded the current thread
count of a Java program running one extra thread. After a fixed amount of time, the program spawned a second thread. The
thread count was recorded once again. The results of this test appear in Table 3. CAMP recorded the proper increase in
thread count on each platform.

Before After

launch launch Difference

Windows 9 10 1

Linux 9 10 1

Solaris 9 10 1

Table 3: Thread count test results.

This test could have been potentially incorrect. The Java Language Specification does not guarantee that each conceptual
thread is backed with a native thread. However, in practice, the Sun-provided HotSpot virtual machine implementation
behaves in this manner on all three platforms. Surprisingly, each platform showed the exact same thread count - which
would suggest that the virtual machines are structurally similar.

Informal Verification

The previous sections contain strictly quantified test results that confirmed CAMP's functionality. However, they were not
comprehensive - they had no reference to the enumeration functions, the disk IO functions, or the page fault count. Due to
the difficulty in generating predictable results, these functions were part of an informal test plan.

The disk IO functions are difficult to test consistently. The disk IO data provided by CAMP comes directly from the
respective disk drivers, so this data does not reflect an operating system-level layer of abstraction. There is no direct
relationship between a user-level read or write and an actual physical disk action. For this reason, the disk functions were
verified informally. On all platforms, the counters were integral, increasing, and strictly monotonic. They also increased their
respective rates of increase during periods of high disk activity, making them suitable for a derived rate function.

The page fault function was also difficult to test. Instead of a direct analysis, CAMP's output was verified to match that of a
comparable native utility on each platform.

On Windows, Microsoft provides an optional utility in the Windows Resource Kit called pstat, which provides a crude
version of UNIX ps. This utility was able to provide a page fault count for comparison. On Linux, the standard ps command
is able to provide a page fault count with the switch -O min_flt,maj_flt. Sun does not provide a utility with Solaris 10 to
access the page fault count of a single process. However, a comparable utility, pio [9], was able to provide the needed data
to verify CAMP's function.

The values returned by the enumeration functions are by definition platform and system-dependent, making them impossible
to test quantitatively. Instead, the functions were tested informally on an expanded test bed, which included a 64-bit Linux
production server, two quad-processor 64-bit Solaris servers, a Windows XP x64 desktop, and the three original virtual
machines.

Testing the enumeration functions involved manually collecting a list of required results in a platform-dependent manner. On
all six test systems, the CPU count was known beforehand and simple to verify. On Windows, correct values for the
network, disk, and partition enumeration functions are available in the "Device Manager" administrative tool.

On Solaris and Linux, the command netstat -i provided a correct list of network interfaces suitable for comparison. Disk and
partition lists were available as symbolic links in the device node directories. This information was available in /dev/disk
/by-id/ and /dev/dsk on Linux and Solaris, respectively.

This section details the tests used to measure the API's execution speed and overhead. The first set of tests precisely
measured execution speed and CPU usage distribution throughout the implementation components. The second test
measured the overhead of a simple CAMP-based monitoring program on a running system. The final test measured the
impact of the same monitoring program on a production web server using externally-derived statistics.

Timing and Profiling

This section contains a low-level, direct measurement of CAMP's performance overhead. Python provides a timing package,
timeit, which takes a small snippet of code as an input and aggregates several iterations of it into a single execution unit.
timeit then runs that larger unit several times, timing it using the highest resolution clock available on the host platform.

Timing runs consisted of a total of 30,000 runs per function: three separate execution runs of 10,000 invocations. To
measure the overhead of the CPU functions in their purest form, the sample rate was set to zero to eliminate the normal
blocking.

For brevity, each "execution unit" comprised groups of similarly implemented functions rather than individual calls. For a
function to be "similarly implemented," it must access the same class of performance data. A trial run on all individual
functions confirmed that the grouped functions had near-identical execution times.

Figure 6 displays the results of these timing runs. All CAMP functions executed quickly, with the slowest function still
allowing for over 100 invocations per second.

Figure 6: Execution time results. Functions are grouped by similar implementations and averaged. From left to right:

Windows, Linux, and Solaris.

The Linux functions all executed at an order of magnitude faster than the Solaris or Windows counterparts. The Windows
functions all displayed relatively significant overhead, but the disk counters were surprisingly fast to access. The Solaris
functions behaved as expected: The disk and network functions both executed in around the same amount of time as they
both traverse the same chain for their target data, while the CPU functions must traverse the chain twice and perform some
calculations. Solaris per-process functions make use of the proc filesystem, so execution time is comparable to that of
Linux.

To put these execution times in perspective, Figure 7 contains the same information as Figure 6, but the graph has been
scaled against the execution time of running a native process within Python. As discussed previously, this is an approach
taken by other utilities and was an implementation alternative for CAMP. On Linux, the timing includes forking a second
process, executing the command ps -f, and collecting its output. On Solaris, the timing performed a similar action using the
kstat command line utility. No such command line utility is built in to Windows. [Note 5] CAMP's native access of
performance data clearly allows a much higher level of performance.

Figure 7: Relative execution time results.

Measured Overhead, or CAMP on CAMP

Next, we used CAMP to measure the overhead of a CAMP-derived monitoring program.

The first task involved a tunable monitoring program, probe. This program calls nine CAMP functions at a time, with the
entire nine-function block being executed at a specific real-time sample interval. To implement the sampling frequency as
accurately as possible, this monitoring program times the execution of the nine-function block at startup and adjusts the
sleep interval accordingly.

The tests consisted of running probe at increasing sample rates and measuring the impact on the system at each level using
another instance of probe. While the results of every CAMP function were included in the measurements, the only
significant differences manifested themselves in the global and per- process CPU functions. However, this exercise did
confirm that CAMP is indeed stateless and without memory or thread leaks on all implemented platforms. The results of this
test on the three implemented platforms is shown in Figure 8. CPU values are an average of 20 samples taken over a 10
second period.

(a) Windows (b) Linux

(c) Solaris
Figure 8: Operational impact at increasing sample rates.

These results were in line with the values recorded by the timing functions. On Solaris and Windows, CAMP produces little
overhead up to 10 function blocks/second (90 functions/second). On Linux, CAMP produces little overhead at all measured
sample rates.

Impact on an Operational System

The final performance test consisted of measuring CAMP's overhead from an externally accessible statistic. This test is
important for several reasons. First, the results of the previous test could have been partially skewed by using CAMP to test
itself - caches could have been kept artificially hot. Second, the concept of "CPU utilization" is a somewhat coarse statistic
that does not always directly map to actual or perceived performance. Third, CAMP may cause performance impacts in the
kernels of the respective platforms in a non-obvious way that may skew results. Lastly, it allows a complete distrust of the
operating system-provided performance data.

For this experiment, the target application was a web server. Each virtual machine was configured with Apache 2.0.53. The

Linux and UNIX machines used the prefork multiprocessing module (MPM), and the Windows machine used the default
Windows NT MPM. Each Apache installation used the default MPM configuration parameters, including initial process and
thread count.

The test involved running the probe program from the previous test at the same sample intervals, but instead of recording
system performance data on the server, Hewlett Packard httperf [13] collected http client response statistics from an
external machine.

To generate a normal load, httperf created a total of 1400 connections to each web server at a rate of 40
connections/second. This rate produced an approximate 15% load on the Linux and Solaris machines and a 30% load on the
Windows server. The results of this test are presented in Figure 9.

(a) Windows (b) Linux

(c) Solaris
Figure 9: Results of the operational system impact test.

CAMP only produced a measurable impact on the Windows server. It appeared to take a progressively increasing hit as
probe's sample rate increased. CAMP did not affect the performance of the Solaris and Linux servers at this sample rate.

This was somewhat unexpected, given that CAMP's performance on Solaris was comparable to its Windows performance. A
likely explanation lies in the implementation of the Apache MPM on each platform. The Windows version of Apache
handles all client connections from within a single, multi-hundred-threaded process. In terms of process scheduling, this lone
process has the same weight and priority as probe. This causes CAMP's impact to be more pronounced, even at relatively
low sample rates. On Solaris and Linux, Apache prefork responds to the increased load by forking additional processes,
which causes the Apache system as a whole to be scheduled more often than probe.

CAMPmon

CAMPmon is a simple Python application that demonstrates the use of the CAMP API. It monitors a selected group of
networked workstations, each CAMP-supported, and records the global CPU and memory usage to a server console
application.

The workstation client program is simple: it merely loads Python's lightweight XML-RPC server and registers the relevant
CAMP functions as network-accessible. The server console program reads in an XML file with a list of accessible
workstations and queries them at a specified quantum using the Python threading package. This data is then aggregated on
the server console and displayed as formatted text.

Testing was performed across eight workstations: four booted into Fedora Linux and four booted into Windows XP. The
server monitoring application was launched from a Windows workstation. The system performed as expected, continuously
and accurately reporting each workstation's performance information.

This simple implementation is intended to be a proof-of-concept display of CAMP's potential. Only a single client
application was used for both platforms, and the server was unaware of the underlying implementation on each workstation.

A Two-Platform Evaluation of Apache

Two identical servers were configured with Windows 2000 Server and SUSE Linux 9.3 (kernel version 2.6), respectively.
Apache 2.0.53 was loaded on each. The Windows server was configured to use the default NT MPM with 300 threads, and
the Linux server was configured with the worker multi-processing module (MPM), also configured with 300 initial threads.

A Python script was written to monitor each server. At a half- second interval, it wrote a log file containing network traffic
counts and aggregate process resource usage data about the collective Apache processes. This script was ran individually on
both platforms.

A third server was configured with a build of Apache flood. Each server was tested with an identical configuration: 250
clients, connecting in groups of 10 at one second intervals. Figure 10 contains the results collected by CAMP.

Figure 10: Results of Apache evaluation.

The network functions graph shows that each server was given a comparable load. Each server both sent and received the
same amount of data. The CPU utilization graph was not unusual; the IO-bound Apache process did not heavily tax the
CPU on either platform.

The memory graphs, however, were more telling. The Linux build of Apache with the worker MPM was able to run in a
much smaller footprint, and, more importantly, was able to respond to the increased load quickly and without a large
increase in either its working set or frequency of page faults. The Linux server's working set rose a small amount at the
instant the load test began and remained steady throughout, while the Windows server took nearly twenty seconds to reach
a steady state. During those twenty seconds, the Windows server was constantly causing page faults. This performance
discrepancy could have been caused by a combination of configuration differences and implementation variations in the
platform-dependent Windows and Linux MPMs.

PAPI [3] is a system that shares several design goals with CAMP, but it accomplishes a slightly different task: it provides a
platform- independent interface into hardware performance counters rather than operating system counters. On most
desktop architectures, the underlying architecture is capable of providing controllable metrics about processor and low-level
cache events. Each architecture has a different set of assembly instructions for accessing these counters, and each set has
different semantics.

PAPI provides a platform independent interface to these counters through a standard C and FORTRAN interface, but it
requires operating system kernel augmentation on most common platforms. PAPI does provide accurate metrics: its
hardware counter interface has been used to validate other benchmarks [15].

Unlike CAMP, performance data provided by PAPI is difficult to correlate with a specific process. Utilities that allow this
behavior either ignore the effects of scheduling or instrument the operating system kernels to report scheduling events [14].

Many system monitoring solutions are implemented using the SNMP protocol [23]. It provides a simple request/response
protocol for system monitoring and management. SNMP is an application level protocol, implemented using UDP, that
allows clients to host a set of named data. Examples of managed data include host name, uptime, and load. Because the
protocol is at the application level, the local client implementation (the SNMP agent) is in full control of what data is
reported and how it is obtained.

The latest version [17, 8] of the protocol provides bulk request/response functionality that scales more reliably with large
distributed systems. When used with common object names, SNMP is capable of providing a common interface into
operating system performance data by means of a common network packet. However, the SNMP agent that runs locally on
the monitored machine and services requests must still be able to actually collect the system performance data, which in
most cases must be accomplished with native code. CAMP can provide a simple method for implementing a platform-
independent SNMP agent that provides performance data for a set of managed hosts.

The Gloperf system [11] is part of the Globus GRID computing toolkit [6]. By using the GRID framework, it is able to
measure selected performance statistics in a platform independent manner. The client side of this system runs as a daemon,
and it actively collects its own statistics rather than broadcasting operating system or network protocol statistics. It uses a
sensor/collection model in which the user installs a "sensor" on the client to be probed and periodically collects data. CAMP
follows a completely different model: it only reports data that is already available on the host.

The Tau [20] set of tools is a high performance computing testing framework that has been recently updated to collect full
statistics from a Java Virtual Machine [19], introducing platform independence. This has been used to create a Java profiler
that can selectively instrument and measure parallel and distributed Java applications. The tool's feature set is
comprehensive, and its standard interface allows it to be used on a number of platforms. However, all measurement is
confined to within the virtual machine - Tau cannot measure system- level statistics.

CoMon [16] is a monitoring layer for the PlanetLab testbed [4]. It collects data from individual PlanetLab distributed nodes,
and its concept of a "node-centric daemon" can deliver nearly all of the performance data that CAMP would provide.
However, this tool only works with the PlanetLab operating system (a modified version of Fedora Core Linux), which
makes the research less useful for systems outside of that controlled domain.

CAMP's most important task is its continued implementation on other Python-supported platforms. Many UNIX-like
operating systems are able to support both Python and the performance information necessary to support CAMP, including
the newest Macintosh operating system.

There are endless possibilities for derived, second-layer functions. However, a standard set, including functions like rate
calculators and aggregate network traffic, is feasible.

Distributed system performance testing is a broad problem, and CAMP seeks to solve the lowest level issue: CAMP allows
developers to collect performance data from multiple platforms in a consistent, correct, and predictable manner.

CAMP can be obtained at: http://wiki.csc.calpoly.edu/camp.

[1] Aguilera, M. K., J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthitacharoen, "Performance Debugging for
Distributed Systems of Black Boxes," SOSP '03: Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, pp. 74-89, ACM Press, New York, NY, USA, 2003.
[2] Annis, W., pykstat: kstat API for Python, 2001, http://www.biostat.wisc.edu/~annis/creations/pykstat.html.

http://www.biostat.wisc.edu/~annis/creations/pykstat.html
http://wiki.csc.calpoly.edu/camp

[3] Browne, S., J. Dongarra, N. Garner, K. London, and P. Mucci, "A Scalable Cross-Platform Infrastructure for Application
Performance Tuning Using Hardware Counters," Supercomputing '00: Proceedings of the 2000 ACM/IEEE Conference on
Supercomputing (CDROM), p. 42, IEEE Computer Society, Washington, DC, USA, 2000.
[4] Chun, B., D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M. Bowman, "Planetlab: An Overlay
Testbed for Broad- Coverage Services," SIGCOMM Computer Communications Review, Vol. 33, Num. 3, pp. 3-12, 2003.
[5] Cusumano, M. A. and D. B. Yoffie, "What Netscape Learned from Cross-Platform Software Development,"
Communications of the ACM, Vol. 42, Num. 10, pp. 72-78, 1999.
[6] Foster, I., C. Kesselman, and S. Tuecke, "The Anatomy of the Grid: Enabling Scalable Virtual Organizations,"
International Journal High Performance Computing Applications, Vol. 15, Num. 3, pp. 200-222, 2001.
[7] Gunter, D., B. Tierney, K. Jackson, J. Lee, and M. Stoufer, "Dynamic Monitoring of High-Performance Distributed
Applications," HPDC '02: Proceedings of the 11th IEEE International Symposium on High Performance Distributed
Computing HPDC-11 2002 (HPDC'02), p. 163, IEEE Computer Society, Washington, DC, USA, 2002.
[8] Harrington, D., R. Presuhn, and B. Wijnen, RFC 3411: An Architecture for Describing Simple Network Management
Protocol (SNMP) Management Frameworks, December, 2002.
[9] Huang, Y., pio: Solaris Process I/O, 2004, http://www.stormloader.com/yonghuang/freeware/pio.
html.
[10] Knuth, D., The Art of Computer Programming, Vol. 2, p. 232, Addison-Wesley Professional, Third Edition, 1997.
[11] Lee, C. A., J. Stepanek, R. Wolski, C. Kesselman, and I. Foster, "A Network Performance Tool for Grid Environments,"
Supercomputing '99: Proceedings of the 1999 ACM/IEEE Conference on Supercomputing (CDROM), p. 4, ACM Press,
New York, NY, USA, 1999.
[12] Miles, C., "System Monitoring, Messaging, and Notification," Proceedings of SAGE-AU'99, The System Administrators
Guild of Australia, Jul, 1999.
[13] Mosberger, D. and T. Jin, "httperf - A Tool for Measuring Web Server Performance," SIGMETRICS Performance
Evalaluation Review, Vol. 26, Num. 3, pp. 31-37, 1998.
[14] Mucci, P. J., papiex: Transparently Measure Hardware Performance Events of an Application with PAPI, Innovative
Computing Laboratory, University of Tenessee, 2005, http://icl.cs.utk.edu/~mucci/papiex/.
[15] Najafzadeh, H. and S. Chaiken, "Towards a Framework for Source Code Instrumentation Measurement Validation,"
WOSP '05: Proceedings of the 5th International Workshop on Software and Performance, pp. 123-130, ACM Press, New
York, NY, USA, 2005.
[16] Park, K. and V. S. Pai, "Comon: A Mostly-Scalable Monitoring System for Planetlab," SIGOPS Operating Systems
Review, Vol. 40, Num. 1, pp. 65-74, 2006.
[17] Presuhn, R., RFC 3418: Management Information Base (MIB) for the Simple Network Management Protocol
(SNMP), December, 2002.
[18] Renesse, R. V., K. P. Birman, and W. Vogels, "Astrolabe: A Robust and Scalable Technology for Distributed System
Monitoring, Management, and Data Mining," ACM Transactions Computing Systems, Vol. 21, Num. 2, pp. 164-206, 2003.
[19] Shende, S. and A. D. Malony, "Integration and Applications of the Tau Performance System in Parallel Java
Environments," JGI '01: Proceedings of the 2001 joint ACM-ISCOPE conference on Java Grande, pp. 87-96, ACM Press,
New York, NY, USA, 2001.
[20] Shende, S. S. and A. D. Malony, "The Tau Parallel Performance System," Int. Journal High Performance Computing
Applications, Vol. 20, Num. 2, pp. 287-311, 2006.
[21] Sprunt, B., "Pentium 4 Performance-Monitoring Features," IEEE Micro, Vol. 22, Num. 4, pp. 72-82, Jul, 2002.
[22] Sun Microsystems, AWT: The Java Abstract Windowing Toolkit, GUI development component of the Java 2, Standard
Edition Platform, 1999, http://java.sun.com/products/jdk/awt.
[23] Teegan, H., "Distributed Performance Monitoring Using SNMP V2," IEEE Network Operations and Management
Symposium, Vol. 2, pp. 616-619, Apr, 1996.

Footnotes:

Note 1: Mark Gabel work performed his portion of this work at California Polytechnic. Current affiliation: Center for

Software Systems Research, University of California, Davis.

Note 2: But definitely not all.

Note 3: Note that this breaks from the traditional UNIX model of only keeping process information in proc. This greatly

aided CAMP's development on Linux.

Note 4: The host PC has a 64-bit Athlon processor, 2 GB of main memory, and two 10,000 RPM SATA disks.

Note 5: The aforementioned pstat tool from the Microsoft Resource Kit is parameterless, which forces the full enumeration

of every process and all of its performance attributes. Its execution time is on the order of seconds.

http://java.sun.com/products/jdk/awt
http://icl.cs.utk.edu/~mucci/papiex
http://www.stormloader.com/yonghuang/freeware/pio

