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Abstract 

Introduction: Traffic safety literature has traditionally focused on identification of location profiles where “more crashes are likely to occur” 
over a period of time. The analysis involves estimation of crash frequency and/or rate (i.e., frequency normalized based on some measure of 
exposure) with geometric design features (e.g., number of lanes) and traffic characteristics (e.g., Average Annual Daily Traffic [AADT]) of 
the roadway location. In the recent past, a new category of traffic safety studies has emerged, which attempts to identify locations where a 
“crash is more likely to occur.” The distinction between the two groups of studies is that the latter group of locations would change based on 
the varying traffic patterns over the course of the day or even within the hour. Method: Hence, instead of estimation of crash frequency over a 
period of time, the objective becomes real time estimation of crash likelihood. The estimation of real time crash likelihood has a traffic 
management component as well. It is a proactive extension to the traditional approach of incident detection, which involves analysis of traffic 
data recorded immediately after the incident. The units of analysis used in these studies are individual crashes rather than counts of crashes. 
Results: In this paper, crash data analysis based on the two approaches, collective and at individual crash level, is discussed along with the 
advantages and shortcomings of the two approaches. 
1. Introduction	 

Traffic safety research includes an extensive array of 
research areas and the most prominent of them is crash data 
analysis. Songchitruksa and Tarko (2006) have recently 
pointed out some shortcomings in crash data based safety 
analysis and proposed other observable traffic characteristics, 
more frequent than crashes, as an alternative. Nonetheless, 
analysis of crash data remains the most widely adopted 
approach to assess safety of a transportation facility (e.g., 
freeways, arterials, intersections). 

The conventional approach has been to establish relation-
ships between crash frequency and the traffic characteristics, 
environmental conditions, and geometry of the roadway. 
This study is based on the premise that crashes are caused 
due to bad decisions made by the driver in an environment 
resulting from surrounding traffic conditions and the 
geometric design created by the engineer. The influence of 
geometric design on the likelihood of a driver making bad 
decision has been well documented in the traditional traffic 
safety literature. This direction of research is helpful in 
making decisions in such things as posting warning signs on 
roadway sections. 

On the other hand, the attention given to the surrounding 
traffic conditions immediately preceding crash occurrence has 
almost been non-existent. The measures of traffic conditions 
used commonly in the literature are Average Annual Daily 
Traffic (AADT). AADT is a measure that is recorded by most 
agencies around the country/world and is available for all 
roadway sections and provides a measure of exposure for the 
particular roadway section. Crash frequency analysis based on 
AADT is an aggregate, cumulative, or collective way to look at 
the crash data where frequency of crashes is calculated by 
aggregating the crash data over specific time periods (months 



or years) and locations (specific roadway sections; Golob, 
Recker, & Alvarez, 2004a). 

In the recent past a tremendous growth has been observed 
in traffic management and information systems, especially on 
uninterrupted flow facilities. A critical part of these systems is 
the traffic surveillance apparatus that continuously records 
the traffic data. Due to recent advances in capabilities to 
collect and store the data through underground sensors, these 
data are available for many freeways. Availability of these 
data has inspired a new series of studies in traffic safety in 
which traffic conditions right before the crashes may be 
examined to detect patterns that commonly occur before 
crashes. It is no longer mandatory to combine the crash data in 
the form of crash frequency since traffic conditions preceding 
each crash are available as well. 

These studies are also part of a new trend in the area of 
freeway traffic management. Before these studies, traffic 
management research had been focused on incident 
detection. The approach to incident detection was to analyze 
traffic data after several incidents to develop models that can 
then separate the real-time traffic conditions resulting from 
incidents from free-flow and/or recurring congestion. 
Advancements in mobile phone usage and video surveillance 
technology eventually forced the traffic management 
authorities to look for more proactive solutions. This has 
also contributed to some of the more recent studies related to 
freeway safety research. In this paper we summarize the 
traditional and the more recent approach to crash data 
analysis as well as their differences, advantages/disadvan­
tages of each approach, and conclusive remarks on possible 
implications for the future of traffic safety research. 

2. Collective approach to traffic safety 

As discussed, the aggregate or collective approach to crash 
data analysis is characterized by crash frequency modeling. 
Crash frequency modeling enumerates the relationship 
between observed crash counts and existing geometric, 
roadway, and traffic conditions on a given stretch of a 
roadway. A sample format of the data for this type of analysis is 
shown in Table 1. It may be observed that crashes that occur in 
the same section of the roadway are combined in the form of 
their frequency, which in turn would be used as the dependent 
variable in the analysis. Also, note that the independent 
variables shown in the table are just examples and different 
Table 1
 
Format of the crash data for crash frequency analysis (to identify the locations wh

Section Frequency/ 
Rate of 
crashes (y) 

Traffic related factors ⁎ 

Speed limit Truck percentage V/C

1 
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… 
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… 
Yn 

… 
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… 
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⁎ The factors shown here just for example and it is by no means a comprehensi
studies have used varied sets of variables depending upon the 
scope of research. Focus of crash frequency models is 
generally two-fold on: (a) modeling methodology and (b) the 
parameters used as dependent and independent variables. In 
other words, the past research in this area has been diverse 
methodologically as well as empirically (Chang, 2005). 

2.1. Crash frequency modeling: Methodological advances 

The crash frequency data have been analyzed using a 
number of statistical methodologies. Initially multiple linear 
regression was used for model formulation. However, as 
pointed out by Joshua and Garber (1990), linear regression 
models do not describe the nature of the crash frequency data 
adequately. Poisson or Negative Binomial (NB) regression 
models, instead, are better suited for defining the random, 
discrete, and nonnegative nature of crash occurrence (Milton 
& Mannering, 1998). The log-linear model is the best known 
example of Poisson regression. It essentially is a generalized 
linear model (GLM) for Poisson-distributed data and 
specifies how the size of a cell frequency depends on the 
levels of categorical variables for that cell. The nature of this 
specification relates to the association and interaction 
structure among the categorical variables (Agresti, 2002). 

It should be noted that the Poisson model formulation 
requires the mean and variance of the crash data to be equal. 
Therefore, the NB model, which has all the desirable statistical 
properties and also relaxes this constraint, is the most popular 
model formulation for crash frequency estimation. A detailed 
comparison between Poisson and Negative Binomial crash 
frequency models may be found in Miaou (1994). The findings 
suggested that since crash data tend to be overdispersed (i.e., 
variance≫mean), negative binomial modeling is the more 
appropriate technique of the two. 

The findings from studies mentioned so far were based on 
the ability of the model formulation (such as Poisson or NB 
regression) to capture the underlying distribution of the crash 
frequency data. Recently some researchers have proposed 
‘distribution free’ methodologies for the analysis of crash 
data. These methodologies include decision trees and 
artificial intelligence techniques such as the neural networks. 
No inherent assumptions about the distribution of the crash 
frequency data are needed to apply these techniques, which 
are essentially driven by observed data. For example, Chang 
and Chen (2005) and Abdel-Aty and Keller (2005) adopted 
ere “more crashes are likely to occur”)
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ve list of factors associated with crashes. 



Classification and Regression Tree (CART), the most 
commonly applied data mining technique, for crash frequen­
cy estimation. A comparison of the results from the CART, 
Artificial Neural Network (ANN) and NB regression models 
demonstrated that both CART and ANN are good alternatives 
to NB regression for estimation of freeway crash frequency 
(Chang, 2005; Chang & Chen, 2005). Since these data-driven 
techniques do not require any pre-defined underlying 
relationship between target (dependent) variable and pre­
dictors (independent variables), they are powerful data 
analysis tools. Based on this detailed review of the literature 
it may be concluded that while the researchers have employed 
a wide array of tools to model crash frequency/rate, more 
recent studies have explored the potential of ‘data driven’ 
techniques. In the next section we focus on the empirical 
explorations of the studies analyzing crash frequency. 

2.2. Crash frequency modeling: Empirical explorations 

From an empirical standpoint, crash frequencies are 
estimated as a function of a variety of factors including 
geometric characteristics (e.g., horizontal and vertical align­
ments, and shoulder width), traffic characteristics (e.g., AADT 
and percentage of trucks), and weather conditions (e.g., rain or 
snow; Shankar, Mannering & Barfield, 1995; Poch & 
Mannering 1996). In addition, Abdel-Aty and Radwan 
(2000) accounted for the demographic characteristics of the 
involved drivers (age and gender) by developing separate NB 
regression models for crashes involving drivers belonging to 
different age and gender groups. 

Conventionally, most crash frequency models have used 
AADT to represent traffic characteristics. However, research­
ers are moving toward microscopic crash analysis, which 
includes analysis of hourly crash data (e.g., Ceder & Livneh, 
1982a,b). These studies have been referred to as ‘disaggregate’ 
studies by Sullivan (1990). Measures such as hourly volumes  
are applied to cope with the uncertainty in the measurement of 
AADT values and incapability of this aggregate factor in 
capturing accurate traffic flow variations. These ‘microscopic’ 
traffic parameters not only include hourly volume but logical 
measures of congestion represented by v/c ratio (Frantzeskakis 
& Iordanis, 1987) and level of service (LOS; Persaud 
& Nguyen, 1998), along with distributional properties of 
variation in speed (Abdel-Aty, Pemmanaboina, & Hsia, 2006). 

Based on the review of these studies it is revealed that 
since Ceder and Livneh (1982a,b) proposed the application of 
hourly traffic data, many studies have shown them to be 
preferable over AADT (e.g., Garber & Wu, 2001; Pasupathy, 
Ivan, & Ossenbruggen, 2000). The main difference between 
using the hourly traffic parameters and the AADT is that 
while the latter is readily available for most transportation 
facilities, the former had to be collected from the field for the 
purpose of any particular study. The availability of loop 
detector data for the freeways has not only helped overcome 
this limitation (Abdel-Aty et al., 2006), but also facilitated 
further disaggregating of the freeway crash data. 
3. Individual crash level analysis of crash data and 
freeway traffic management 

This approach to the analysis of crash data is character­
ized by each individual crash being the unit of analysis 
(Golob et al., 2004a). However, it is worth mentioning that 
the researchers have in fact analyzed the crash data in this 
form well before the advent of research directed toward 
proactive traffic management (e.g., Abdel-Aty, 2003; 
Duncan, Khattak, & Council, 1998; Abdel-Aty & Abdelwa­
hab, 2000). The main focus of these studies was to associate 
the crash injury severity with driver and roadway character­
istics. The basic premise was ‘given a crash has occurred’ 
estimate, for example, how severe would it be? Of course, 
these studies were not of use for proactive traffic 
management and the parameters used as independent 
variables in these studies were essentially static in nature. 
The focus of some of the more recent studies is to associate 
the crashes with real-time traffic characteristics and it is these 
studies that are relevant to proactive traffic management. 

As discussed in the previous section, researchers have 
indeed disaggregated the crash data to assess the relationship 
between crashes and hourly traffic parameters (e.g., Ceder & 
Livneh, 1982a,b). The approach, however, is still aggregate 
in nature since crashes are still combined together albeit 
over a smaller interval. If the idea of disaggregating the 
crash data is taken to its extreme then each individual crash 
would become the unit of analysis. To assess the traffic 
conditions associated with crashes in this setting, traffic data 
right before the crashes is required. It is analogous to the 
collection of hourly traffic data to associate hourly crash 
counts with parameters such as hourly volume and V/C 
ratios. 

Recently, collection of data representative of traffic 
conditions prevailing before individual crashes on instru­
mented freeways has become possible. These instrumented 
freeways are equipped with underground loop detectors that 
report traffic speed, volume, and lane-occupancy data at very 
short time intervals (from 1-minute to as short as 20­
seconds). These data are collected for various operational 
purposes, such as for travel time estimation. It should be 
noted that the freeway crashes not only impact traffic safety, 
but also result in non-recurring congestion. Even the least 
severe of crashes impacts traffic operation in a considerable 
way and turn freeways into virtual parking lots. These facts 
signify that freeway crashes are not only critical from a 
traffic safety standpoint, but from an operational point of 
view. This is the reason why traffic management authorities 
have shown interest in traffic safety research based on the 
data disaggregated to individual crash level. 

Research in freeway traffic management has focused on 
incident detection. The idea of incident detection involves 
analysis of patterns in the traffic surveillance data observed 
just after the incident. Since traffic data for the freeways are 
collected continuously it is possible to develop models using 
historical incident data and apply them in real-time to 



Fig. 1. Approach for incident detection. 
examine the traffic data for any incident occurring on the 
freeway under surveillance. Fig. 1 shows, as an example, that 
the drop in speed following an incident may be used to detect 
an incident. This approach is reactive in nature and attempts 
to detect incidents in a timely fashion so that their impact can 
be minimized. 

However, freeway data gathering is not the only field 
affected by the information technology revolution. The use 
of mobile phones has also increased manifolds along with 
the video surveillance of freeways. Due to these technolog­
ical advancements the information on the incidents is 
immediately available to traffic management authorities. 
These advancements have rendered incident detection 
algorithms (e.g., Cheu & Ritchie, 1995; Abdulhai & Ritchie, 
1999) somewhat irrelevant and traffic management author­
ities are becoming more interested in proactive strategies. 
These strategies would involve anticipating incidents along 
with strategies to avoid them altogether. In this regard, in 
their earlier studies the authors (Pande & Abdel-Aty, 2005) 
argued that crashes, in general, are more frequent and 
predictable than some other incidents such as a flat tire in the 
middle of rush hour. Therefore, to develop a proactive traffic 
management strategy, traffic data prior to individual 
historical crashes should be extracted and analyzed. Fig. 2 
exemplifies what patterns would be of interest for such 
Fig. 2. Approach for proactiv
analysis, assuming that the incident shown in Fig. 1 was a 
crash. 

Based on the analysis of historical data, typical traffic 
patterns recorded prior to crashes may be identified. These 
patterns may then act as identifiers for real-time ‘black-spots’ 
on the freeway. This idea would require disaggregating the 
data to individual crash level. Table 2 depicts the format of 
the dataset that may be used for such analysis. It may be 
observed that each observation of this dataset, consisting of 
m observations, is an individual crash. 

Hughes and Council (1999) overlaid the time of individual 
freeway crashes on time series of traffic data collected from 
nearby loop detector locations during the peak periods of the 
day. It was reported that macroscopic measures, such as 
AADT and even the hourly volume, correlate poorly with the 
real-time system performance as it relates to traffic safety. 

Since their preliminary investigation, two streams of 
research work have been remarkable in this regard, one 
based on data from California freeways (Golob & Recker, 
2001, Golob & Recker, 2004; Golob et al., 2004a; Golob, 
Recker, & Alvarez, 2004b) and the other based on data from 
the Interstate-4 corridor in Orlando, FL (Abdel-Aty & Pande, 
2005; Pande & Abdel-Aty, 2005; Abdel-Aty, Uddin, Pande, 
Abdalla, & Hsia, 2004; Abdel-Aty, Uddin, & Pande, 2005; 
Abdel-Aty & Abdalla, 2004; Pande & Abdel-Aty, 2006a,b). 
e traffic management. 



Table 2
 
Format of the crash data for analysis with data disaggregated to the extreme (to identify the locations where “crashes are likely to occur”)
 

Crash Traffic parameters from traffic surveillance system ⁎ Roadway geometry ⁎ 

Temporal variation of speed Upstream occupancy Differentialin speeds u/s and d/s Curvature Presence of ramps Number of lanes 

1 … … … … … … 
2 … … … … … … 
… … … … … … … 
m … … … … … … 

⁎ The factors shown here just for example and it is by no means a comprehensive list of factors associated with crashes. 
Both groups of studies used individual crashes as observa­
tions (thereby disaggregating the data to the extreme). The 
critical difference between the two is that while the research 
in California used only crash data, the authors compared the 
crash data with either stratified matched non-crash data (e.g., 
Abdel-Aty et al., 2004, 2005) or randomly selected non-
crash data (e.g., Pande & Abdel-Aty, 2006a,b). Assembly of 
a large database by the researchers made it possible to 
separately analyze the crashes by first harmful event 
initiating the crash (i.e., by type such as rear-end, sideswipe). 

Golob and Recker (2001) used non-linear (nonparametric) 
canonical correlation analysis (NLCCA). Research based on 
Interstate-4 in Orlando (FL) was conducted using a variety of 
statistical and data mining tools. These tools include 
Probabilistic Neural Network (PNN; Abdel-Aty & Pande, 
2005), matched case-control Logistic Regression (Abdel-
Aty et al., 2004), Generalized Estimation Equation (Abdel-
Aty & Abdalla, 2004), along with classification tree/neural 
networks (Pande & Abdel-Aty, 2006a,b). The output of the 
models developed in these studies was a measure of crash 
risk for given traffic conditions and these models can be 
utilized for real-time crash risk assessment. It may be 
observed that even though this area of research is relatively 
new, significant progress is being made. This progress has 
been made possible by the successful application of data 
mining techniques for efficiently analyzing large databases. 

4. Comparison of the two approaches to crash data 
analysis 

According to Golob et al. (2004a), even though aggregate 
studies have been useful in identifying relationships between 
crash frequency/rates and traffic flow parameters, they can 
be susceptible to the problem of ecological fallacy. The 
ecological fallacy is a widely recognized error in the 
interpretation of statistical data, whereby inferences about 
the nature of individuals are based solely upon aggregate 
statistics collected for the group to which those individuals 
belong (Robinson, 1950). The studies analyzing data at 
individual crash level are, in theory, free from this fallacy. 

While traditional studies attempt to estimate the crash 
frequency or rate, the research with individual crashes as the 
units of analysis have developed models to estimate some 
measure of the real-time likelihood of crash occurrence. It is 
worth mentioning that Lee, Saccomanno, and Hellinga (2002) 
and Lee, Hellinga, and Saccomanno (2003) did estimate the 
real-time likelihood of freeway crash occurrence using a log-
linear model based on the crash frequency analysis. To 
formulate the log-linear model, the continuous traffic 
parameters such as the density and coefficient of variation in 
speed were categorized resulting in loss of information due to 
categorization. Therefore, crash data disaggregated to indi­
vidual crash level is more widely used for examining real-time 
traffic conditions on the freeway for their crash potential. 

Based on a rudimentary analysis of traffic patterns 
observed prior to individual crashes, Hughes and Council 
(1999) observed that “traffic flow consistency” should be 
considered as a factor for crash causation. This observation is 
analogous to the conclusions from the aggregate studies, 
which indicate that the highway “design inconsistency” is 
perceived by the driver as an important factor associated with 
traffic safety from a human-factors standpoint. 

Being data intensive, the individual crash level approach 
to analysis is suitable for the freeways where the traffic 
surveillance apparatus is already in place. It is also possibly 
the reason that even though the researchers did observe the 
advantages of disaggregating the data (Ceder & Livneh, 
1982a,b), the idea of taking it to the extreme (to the 
individual crash level) did not get traction until recently. 
Enhancement of data collection, archiving, and analyzing 
capabilities and a significant push from the traffic manage­
ment community led to research in this direction. 

It should be noted that despite the advantages, there is a limit 
to what can be achieved by disaggregating the crash data to the 
level of individual crashes (Pande & Abdel-Aty, 2006a,b). 
These studies showed that the conditions prone to rear-end 
crashes may be more readily identified in real-time compared 
to the conditions for lane-change related crashes. In other 
words, measure of crash risk obtained from such analyses 
could be more reliable for crashes of a particular type than other 
crashes. For example, a rear-end crash would be more 
‘predictable’ than a single-vehicle roll over. The reason for 
this difference in reliability could be the contribution of human 
error on the part of the involved drivers. Considering the fact 
that the rear-end crashes are the most frequent on freeways and 
some single-vehicle collisions might result from evasive driver 
actions under traffic conditions that are in fact prone to rear-end 
crashes, this concern is somewhat alleviated. 

Also, note that the intervention measures for ‘black-spots’ 
identified based on the collective studies have been 
investigated extensively and agencies around the world 
have been using them for some time now (e.g., rumble strips, 



median barrier). However, the remedies for real-time ‘black-
spots’ are not entirely clear because it would require real-
time intervention in the freeway operation with Intelligent 
Transportation System (ITS) strategies. Such strategies and 
assessment of their impacts on traffic operation and real-time 
crash risk remain formidable research problems (Abdel-Aty, 
Dilmore, & Hsia, 2006). 

5. Conclusive remarks 

A comprehensive review of the literature shows that 
research toward proactive traffic management based on 
analysis of crash data disaggregated to individual crash level 
has gained swift momentum. One cautionary note about these 
studies is that even though a reliable link between real-time 
traffic conditions and freeway crashes has been established, it 
is not entirely clear as to how that information might be used. 
There could be two potential ways to affect the real-time 
freeway traffic conditions: (a) one with strategies such as VSL 
and ramp metering with the goal of reducing the measure of the 
real-time risk; and (b) the other with the specific warnings to 
the motorists on the freeway if the estimated crash risk goes 
beyond a specified threshold. 

The implementation of these strategies is not trivial, 
whereas the output of crash frequency models is readily 
understood in terms of how it could be implemented. For 
example, if it is found that a freeway section with a horizontal 
curve is experiencing high frequency of crashes then some 
kind of warning message sign or smoothening of the curve 
may be adopted. However, no such measures are available for 
real-time application. Even warning messages delivered to 
the drivers through Variable Message Signs might not have a 
desired impact. 

Another caveat is that traffic data requirements for crash 
sample disaggregated to individual crash level are prohibi­
tively extensive for roadways other than instrumented free­
ways. Hence, the aggregate crash frequency approach is still 
the most applicable for intersections and arterials where the 
traffic data are not collected continuously. One trend that is 
visible in both approaches dealing with crash data analysis is 
the advent of data mining techniques, such as the neural 
networks, classification tree, and unsupervised clustering. 
These techniques have been successfully employed in other 
data intensive industries such as insurance and banking. As the 
researchers explore the potential of data mining in crash data 
analysis, a better insight into the crash patterns can be 
expected. 

Finally, it is worth mentioning that the studies with 
individual crash level approach to data analysis have been 
referred to as “disaggregate studies” in the literature (e.g., 
Golob et al., 2004a). However, since the traffic parameters 
are being aggregated over time and space (albeit a shorter 
span of time), these studies are not truly “disaggregate.” 
Using crashes as units of analysis helps in avoiding 
ecological fallacies and has led to significant advancements 
in traffic safety research. However, strictly “disaggregate 
studies” would have to involve microscopic approaches (i.e., 
data obtained from individual vehicles). 
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