
Enabling P2P Cooperative WMS Proxy Caching
 
and Prefetching in an Educational Environment
 

Jeffrey A. Bergamini and Dr. Michael Haungs 

 
 

 

Abstract. Given the great demand and promise for educational use of GIS, real time ac­
cess to massive remote geospatial datasets for pedagogical purposes would be immensely 
useful to educators and students. However, such access has remained elusive. In other work, 
we have demonstrated that a P2P distributed system of client-side proxies can address the 
challenges posed by the interactive, multiplicative, and exploratory nature of classroom GIS, 
and we described this system at a high level. In this paper, we present the details of several 
novel techniques that enable P2P cooperative caching and prefetching of OGC WMS data in 
an educational lab environment, via an implicit and flexible pyramid tiling scheme, a query 
smoothing heuristic, and statistical prediction. The techniques are standards-compliant and 
client-transparent, and provide dramatic improvement in user response times while reducing 
impact on remote WMS servers. 
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1 Introduction 

Massive publicly available image-based geospatial datasets for use with GIS are in­
creasingly offered over the Internet. Several high-profile examples include NASA 
JPL’s OnEarth1, the GLOBE Visualization Project2, and TerraServer3 from Mi­
crosoft and USGS. The Open Geospatial Consortium (OGC)4 has standardized re­

1 onearth.jpl.nasa.gov 
2 www.globe.gov 
3 terraserver-usa.com 
4 www.opengeospatial.org 
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mote access to these data through web services via the Web Map Service (WMS) 
standard. 

Educators have great interest in using GIS for pedagogical purposes. GIS offers 
opportunities for enhanced study and research “in any and every discipline” [1]. The 
various difficulties of local data storage arouse particular enthusiasm for using re­
mote datasets [2, 3]. However, current access methods fail to address the interactive, 
multiplicative and exploratory nature of classroom GIS. The lab’s inherent quantity 
and concurrency of requests results in the common and problematic occurrence of 
excessive response times and denial of service [4]. 

In other work, we have given a high-level overview of GeoTorrent, a system we 
have developed to overcome these serious limitations of traditional, direct access to 
remote WMS servers in an educational lab setting [4]. GeoTorrent enables practical, 
responsive use of remote WMS data in this setting (or other similar situations). It pro­
vides a distributed network of client-side proxies that cooperatively manage WMS 
connections in order to optimize user response times. GeoTorrent works alongside 
and transparently to WMS-compatible GIS client software, assembling a shared dis­
tributed cache, intelligently prefetching data, and offering aggregated service infor­
mation. 

This paper presents the details of several novel standards-compliant and client-
transparent techniques for peer-to-peer cooperative caching and prefetching of geospa­
tial data: 

•	 WHoMPyTS, a conceptual model of WMS data, allows us to define an implicit 
pyramid tiling scheme, enabling flexible, client-neutral tile-based cooperative 
caching and prefetching. 

•	 WMSmooth is an algorithm for dynamically analyzing and modifying incoming 
WMS queries, making them suitable for caching and prefetching. 

•	 Two prefetching methods, New Neighbors and Prevailing Wind, allow for the 
prediction and prefetching of WMS data based on statistical analysis of incoming 
requests. 

The remainder of the paper is structured as follows: Section 2 explains WHoM-
PyTS and the need for an implicit tiling system. Section 3 details the WMSmooth 
algorithm and how it allows WHoMPyTS, and caching and prefetching in general, 
to function. Section 4 discusses the two prefetching methods. Section 5 evaluates 
the proposed techniques. Sections 6 and 7 review related and future work. Some 
conclusions are drawn in Section 8. 

2 WHoMPyTS: Implicit WMS Pyramid Tiling 

Normative WMS imposes no practical limitations on the image size and/or bounding 
box of a request5. This presents a rather large problem with regard to the coopera­
tive caching and prefetching of WMS data: Peer group clients are likely to generate 

5 The bounding box must lie within the geographic area covered by the requested layer(s). 

 



requests that are similar, but not identical, and are therefore very difficult to cache 
and prefetch effectively. Request tiling is a common solution in other situations, but 
WMS does not explicitly support it. However, we have been able to exploit the co­
operative proxy model to extend the benefits of tiling to WMS. In doing so, we cre­
ate a new twist on the classic tiled pyramid storage system, which we have dubbed 
“WHoMPyTS”. 

2.1 WMS Tiling: Benefits and Challenges 

Tiling, or offering identically-sized data images along regular, predefined bound­
aries, affords many benefits to both servers and clients. Databases can be optimized 
to serve tiles quickly by either exploiting their native tiled storage or proactively 
caching requests [5]. Tiling clients facilitate user “browsing” capabilities to users, 
since users need not re-request the entire screen image when the view is slightly 
changed (e.g. while scrolling). 

Traditional WMS clients (e.g. ArcGIS6, uDig7) do not support tiling, since WMS 
has no explicit support for it. Web-based client/server GIS systems (and their under­
lying databases) that are built with speed and scalability in mind generally employ 
tiling. Examples include Google Maps8, TerraServer9, and worldKit10. Some of these 
can be modified to communicate with WMS servers, but one serious drawback re­
mains: They make multiple simultaneous requests for relatively small “tiles”, each 
of which is processed by the WMS server as a normal, arbitrarily defined request, 
resulting in poor performance (see 5.3). 

However, the unique properties of the cooperative proxy model allow us to create 
a new, tiling efficient twist on the data storage model, and to apply it to WMS in a 
standards-compliant manner. 

2.2 Unique Properties of Tiled Pyramid Storage in a Cooperative Proxy Cache 

The benefits of tiling result from data being stored in a “tiled pyramid” structure, 
frequently used to store massive geospatial datasets [6]. The tiled pyramid approach 
involves generating identically-sized tile images at multiple levels of resolution from 
a large, high-resolution database (see Figure 1). Spatial database management sys­
tems (SDBMS) that support WMS servers (e.g. TerraService, OnEarth) generally 
use some variation of this idea to store their data, and clients make requests for these 
pre-computed tiles. 

A cooperative WMS caching / prefetching system has a goal similar to that of 
a SDBMS supporting a normal WMS server: fast, efficient and complete service 
of a very large archive of spatial information. As such, we want to be able to use 

6 esri.com/arcgis 
7 udig.refractions.net 
8 google.com/apis/maps 
9 terraserver-usa.com 

10 worldkit.org 
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Fig. 1. Classic tiled pyramid (courtesy [7]) 

tiling. As explained in 2.1, WMS tiling is unsupported in a normal client / server 
model. However, several fundamental differences exist between a P2P cooperative 
WMS proxy cache (PCWPC) like GeoTorrent in an educational lab environment and 
a standard geospatial database: 

External Data. A PCWPC’s data exists elsewhere, and the pyramid structure 
can be built on demand as data is requested or prefetched. Consequently, the pyra­
mid benefits from increased flexibility in shape and structure, and can be built to 
maximize its utility to peers in the PCWPC group. 

Client Uniformity. WMS servers can make no assumptions about the clients 
requesting data or their possible tiling schemes. A PCWPC in the educational envi­
ronment can assume that multiple instances of a single tiling client are in use and, 
therefore, tailor its caching and prefetching to that client’s tiling scheme. 

Request Locality. WMS servers fulfill a general purpose. They can assume noth­
ing about the locality and frequency of the data requested of them, which makes 
caching difficult. A PCWPC in an educational lab serves a specific purpose, viz. 
caching and prefetching lab data. Students exhibit similar access patterns and work 
with a subset of the data offered by any given data source. The likelihood of repetitive 
and localized requests makes caching and prefetching much more feasible. 

The combination of these differences makes it possible to use a distributed pyra­
mid tiling storage system in a PCWPC like GeoTorrent. However, pyramid tiling 
normally relies on predefined tile boundaries. We may be able to allow clients to 
define those boundaries, but we need a standard way of analyzing them in order to 
cache and prefetch tiles. Luckily, we can exploit part of the WMS standard to allow 
this. 

2.3 WGS 84 Standard in WMS 

In order to “maximize interoperability among servers”, the WMS specification re­
quires that all WMS providers support the WGS 84 coordinate reference system 
(CRS) [8]. Its use in WMS is simple. For example, if the desired image includes the 
entire surface of Earth, the bounding box (bbox) section of a WMS query using the 
WGS 84 CRS looks like this: 

bbox=-180,-90,180,90 

 



The presence of a universal CRS means a PCWPC can use it to define and analyze 
client tile boundaries. We propose the imposition of a simple and flexible rule on 
clients, that elegantly allows peer client requests to build a tiled pyramid-like cache 
structure throughout the PCWPC group. 

2.4 WGS 84 Hollow Mosaic Pyramid Tiling Scheme (WHoMPyTS) 

Implicit WMS tiling and a pyramid-like storage structure can be guaranteed in a P2P 
cooperative proxy cache through the following simple rule: 

WHoMPyTS Rule 1 For requests to be cached and prefetched, clients must request 
images of regular (but arbitrary) size on regular (but arbitrary) WGS 84 boundaries. 

This rule is the essence of what we have dubbed the WGS 84 Hollow Mosaic 
Pyramid Tiling Scheme, or WHoMPyTS. WHoMPyTS has several important char­
acteristics that distinguish it from a traditional pyramid tiling scheme (see Figure 
2): 

•	 Unlike the classic tiled pyramid, WHoMPyTS starts out as a loosely defined 
“hollow” pyramid. The above rule governs the structure of the pyramid. The 
pyramid data takes form on demand, as client requests are received and predicted 
data is prefetched. 

•	 Unlike a traditional pyramid tiling scheme, WHoMPyTS does not predefine a 
PCWPC’s own tile boundaries, but instead lets clients choose them (and change 
them), forming a client-driven “mosaic” structure for the pyramid. Note that this 
involves no extra or non-OGC standard communication between clients and the 
PCWPC. 

•	 A WHoMPyTS pyramid consists of only the subset of data that is useful to the 
group. 

Fig. 2. A WHoMPyTS pyramid 

It bears mention that clients need not be aware of WHoMPyTS in order to take 
advantage of it. As long as a client follows the WHoMPyTS rule, a PCWPC such 
as GeoTorrent can fully cache and prefetch the requests. Common sense and a pre­
liminary survey of pre-existing tiling-based clients indicate that most clients already 

 



follow the WHoMPyTS rule11. It is also worth mentioning that non-tiling clients can 
still request normally through a WHoMPyTS-aware PCWPC, as stipulated by the 
WMS specification. 

Section 4 explains how a PCWPC prefetching system can verify that clients are 
following the WHoMPyTS rule. 

3 WMSmooth 

GeoTorrent’s cooperative proxy WMS caching and prefetching is triggered by and 
dependent on receiving WMS GetMap requests from clients. Each time a request 
is received, GeoTorrent checks its local and group caches to see if it can return a 
cached or prefetched version, etc. The details behind caching are described in [4], 
and Section 4 discusses our prefetching methods. The main requirement enabling 
both caching and prefetching in any WMS proxy is the ability to make exact matches 
between client requests and cached or prefetched responses. 

One might assume that if clients follow the WHoMPyTS rule, making exact 
matches should not be a problem. That is, if a PCWPC node has sensed the square 
tile and boundary size that a given client is using, it should be able to: 

1. Easily match a client request to a cached response 
2. Easily add to and subtract from query bounding boxes in order to form prefetch 

requests 

However, in practice this is not necessarily true, primarily due to floating point 
inaccuracies in calculation of bounding boxes, both on the client and the PCWPC. 
For example, the Google Maps client has a fairly bad record of generating regular 
and / or repeatable bounding boxes in its queries. This is due entirely to floating 
point errors. The client uses a formula to calculate the WGS 84 boundaries of each 
tile, resulting in bounding box corner values that extend to 7-13 decimal places (e.g. 
a latitude of 37.85750715625203). These numbers often have mantissas much 
longer than necessary for their respective bounding boxes and image sizes. If we use 
exact matching with these numbers to predict and prefetch tiles and check for cache 
hits, floating point errors completely prohibit any prefetch cache hits (see Section 
5.1) and undermine normal cache hits as well. 

Since a PCWPC has no control over the way clients derive their tile bounding 
boxes, it must have some way of finding a “close enough” match rather than an 
absolute one, in order to effectively cache and prefetch. We propose a simple but 
elegant algorithmic solution, which we call “WMSmooth”. 

The idea behind WMSmooth is that a PCWPC may discard, upon receiving a 
client request, unnecessary and potentially inaccurate portions of the mantissas of 
the four bounding box elements, at least for the purpose of cache lookup. In this 
way, a client request for a tile that is fundamentally identical to one that has been 
cached (normally or through prefetching) will actually generate a cache hit, even if 
some of the insignificant digits of its bounding box corners do not exactly match. 

11 We refer to all those mentioned so far, further documented in [4]. 

 



3.1 Mantissa-rounding Algorithm 

WMSmooth refactors WMS requests using an algorithm based on the geographic
 
extent of a request with respect to its image size (in pixels). The formula determines
 
the number of significant digits in bounding box mantissas. To begin, we calculate
 
the degrees per pixel in both dimensions:
 

xDegreesPerPixel := longitudinalExtent / imageWidth 
yDegreesPerPixel := latitudinalExtent / imageHeight 

Given the measurements of degrees per pixel, for each dimension we can figure
 
out the number of decimal places necessary to maintain (pixel-wise) the same image.
 
We use the following function:
 

function bBoxSigDigits (degreesPerPixel): 
sigDigits := 0 
testPrecision := 1 
while (degreesPerPixel > testPrecision): 

testPrecision *:= .1 
sigDigits++ 

return sigDigits 

When this formula is applied to both of the degrees-per-pixel measurements, we
 
get the longitudinal (‘x’) and latitudinal (‘y’) number of significant mantissa digits.
 

3.2 Query Modification 

In GeoTorrent, each time a node receives a client request that uses WGS 84,
 
WMSmooth modifies the query string “on the fly” to reflect only the number of
 
significant digits in the corners of the bounding box. For example, the original bbox
 
element of a query may be:
 

-121.640625,37.3002752813443,-121.46484375,37.43997405227057 

Given a request for this geographical extent in a 256x256 pixel image, WMSmooth
 
alters bbox to be:
 

-121.641,37.300,-121.465,37.440 

A CPWPC can use the original bbox to request the tile from the remote server
 
but perform cache and prefetch lookups based on the WMSmooth bbox. This avoids
 
any inadvertent (though unlikely) changes in the resulting image generated by the
 
server.
 

 



3.3 Complexity and Performance Penalty 

Note that the result of the WMSmooth mantissa-rounding formula is equivalent to 
the mathematical expression l|log

10
[degreesP erP ixel]|J. We minimize the perfor­

mance penalty of calculating this upon receiving each WMS query by using our 
own “shortcut” version, viz. the WMSmooth rounding algorithm. Since we only 
care about the integer portion of the logarithm, and can disregard the sign, the entire 
algorithm’s complexity can be reduced to o(log

10
[n]). This is a definite gain over 

general-purpose algorithms for computing the logarithm of a real number [9]. We 
demonstrate the minimal experimental effect on performance in Section 5. 

4 Prefetching Methods 

A PCWPC’s ability to decrease user response time correlates to its ability to predict 
and prefetch data. Peer nodes can use the WHoMPyTS and WMSmooth guidelines 
detailed in Sections 2 and 3, combined with statistics collected on incoming client 
requests, to predict and prefetch likely future client requests. Each incoming WMS 
request can be analyzed for prefetching, and if the analysis results in any predicted 
requests, they can (for example) be added to a prefetch queue. 

4.1 Sensing WHoMPyTS 

For a PCWPC to perform prefetching, it must first verify that clients are following 
the WHoMPyTS rule. Since the rule is quite simple, so is the verification. 

Peer nodes can maintain a record of the number of incoming client requests for a 
given combination of bounding box extent and image size. Once a PCWPC becomes 
aware of multiple queries with the same combination, prefetching can be enabled on 
that level of the “hollow mosaic pyramid”. 

4.2 New Neighbors Prefetching 

In the GeoTorrent PCWPC, we offer two prefetching methods. The first and simplest 
is called “New Neighbors” prefetching (NNP). NNP involves exactly what its name 
implies: As each request is received and passes the WHoMPyTS test, GeoTorrent 
analyzes the request and calculates each of the eight surrounding tiles. Those not 
already cached by the node / group or scheduled for prefetching are added to the 
front of the prefetch queue. 

4.3 Prevailing Wind Prefetching 

The other, slightly more complicated method of prefetching is called “Prevailing 
Wind” prefetching (PWP). PWP models the idea of a prevailing wind measurement. 
A PCWPC can keep statistics (a “wind vane”) on the overall direction of movement 
in the last N requests (GeoTorrent uses 20). PWP prioritizes the eight surrounding 
tiles of each request so that the tiles in the prevailing direction are processed first. 

 



5 Evaluation 

Preliminary experiments show promising results for our techniques. We review some 
of them. 

5.1 Efficacy of WMSmooth 

Table 1 describes a quick study of WMSmooth’s functionality. We performed a sim­
ple scripted experiment using the Google Maps client to view and browse an area of 
TerraServer’s UrbanArea layer involving roughly 100 256x256 pixel tiles (recorded 
from a student’s browsing session). We ran the experiment in two different con­
ditions, averaging the results over ten runs for each condition. The first condition 
used GeoTorrent without WMSmooth (unmodified requests), and the other included 
WMSmooth; both used New Neighbors prefetching. We observed several important 
results: 

•	 Without WMSmooth (and, by extension, WHoMPyTS), prefetching did not func­
tion at all. Analysis of the individual queries showed that this was due to slight 
floating point differences in the queries’ bounding boxes. 

•	 WMSmooth also improved the normal cache hit ratio for the same reason. This 
implies that the client’s formula for generating tile bounding boxes was not en­
tirely deterministic, or at least not absolutely repeatable. 

Table 1. WMSmooth increases cache and prefetch rates. 

Response Type 
Request Analysis 

Unmodified WMSmooth 
Uncached 67% 51% 
Cached 33% 38% 
Prefetched 0 11% 

WMSmooth query modification adds an element of overhead to GeoTorrent’s 
query processing, but the delay is insignificant. Informal measurements on student 
workstations show that the WMSmooth calculations add roughly only 10 millisec­
onds of processing time per request, on average. The benefits afforded outweigh this 
inconsequential amount of overhead. 

5.2 Prefetching Mode Evaluation 

Figure 3 describes the results of several experiments we performed to compare and 
evaluate the performance of the two prefetching algorithms. We measured the change 
in GeoTorrent’s overall response time to clients vis-à-vis the prefetching mode. We 
ran the Google Maps client along two different scripted paths, each starting at the 
same point and involving roughly 400 requests, to generate requests for TerraServer’s 

 



DOQ layer. One path followed a straight line to the north, and the other explored in 
a zigzag pattern. No previous cache existed. Each experiment was repeated 10 times, 
and the results were averaged. 

Fig. 3. Comparison of prefetching modes 

Prefetching in general improved overall response times by roughly 25% to 35%. 
The performance of New Neighbors mode (NNP) was stable between the two paths 
as expected, since its behavior is independent of incoming requests. Prevailing Wind 
(PWP) did show improvement in the straight line path, also as expected, since its 
“wind vane” allowed GeoTorrent to queue the northern neighbors for immediate 
prefetching. 

5.3 Scalability and Overall Performance 

To get an idea of the collective performance of our techniques in their intended co­
operative proxy environment, we ran several scalability and load test experiments 
with GeoTorrent. Figure 4 illustrates the measured scalability and overall perfor­
mance of GeoTorrent’s combination of the WHoMPyTS rule, WMSmooth, and New 
Neighbors prefetching in a simulated educational environment. We ran GeoTorrent 
on twenty student workstations with unique Internet IP addresses and had each work­
station make requests chosen randomly from a list of WMS requests. We simulated 
different loads by varying the concurrency of requests across a range from 1 to 20. 

Our results show that when WMSmooth is applied to requests made in accor­
dance with the WHoMPyTS rule, a PCWPC can indeed provide dramatic reductions 
in response time, and that GeoTorrent’s performance is scalable (up to at least 400 

 



Fig. 4. The combination of WHoMPyTS, WMSmooth, and prefetching provide dramatic, scal­
able improvements in response time. 

concurrent, distributed group requests in this example). Note also that the caching en­
abled by our techniques ensures that no request made within the cooperative group 
is ever made to an external server more than once, drastically reducing the impact 
of the group on the server. Similar experiments in [4] review these results in further 
detail. 

6 Related Work 

We review some of the more pertinent literature on prefetching / path prediction and 
cooperative proxy caching. 

6.1 Prefetching (Path Prediction) 

The rise of mobile cell phones and hand-held computers in recent years has spurred 
interest in practical path prediction algorithms. However, they tend to focus more 
on regularity of movement based on daily or weekly patterns [10]. They also must 
take into account some things that don’t necessarily apply to our situation, such as 
velocity of travel or road paths [11]. Others take into account other aspects of actual 
first-person human movement (e.g. frequented locations) [12]. We needed a more 
generalized approach based solely on trends in recent access, perhaps better met by 
our prefetching models. 

 



6.2 Cooperative [Proxy] Caching 

A fair amount of research exists on cooperative proxy caching, including applica­
tions, limitations, and suggestions. Most work on cooperative caching focuses on 
web proxies [13, 14, 15, 16, 17]. We focus on several of the most applicable and 
interesting. 

The Squirrel peer-to-peer web cache [13] caches web pages among a group of 
machines by building a “scalable distributed hash-table” among the group. Squir­
rel associates web pages with a given hash ID and uniformly distributes hash IDs 
among group members, for fault tolerance purposes. As a result, each message passes 
through an average of three nodes. The goal of interactivity in the educational envi­
ronment precludes routinely routing messages among multiple peers, and node fail­
ures are unlikely within the span of a lab period. 

Other work attempts to avoid Squirrel’s hash key assignment model. One such 
approach is modeled, oddly enough, after the hoarding mechanisms of squirrels (the 
mammals) [15]. This work proposes a multi-agent system where peers work indepen­
dently, but according to heuristics that result in a balanced resource allocation. They 
conclude that a “sniffing and burying” algorithm, where a peer “sniffs” several ran­
dom possible locations before deciding to place a resource, results in a well-balanced 
allocation. We chose a reactive model instead, prioritizing immediate response over 
long-term balancing. Some work suggests that cooperative proxy caching offers only 
negligible benefit for user response time, at least in web caches, due to the number 
of cache misses [16]. However, our situation differs from standard web caching in 
that the peer group should repeatedly and reliably access the same or similar data. 

General purpose web proxy caches (e.g. Squid [14]) serve a similar purpose. 
However, due to the application-specific challenges we address with WHoMPyTS, 
WMSmooth, prefetching, etc. (as well as the educational environment’s infrastruc­
tural limitations), normal proxies are not suitable. 

7 Future Work 

Our results are encouraging, and merit further exploration. We propose several av­
enues. 

7.1 Tiling Hints 

Databases supporting WMS servers often already store data in a tiled fashion [4], so 
it would be nice if clients and/or a CPWPC could take advantage of those preexisting 
tile boundaries, making requests along them and thereby increasing performance. 
Optional tile boundaries could be advertised in a WMS Capabilities document, given 
a standard notation. 

 



7.2 Enhanced Prefetching 

Many GIS clients incorporate the idea of “zoom levels”, i.e. a user zooms in and 
out to predefined view levels. If a prefetching algorithm could sense patterns among 
these levels and how clients are using them, it could potentially prefetch data at 
nearby levels, anticipating and speeding up zooming operations. 

Another possible prefetching enhancement could be an extension of the Prevail­
ing Wind mode. PWP currently only prioritizes the requesting of a tile’s immediate 
neighbors based on the current “wind vane” measurement. Another method might 
extrapolate based on the “strength” of the wind and fetch tiles further in this direc­
tion. 

8 Conclusion 

We have presented several novel techniques that enable cooperative proxies to effec­
tively cache and prefetch WMS data, using the example of GeoTorrent in the edu­
cational lab environment. We have introduced WHoMPyTS, which allows us to de­
fine an implicit and flexible pyramid tiling scheme. We have discussed WMSmooth, 
a query smoothing algorithm that enables caching and prefetching through the 
WHoMPyTS rule. We have proposed two methods of data prefetching based on sta­
tistical prediction, viz. the New Neighbors and Prevailing Wind models. 

Our techniques provide dramatically reduced user response times, while greatly 
reducing impact on remote WMS servers. When applied in a cooperative proxy sys­
tem, they enable the interactive use of remote WMS servers by a group of clients (e.g. 
in an educational lab). Use of these massive, rich, and publicly available datasets for 
educational purposes has previously been impractical. This work makes such use a 
reality and can do so for other environments as well. 
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