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The concept of proactive Traffic management 

for Enhancing freeway safety and operation
 

proacTIvE TraffIc 

managEmEnT InvolvEs 

applIcaTIon of InTEllIgEnT 

TransporTaTIon sysTEms (ITs) 

sTraTEgIEs ThaT arE InTEndEd 

To rEducE ThE rIsk of crash 

occurrEncE. IT Is an EvolvIng 

paradIgm for managIng 

TraffIc on frEEways ThaT 

Is proacTIvE comparEd To 

IncIdEnT dETEcTIon, whIch Is 

consIdErEd rEacTIvE. 

By MOhAMED ABDEl ATy, Ph.D., P.E. ANURAG PANDE, 
Ph.D. AND lIANG hsIA, P.E., CGC 

INTRODUCTION 
The ITE Traffic Safety Toolbox (1999) 

defines a freeway as a roadway with four 
or more lanes, opposing lanes separated by 
a physical median and full access control 
(i.e., no at-grade intersections with the 
mainline). The freeways were intended 
to be used for high-speed travel over long 
distances. However, in addition to the 
recurring congestion during peak hours, 
freeways are affected by nonrecurring con­
gestion caused by incidents, work zones 
and weather events. Freeway traffic man­
agement authorities attempt to minimize 
the impact of these sources of recurring 
and nonrecurring congestion. 

A significant amount of research in 
the area of freeway traffic management 
has been aimed at congestion caused by 
incidents through their early detection. 
Automatic incident detection algorithms 
rely on data available from a variety of 
traffic surveillance apparatuses (e.g., loop 
detectors). The aim is to identify inci­
dent conditions from free-flow and/or 
recurring congestion. However, increase 
in mobile phone usage and video sur­
veillance technology has diminished the 
relevance of loop-data-based incident de­
tection models (FHWA, 2000). Incident 
detection is essentially a reactive approach 
and does not attempt to avoid primary 
incidents. To reduce the risk of primary 
incidents, traffic management authorities 
may prefer a proactive approach to traf­
fic management. A proactive approach 
would essentially involve identifying free­
way locations where a crash is more likely 

to occur in real time 
instead of trying to as­
sess where the incident 
has occurred. 

The approach for developing real-time 
crash risk assessment models is to analyze 
historical crashes and traffic surveillance 
data corresponding to historical crashes 
and detect patterns that are often observed 
before crash occurrence. If these patterns 

are repeated in the future on a freeway 
section, that section may be identified as 
a real-time “black spot” with high likeli­
hood of crash occurrence. Variable speed 
limit (VSL) and ramp metering strategies 
that specifically aim at reducing crash risk 
may be developed for these traffic con­
ditions. While the infrastructure used by 
automatic incident detection algorithms 
may be used for implementing the crash 
risk estimation framework, there are some 
critical differences in the way results are ap­
proached. In the next section of the paper, 
we discuss differences between incident 
detection and real-time crash risk estima­
tion. The section following that discusses 
the results of the study by the authors that 
established the link between freeway traffic 
data and crash occurrence. The following 
section provides the details of a crash risk 
estimation framework developed for In­
terstate 4 in Florida, USA, along with its 
application for developing proactive VSL/ 
ramp metering strategies. The section fol­
lowing that discusses the current incident 
management practices and the scope of 
improvement provided by the proposed 
proactive approach. It is followed by con­
clusive remarks in the last section. 

INCIDENT DETECTION AND 
PROACTIVE TRAFFIC MANAGEMENT 

In the recent past, tremendous growth 
has been observed in traffic management 
and information systems. Due to recent 
advances in the capabilities to collect (and 
archive) the data through underground 
and microwave sensors, these data are 
available for many freeways. Availability 
of these data has inspired a new series of 
studies in traffic safety in which traffic 
conditions right before historical crashes 
may be collected and examined to iden­
tify patterns that commonly occur be­
fore crashes. These studies in the area of 
traffic safety can lead to the emergence 
of a new proactive paradigm in traffic 
management. 
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Research in freeway traffic manage­
ment was, and to an extent has been, 
focused on automatic incident detection. 
The idea of incident detection involves 
analysis of patterns in traffic surveillance 
data observed just after the historical in­
cidents. Since traffic data for the freeway 
are collected continuously, it is possible 
to develop models using historical inci­
dent data and apply them in real time to 
examine the traffic data for detecting any 
incident that might have occurred on the 
freeway. Figure 1 shows, as an example, 
the drop in speed followed by an incident 
that may be used to detect an incident. 
The approach is reactive in nature and 
attempts to swiftly detect incidents so that 
a timely clearance could be achieved. 

However, due to the information tech­
nology revolution, the usage of mobile 
phones has increased manifold along with 
the video surveillance of freeway sections. 
Hence, the information on incidents is 
immediately available to the traffic man­
agement authorities. These advancements 
have rendered incident detection algo­
rithms (e.g., Cheu and Ritchie, 1995; 
Abdulhai and Ritchie, 1999) somewhat 
irrelevant and, despite their availability, 
the incident detection algorithms are not 
widely used (FHWA, 2000). Archived 
and real-time traffic information available 
for the freeways may be better utilized 
for developing proactive strategies. These 
strategies would involve anticipating inci­
dents along with attempts to avoid them, 
or at least reduce their severity and adverse 
congestion effects. In this regard, crashes, 
in general, are more frequent and predict­
able than incidents such as a flat tire. 
Therefore, to develop a proactive traffic 
management strategy traffic data prior 
to individual historical crashes should be 
collected and analyzed. Figure 2 exempli­
fies what patterns would be of interest for 
such analysis. 

Golob et al. (2004) analyzed the pat­
terns similar to the one shown in Figure 2 
and developed a software tool called FITS 
(Flow Impacts on Traffic Safety) for pre­
dicting the crash type most likely to occur 
under traffic conditions being observed at 
the loop detectors. In their analysis traffic 
conditions that did not lead to crashes 
were not accounted for and only patterns 
observed before crashes were analyzed. 

ThE prEmIsE of 

proacTIvE TraffIc 

managEmEnT Is ThaT 

ThErE arE cErTaIn 

frEEway TraffIc 

paTTErns ThaT arE 

assocIaTEd wITh a 

hIgh lIkElIhood of 

crash occurrEncE 

and ThaT ThEy may bE
 

dETEcTablE In ThE loop 


dETEcTor daTa.
 

The authors in one of their previous stud­
ies argued that the performance of such 
a system may be enhanced significantly 
if along with the crash data (representing 
crash prone conditions) some non-crash 
cases (i.e., loop detector data correspond­
ing to time and location where no crash 
is recorded) are also incorporated in the 
analysis for comparison (Abdel-Aty et al., 
2004). In this regard, the authors pro­
posed to set up the problem as a binary 
classification problem between crash and 
non-crash categorization. 

ARE CRAsh PRONE CONDITIONs 
DIsCERNIBlE? 

The premise of the proactive traffic 
management is that the there are certain 
freeway traffic patterns that are associated 
with a high likelihood of crash occurrence 
and that they may be detectable in the 
loop detector data. It should be noted that 
the associations automatically do not im­
ply a “cause-effect” relationship between 

crashes and observed traffic patterns. The 
premise was initially explored by the au­
thors using crash data from Interstate 4 
(in Orlando metropolitan area, Florida, 
USA) for a four-year period. The traffic 
information used in the analysis included 
speed, volume and lane occupancy at the 
loop detectors surrounding the histori­
cal crash location. The geometric char­
acteristics of the freeway were implicitly 
controlled through a matched study 
design comparison of crashes and non-
crash cases. The binary logistic regression 
(crash versus non-crash) model, shown in 
Table 1, indicated that high variation in 
speed represented by coefficient of varia­
tion (=standard deviation/mean) in speed 
(5–10 minutes before the crash) was the 
most significant predictor. The other two 
variables in the model indicated that high 
average occupancy and low standard devi­
ation in volume (observed 5–10 minutes 
before the crash) at the station located 
one-half mile downstream also increase 
the crash likelihood. The model provided 
the odds of crash occurrence conditioned 
on the observed traffic conditions and 
resulted in 62 percent crash identification 
(Abdel-Aty and Pande, 2006). 

The authors in that study also pro­
posed a rudimentary strategy to “predict” 
crash occurrences in real time. However, 
it was observed that the precision of the 
models may be increased if the historical 
crash data are segregated by crash type. 
The disaggregate crash data would also 
help in providing specific warnings and 
suggesting specific actions to the motor­
ists on the freeway to avoid specific types 
of crashes. Having shown that the traffic 
patterns observed prior to crashes may be 
differentiated from normal traffic condi­
tions, a detailed framework for proactive 
traffic management is developed. 

CRAsh RIsK AssEssMENT 
FRAMEWORK FOR INTERsTATE 4 
IN FlORIDA 

The proactive crash risk estimation 
framework is based on binary classifica­
tion problem formulation and has been 
developed for a 36.25-mile instrumented 
corridor of Interstate 4 in Orlando, FL 
(Pande and Abdel-Aty, 2006 a). Histori­
cal crash data used for this study included 
crashes reported for the I-4 corridor dur-
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figure 1. approach for incident detection. 

figure 2. approach for proactive traffic management. 

ing the five-year period extending from 
1999 through 2004. Out of the total 
4,189 crashes, 1,065 crashes had no loop 
detector data available at all (due to mal­
functioning loop detectors). Therefore, 
the 20-minute loop data observed right 
before the time of crash were collected for 
the remaining 3,124 crashes. 

The proposed traffic management 
framework is essentially a proactive exten­
sion of the traditional approach used for 
incident detection. The traffic data used 
in the study were obtained from the loop 
detector stations located approximately 
every half-mile throughout the corridor. 
The information corresponding to each 
historical crash is derived from five loop 
detector stations: the station nearest to 
the crash location (referred to as Station 
F), two stations upstream of Station F 
(referred as Stations D and E) and two 
stations downstream of station F (Sta­
tions G and H). The 5-minute average 
and standard deviations of speed, volume 
and lane occupancy measured at 5-minute 
levels were calculated for four time slices 
(total 20-minute period before the crash). 

A range of classification models for identi­
fying conditions prone to rear-end (Pande 
and Abdel-Aty, 2006 a) and lane-change­
related crashes (Pande and Abdel-Aty, 
2006 b) were developed using the traffic 
information from these stations. These 
models were the components of the real-
time crash risk estimation framework. It 
is worth repeating that traffic parameters 
found significant in these models (based 
on historical crashes) do not automatically 
imply their causal relationship with crash 
occurrence. Such relationships are only 
inferred by relating the freeway traffic 
conditions represented by analysis as crash 
prone with possible crash mechanisms. 
For example, as discussed later in detail, 
speed differential between an upstream 
and downstream station can create condi­
tions prone to rear-end crash at freeway 
section in between those stations within 
5–10 minutes. 

Risk Assessment Models for Rear-End 
Crashes 

Rear-end crashes made close to 51 
percent of the crash data for which some 

corresponding loop data were available 
(1,620 crashes). To develop a crash risk 
assessment system for rear-end crashes 
the distributions of 5-minute average 
speeds observed over the 5–10 minute 
period prior to historical rear-end crashes 
were examined. The speed data were col­
lected from the five aforementioned sta­
tions (referred to as stations D through 
H) surrounding the crash location. Based 
on these distributions, rear-end crashes 
were grouped into two distinct clusters. 
The first cluster consisted of crashes that 
occur under extended congestion on the 
freeway, while the average speeds were 
relatively higher before the second cluster 
of rear-end crashes. The traffic speed con­
ditions corresponding to the former group 
are referred to as Regime 1 and those 
corresponding to the later were called Re­
gime 2. Simple “if-then” rules consisting 
of average traffic speeds at the aforemen­
tioned stations were formulated (based on 
classification tree methodology) to sepa­
rate the traffic conditions belonging to 
the two regimes in real-time. These rules 
and the complete procedure to formulate 
these rules may be found in (Pande and 
Abdel-Aty, 2006 a). It was found that 
the Regime 1 conditions are very rare on 
the freeways (about 6.27 percent of the 
time) while the “exposure” of Regime 2 
was much higher (about 93.73 percent of 
the time). Among the rear-end crashes, 
however, Regime 1 crashes makeup about 
45.80 percent of the total 1,620 rear-end 
crashes while 54.20 percent of crashes 
occurred under Regime 2 conditions. The 
break up of two groups of rear-end crashes 
and random non-crash cases by traffic 
regime are provided in Figure 3. 

Based on these observations, it was 
inferred that it would be reasonable to 
issue a warning for a rear-end crash if 
conditions belonging to traffic Regime 
1 are encountered. It will identify nearly 
half of the rear-end crashes with a very 
small number of warnings. For crashes be­
longing to Regime 2, two classes of neural 
network-based classification models [mul­
tilayer perceptron (MLP) and normal­
ized radial basis function (NRBF) neural 
networks] were estimated. The strategy 
of combining traffic regime information 
with neural network-based classification 
has been shown to have the potential to 
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Table 1. logistic regression model for identifying crash prone conditions (abdel-aty and pande, 2006). 

variable parameter 
Estimate 

standard 
Error chi-square pr > chisq 

Coefficient of Variation in speed at station 
nearest to crash location 

1.21405 0.15548 60.9729 <.0001 

Average occupancy at the station location 
½ mile d/s of crash location 

0.02466 0.00571 18.6747 <.0001 

Standard deviation of volume at the station location 
½ mile d/s of crash location 

–0.19124 0.04569 17.5216 <.0001 

identify 75 percent of rear-end crashes 
with reasonable false alarm rate. 

The neural network modeling was 
repeated in three steps. In the first step, 
the independent variables included were 
the off-line factors (such as distances to 
the nearest ramps, milepost, time of day 
and so forth) and the traffic parameters 
(5-minute average/standard deviation of 
speeds, volume and occupancy) measured 
only at the station nearest to the crash 
location (Station F). In the next step, traf­
fic parameters were included from three 
stations, the station of the crash and one 
station each in the upstream (Station E) 
and downstream (Station G) direction. In 
the third step traffic parameters were in­
cluded from five stations [i.e., the station 
of the crash and two stations each in the 
upstream (Stations D and E) and down­
stream direction (Stations G and H)]. 

Multiple neural network models of 
each of the two classes were examined for 
their classification performance at each of 
the three stages. The best model was iden­
tified for each of three stages, and these 
three models required data from one, 

three and five stations, respectively. The 
model using data from five loop detector 
stations was better than the best models 
from other two stages (using traffic data 
from one or three loop detector stations). 
However, it required that none of the five 
loop detector stations surrounding the 
freeway location under surveillance be 
malfunctioning. 

Models for Lane-Change-Related Crashes 
Based on the findings from Lee et al. 

(2006) and an extensive review of crash 
reports, it was concluded that sideswipe 
crashes and the crashes classified as “angle 
crashes” on inner lanes of the freeway 
may be attributed to faulty lane-changing 
maneuvers. These crashes were about 16 
percent of the crash data and were referred 
to as lane-change-related crashes (Pande 
and Abdel-Aty, 2006 b). The classification 
models utilized traffic parameters from 
the stations located immediately upstream 
and downstream of the historical crash 
locations as inputs. The same classes of 
neural network models (i.e., MLP and 
NRBF) were explored for lane-change­

figure 3. relative frequency of traffic regimes in rear-end crashes and a random sample of non-crash cases. 

related crashes. The best models in the 
two classes were MLP, with four hidden 
neurons, and NRBF, with three hidden 
neurons. The hybrid model with these 
two models as its constituents was recom­
mended for the real-time application. 

Framework for Real-Time Application 
The output of the neural network 

models discussed in the last two section 
(for any observation) is the posterior 
probability (0<posterior probability<1) 
of the event of interest (a rear-end crash or 
lane-change related crash). A higher (i.e., 
closer to 1) output would indicate that 
corresponding observation is more crash 
prone. Appropriate threshold on posterior 
probability may be used for separating 
potential crash warnings (positive deci­
sions) versus normal traffic conditions. 
The models may be applied on the real-
time traffic data as they become available 
from the loop detectors and warnings may 
be issued if the conditions are classified 
as crash prone. The framework proposed 
for real-time application of these models 
is provided in Figure 4. 

In the proposed real-time application 
framework, the models developed for 
rear-end and lane-change-related crashes 
are applied in parallel. Hence, the loca­
tions would be flagged for rear-end crash 
independent of the flag for a lane-change­
related crash. It is therefore possible for 
any freeway section to be flagged for a 
rear-end crash or a lane-change-related 
crash or both. For rear-end crashes the 
application first starts by applying the 
classification tree model for identification 
of traffic regime (Regime 1 or Regime 2). 
If the patterns belong to Regime 1, a rear-
end crash warning is issued for the loca­
tion without any further application. If 
the patterns belong to Regime 2, then we 
need to apply the neural network based 
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figure 4. a real-time application framework for the models developed to assess risk of the more frequent 
types (rear-end and lane-change related) of freeway crashes. 

models. As mentioned earlier, the model 
using traffic data from five loop detector 
stations provided optimal crash identifica­
tion over the validation dataset and hence 
is preferred over other models. 

Therefore, in the next step a check 
for data availability over five stations is 
applied. If data from five stations are avail­
able then the data are subjected to the 
corresponding model. The posterior prob­
ability output obtained from the model 
is then compared with the threshold. If 
the output is greater than the threshold 
value then the location may be flagged 
for a rear-end crash. If data from five sta­
tions are not available due to intermittent 
loop failures, a data availability check is 
applied for three stations. If data are not 
available from three stations then the best 
individual one-station model may be ap­
plied for assessing the risk of a Regime 2 
rear-end crash. 

The decision process to flag (or not 
to flag) the location is identical to the 
one used when data from five stations 
were available. To assess the risk of a lane-
change-related crash, a check for data 
availability is first applied. If detectors at 
all three lanes of the upstream station are 

functioning then the input parameters are 
subjected to the corresponding neural net­
work model. If the output posterior prob­
ability is greater than the threshold then 
warning for a lane-change-related crash 
may be issued. Note that the proposed 
framework shown in Figure 4 not only ac­
counts for the classification performance 
of various models but also involves checks 
on data availability. The framework di­
rects toward application of a more toler­
ant model (in terms of data requirements) 
if the requisite data are not available (due 
to malfunctioning loop detectors) for ap­
plication of the preferred model. Note 
that such a framework may be developed 
and applied for any instrumented freeway 
corridor and does not require any more 
sophisticated data than series of single or 
dual loop detectors. Further details of the 
framework may be found in Pande and 
Abdel-Aty (2007). 

FORMUlATION OF CRAsh-
PREVENTION sTRATEGIEs 

The crash data have been analyzed so 
far to make a reliable assessment of traf­
fic conditions on freeways for their crash 
potential. The objective is to be able to 

proactively manage traffic in such a way 
that reduces the estimated crash potential. 
This section provides an example of the 
notion behind developing such strategies. 
It specifically addresses rear-end crashes 
in medium- to high-speed traffic condi­
tions (Regime 2). Figure 5 depicts the 
spatio-temporal patterns of the effect of 
average speeds on risk of rear-end crashes 
under medium- to high-speed traffic re­
gime. The effect of average speed is de­
rived using binary logistic regression while 
controlling the effect of freeway location 
related characteristics (Pande, 2005). 

As one may observe from Figure 5, the 
effect of speeds at the downstream of the 
crash site (speeds at Station G and H) is 
negative (lower speeds increase the crash 
risk) while the effect for the upstream 
average speed (speed at Station D) is posi­
tive (higher speed increase the risk) for 
all four time slices (20-minute period). 
The effect of average speeds at Stations 
E and F was not found to be statistically 
significant. Based on the contour plot 
it may be inferred that under relatively 
free-flow traffic conditions, speed differ­
ential between upstream (Station D) and 
downstream stations (Stations G and H) 
increases the risk of a rear-end crash on 
the freeway section in between (i.e., vicin­
ity of Station F). A possible explanation 
may be that the drivers under medium- to 
high-speed traffic conditions are caught 
unaware of the congestion that had been 
building up downstream as suggested by 
low average speeds at stations G and H 
prior to the time of crash. 

The interpretation that spatial speed 
differential in the direction of travel con­
tributes significantly to rear-end crash risk 
may be used to devise variable speed limit 
(VSL) strategies that may be effective in 
reducing the crash risk on freeways. An 
example of a potential VSL strategy that 
relies on this interpretation would be as 
follows: If the average speeds downstream 
of a freeway section are measured to be 
less than the speeds at station one mile 
upstream, then a decrease in speed limit 
upstream and an increase in speed limit at 
the downstream section may help in reduc­
ing the speed differential. It, in turn, would 
reduce the crash risk at the freeway section 
(in between the stations) that was experi­
encing a higher risk of rear-end crashes. 
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figure 5. spatio-temporal pattern of the effect of average speeds on rear-end crashes under medium to high 
speed traffic regime. 

It is worth mentioning that the similar 
traffic speed differentials were not found 
to be significant before rear-end crashes 
that occur under extended congested con­
ditions. Hence, crashes under low-speed 
traffic regime (Traffic Regime 1) may re­
quire different in telligent transportation 
system (ITS) strategies. Indeed, it was 
observed that while VSL is an effective 
strategy under medium- to high-speed 
traffic regime ramp metering (RM) is 
more effective under low-speed regime 
(e.g., Abdel-Aty et al., 2006, 2007). The 
specific ITS strategies, VSL, RM and a 
combination of the two were evaluated 
using a model of the Interstate 4 corridor 
in microscopic traffic simulation environ­
ment. These studies were able to quantify 
the benefits of the proactive approach in 
terms of reduced crash risk. 

In those studies the authors have dem­
onstrated significant benefits of using ITS 
strategies in a simulation environment 
(Abdel-Aty et al., 2006, 2007). The mi­
croscopic simulation tool PARAMICS 
was used to evaluate these strategies. By 
simulating their effects using PARAM­
ICS, various strategies were tested to esti­
mate the improvement over the simulated 
base case (with no VSL and/or ramp me­
tering). Ramp metering and/or VSL strat­
egies currently deployed in metropolitan 
areas around the USA primarily aim at 
reducing congestion or responding to a 
weather event. The strategies proposed by 

Abdel-Aty et al. (2006, 2007) specifically 
aim at reducing crash risk in real time as 
estimated by the proactive framework dis­
cussed in this study. The results obtained 
by these studies need to be integrated with 
the traffic management centers’ existing 
strategies dealing with congestion. 

IMPACT ON INCIDENT 
MANAGEMENT PRACTICEs 

The issue that remains to be addressed 
is how the current traffic management 
practices may be adjusted to include 
the proactive traffic management para­
digm. FHWA (2000) defines incident 
management as the process of managing 
multi-agency responses to highway traf­
fic disruptions. Efficient and coordinated 
management of incidents is directed at 
reducing their adverse impacts on pub­
lic safety, traffic conditions and the lo­
cal economy. While incident detection 
is a critical part of the incident response; 
FHWA (2000) documented that cellular 
phone-based incident detection is gener­
ally the most efficient method for the 
same with detection times of less than a 
minute. For example, even back in the 
year 2000, close to 80 percent of the in­
cidents in the Seattle, Washington, USA, 
metropolitan area were detected using cell 
phones (FHWA, 2000). It was also re­
ported that automated incident detection 
algorithms are available but not widely 
used since system data requirements de­

mand significant equipment investment 
and maintenance. Due to advances in 
recent information technology not only 
are more and more incidents are reported 
by cell phones, but the capabilities to col­
lect, store and analyze data have increased 
manifold. In this regard, the proactive 
approach proposed by the authors could 
be very attractive to traffic management 
authorities. 

The automated incident detection sys­
tems need to be replaced with a proac­
tive framework, such as the one shown in 
Figure 4, for assessing the real-time traffic 
conditions on freeways. The models con­
stituting the proactive framework could 
enable traffic management authorities to 
be prescient about the location where a 
crash is likely to occur. The warnings from 
a proactive system may play an advisory 
role for the drivers so that they can be 
more vigilant while driving under crash-
prone conditions. Incidents avoided using 
such a system would result in significant 
benefits through reduced vehicle delays 
and enhanced safety to motorists through 
the reduction of crash frequency or sever­
ity. Moreover, the results from this proac­
tive system would also be helpful in man­
aging the incidents that do occur. The 
information available from these models 
may also be used to improve response and 
clearance times, which is one of the stated 
incident management goals of the Federal 
Highway Administration (FHWA, 2000) 
and state-level agencies. For example, re­
sponse times have also been recognized 
as a metric by Florida Department of 
Transportation (FDOT) to assess traffic 
incident management performance in the 
short-term (CUTR, 2005). 

Freeway locations under high risk of 
crash occurrence according to the proac­
tive framework may be monitored using 
closed-circuit television (CCTV) cameras. 
Video monitoring may provide impor­
tant details about the incident, in case it 
does occur. This timely verification would 
result in optimum response based on ac­
curate and rapid verification since verifica­
tion and response time are large compo­
nents of the overall clearance time. For 
the proposed proactive approach, primary 
crash rates would be a long-term perfor­
mance measure along with the secondary 
crash rates. It is worth mentioning that 
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while this new proactive approach has 
a significant potential to save lives and/ 
or avoid delays, there is no substitute for 
having better coordination between trans­
portation agencies, law enforcement and 
service patrols while managing freeway 
traffic. The responding agencies prepared 
with interagency response action plans 
tailored for various incident scenarios and 
supported by shared data are still desir­
able to improve operations on the freeway 
(FHWA, 2000). 

CONClUsIONs 
In conclusion, it is worth mentioning 

that the proactive framework is expected 
to detect crash-prone conditions and 
not necessarily predict individual events 
(crashes). Therefore, while the approach 
adopted here is somewhat similar to in­
cident detection in terms of analysis of 
the historical data, the two applications 
would differ significantly. The objective 
exactly analogous to incident detection 
algorithms would have been to predict 

IT Is worTh mEnTIonIng 

ThaT ThE proacTIvE 

framEwork Is ExpEcTEd 

To dETEcT crash-pronE 

condITIons and noT 

nEcEssarIly prEdIcT
 

IndIvIdual EvEnTs 


(crashEs).
 

crashes. It should be acknowledged that 
the term prediction is not really applicable 
here. The objective is to identify condi­
tions under which, based on historical 
data, the drivers are more likely to make 
errors, which in turn lead to crashes. 

Also, false alarms are not as detrimental 
to the present application as they would 
be for incident detection algorithms. In 
fact, the ultimate goal of this research 
would, or at least should be, to achieve a 
false alarm every time a crash warning is 
issued. The goal would be based on the 
expectation that with some form of proac­
tive real-time countermeasure or warnings 
to the motorists, potential crashes may be 
avoided. Such countermeasures are obvi­
ously a matter of further investigation but 
even without the countermeasures it is 
neither improbable nor unacceptable to 
have these false alarms. Crash-prone traf­
fic conditions identified by the framework 
proposed here would not always result in 
crash occurrence even though a significant 
proportion of historical crashes did occur 
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under those conditions. These conditions 
are worth warning the drivers. In other 
words, drivers need to be more attentive 
under such traffic conditions, even if they 
do not culminate in a crash every time. 

The justification or inevitability of 
false alarms does not mean that an un­
limited number of warnings could be is­
sued, especially if the information based 
on the framework is being transferred to 
the motorists. It should be ensured that 
the drivers do not perceive the warnings 
to be “too many” and become immune to 
them. Examination of drivers’ reaction to 
real-time information about crash-prone 
conditions is a much needed avenue for 
future research. n 
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