
 

 

   

 
 

 

 

 
 

 

 
 
 
  
 

 

 

 
 

 
 

 

 

 
 

 
 

 
 
 
 
 

Design of Zebra Mussel Control Measures for Hydro-Electric Power Projects 
G. Inci, MWH Americas, Inc.; C. J. Miller, and N. Yesiller, Wayne State University 

Abstract 
Zebra mussel, Dreissena polymorpha, is a biofouling organism that lives generally in freshwater 
ecosystems. Zebra mussel infestation has occurred at various freshwater structures and 
systems including raw water intakes, industrial and domestic distribution pipelines, and 
hydropower facilities at its native regions as well as distant locations.  A study was conducted to 
perform risk assessment and to develop preventive measures for zebra mussel infestation at a 
planned hydroelectric power plant (Alpaslan II HEPP) in southeast Turkey. Zebra mussel is 
native to Anatolia region and existing hydropower facilities have significantly been affected by 
mussel infestation. The risk assessment was conducted by considering effects of various 
factors on zebra mussel infestation. The factors included environmental conditions, factors 
related to materials used in construction of various components of a HEPP as well as the 
susceptibility of various components to infestation due to routine operation of a facility. 
Quantitative study of head loss due to major infestation for Alpaslan II HEPP indicates 
approximately 4% reduction in power generation.  A two-step process is proposed to prevent 
mussel infestation at hydroelectric power plants. The method makes use of the water hammer 
effect that occurs during rapid shutdown of the turbine combined with an automated system for 
providing chemicals to the power plant water to remove and kill zebra mussels associated with 
various components of a facility. The proposed system constitutes a proactive-reactive 
chemical treatment system. 

Introduction 
Zebra mussels are bivalve mollusks related to oysters, clams, and freshwater mussels.  They 
can grow up to 5 cm in length and they have elongated and pointed thin shells with zebra-like 
pattern with stripes. During its most mobile stage, planktonic veliger, zebra mussel larvae can 
attach to an object with more than 100 proteinaceous byssal treads that are secreted from a 
gland at the base of its muscular foot. These treads are extremely tenacious; an attempt to 
remove by hand usually results in breaking of the shell or damaging of the soft tissue of the 
mussel. Large numbers of byssal attachments to hard surfaces in raw water systems is the 
main reason why this species causes problems in industrial and domestic water supplies. 

Zebra mussel achieves high densities immediately after colonizing a new habitat.  Zebra mussel 
densities on an intake screen around Great Lakes area climbed from 200 individuals/m2 to 
700,000 individuals/m2 in one year (Miller and Payne, 1992). Geometric increases in population 
on the order from 1 to 105 in 2 years have been reported in the Mississippi Valley (Yager, 1994). 

The ballast water of ships could transport exotic species such as the zebra mussel. O’Neill and 
Dextrase (1993) describe the spread of mussels in North America in detail. The zebra mussel 
has spread throughout the Great Lakes, St. Lawrence Seaway, Mississippi River, other 
locations throughout Eastern North America, (USGS, 2004). In the U.S., industry has spent 
over 120 million dollars on zebra mussel control, which is much less than the estimated 5 billion 
dollars of damage for 1990 and electrical power generation industry was the major spender 
(O’Neill, 1997). Spread of mussels and its effects on locks and dams are discussed Yager 
(1994). Introduction of a similar species, black-striped mussel (Mytilopsis sallei) to Central 
America and Indo-Pacific is believed to have happened through the Panama Canal with 
attachment to the hull of ships. A recent investigation indicates that Panama Canal tunnels 

1 HydroVision 2004 - Copyright HCI Publications, 2004 - www.hcipub.com



 

 

   

 
 

 
 

 

 
 
 
 
 
 

 
 

 

 
 

 

 
 

 

 

 
 

  
 
 

   

 

  
 

  
 

 

 
 

 

have about 3- to 5-cm-thick mussel and oyster cover.  In addition, zebra mussels have 
significantly spread to India, Singapore, Hong Kong and other Asian ports. Strict quarantine 
and protection have prevented mussel infestation in Australian freshwaters thus far. 

Zebra mussel infestation threatens freshwater infrastructures including raw water intakes, and 
industrial and domestic distribution pipelines. Zebra mussel is also a problem for the 
hydropower industry. A number of components of a hydropower facility is susceptible to zebra 
mussel infestation. These components include trash racks, penstocks, turbine headcovers, 
embedded piping, raw water-cooling systems, instrumentation, gates, and fish ladders. Many 
countries have adopted strict legislation and engineering control measures to prevent the 
spread of zebra mussels. However, considering the infestation of major waterways and the 
possible use as a biological weapon, unpopulated waterways remain susceptible to zebra 
mussel infestation. New hydropower projects need to be designed with zebra mussel 
control/prevention measures. 

In 1981 Turkey launched her largest irrigation and power generation project, Southeast 
Anatolian Project (GAP), for the development of her Southeast region. Within 75,358 km2, 22 
dams, 19 hydroelectric power plants (HEPP), and 2 irrigation tunnels have been constructed on 
the Euphrates and the Tigris Rivers and their tributaries. There are five large dams on 
Euphrates River within the Turkish border. Four dams have been built within GAP’s scope. 

Alpaslan I (recently completed) and Alpaslan II (under design) dams (both out of GAP’s scope) 
are on Murat River, a tributary to the Euphrates River. Alpaslan dams are multi purpose dams: 
irrigation, power generation, and regulation for GAP dams for firm power generation. 

Zebra mussel problem was first observed in 1964 in Kovada I HEPP, which later spread to 
Kovada II HEPP in Southwestern Turkey. As of 2001 three GAP downstream dams, Ataturk, 
Bilecik, and Karakamis are infested with zebra mussel (Hengimen et al., 2002).  In 2003 zebra 
mussel was detected in two of the GAP upstream dams: Keban and Karakaya (Bobat et al., 
2003). After the completion of Alpaslan I HEPP, Alpaslan II HEPP can be affected by mussel 
colonization due to the increase in water temperature at the downstream reservoirs. 

An overall framework for dam safety risk assessment was provided by USSD in 2003. This 
study provides a risk assessment framework for zebra mussel infestation and possible 
prevention and control measures for Alpaslan II HEPP, which is currently under design by 
Alpaslan II Construction Consortium. In addition, an automated proactive preventive method is 
described in the paper. The risk assessment methodology and the suggested prevention and 
control measures can be applied to other new HEPPs faced with the zebra mussel problem. 

Treatment, Control, and Prevention of Zebra Mussel Infestation 
Numerous methods have been identified for control/prevention of zebra mussel infestation and 
the resulting problems. The methods can be classified as chemical, biological, or physical. 
Management strategies that use these methods may be reactive, proactive, or preventive in 
nature. Mechanical cleaning (physical removal of mussel with water jet or scraper) is usually 
combined with one or two of these following methods: 

Thermal Shock: Dewatering of tunnels during cold weather periods is found to be an effective 
method of killing mussels (Payne 1992a and 1992b). 

Reducing pH Level: Reducing pH level by adding sulfuric acid or exposure to sulfuric acid will 
destroy the mussels. 
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Antifoulant Coating:  Silicon based coatings provide a nontoxic antifoulant layer and can reduce 
mussel accumulation (Wells et al., 1997). 

Chemical Treatment: Chlorine can be used to kill planktonic veliger zebra mussel larvae or can 
prevent them from settling in raw water piping systems. Veligers are much more sensitive to 
chlorine than adults and concentrations as low as 0.5 mg/liter can be sufficient to prevent larval 
settlements (Payne and Lowther, 1992).  Chlorine treatment is used commonly in U.S. as the 
method to protect power plant raw water systems from mussel infestation (Harrington et al., 
1993). However, the cumulative effect of chlorine use for mussel control in large rivers can be 
significantly detrimental to the environment.  EPA and other agencies have expressed concern 
over increased use of biocides. Chlorine discharge into natural waters will be restricted in the 
near future. Because of uncertainties associated with most biocides, only chlorite (on a 
continuous basis), and chlorite and bromine (on an intermittent basis) are authorized for use in 
major stream flows in the U.S. (Howe et al., 1994). 

Other Methods: Use of natural predators such as certain species of fish and diving ducks; use of 
ultraviolet light; use of electrolytic devices; dissolved oxygen reduction and anoxia (Chang et al., 
1997); use of radio waves at certain frequencies; drying; use of biodegradable, natural biocides 
such as endod plants (Lee et al., 1993) have been suggested for controlling the mussel 
populations. 

Risk Assessment for Zebra Mussel Infestation 
An assessment of the probability of mussel colonization for hydropower structures is provided in 
Table 1. The table has been developed based on findings in previous zebra mussel research.  

Table 1. Mussel Colonization Probability (Modified from Tippit and Miller 1993) 
Colonization Probability 

Environmental Variable High Moderate Low Very low 
Water velocity, m/sec 0.5-0.7 0.7-1.0 1.0-2.2 >2.2 

Water temperature, ºC 17-25 25-27 15-17 <15 
>27 

Water Depth, m 2-14 1 <1 
Calcium, ppt 25-125 20-25 12-20 <12 
Dissolved oxygen, ppm 8-10 6-8 4-6 <4 

PH 7.4-8.5 7.0-7.4 
8.5-9.0 6.5-7.0 <6.5 

>9.0 
Salinity, ppt 0-1 1-4 4-10 10-35 
Turbidity, cm 
(Secchi disk) 30-200 20-30 12-20 

200-250 
<12 

>250 

Construction Material Concrete, steel, PVC Antifoulant 
coating 

Susceptible 
Hydropower Structure 

Trashracks, surge 
and gate shaft, 

cooling water system 

Power tunnels 
(bends, joints, 

cracks) 
penstock draft tube, 

turbine 

As presented in Table 1, water velocity is an important factor that impacts the probability of 
colonization. The probability is inversely proportional to the velocity. Effects of velocity on the 
feeding of mussels are discussed in detail in Ackerman, 1999.  
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Calcium is also an important determinant of mussel colonization. Calcium in water is the source 
of shell material for zebra mussels. It has been shown that water calcium content is strongly 
correlated to mussel density (Mackie et al., 1989). 

Zebra mussels first colonize along discontinuities such as construction joints, monolith joints, or 
cracks in monoliths. Although future research may identify effective antifouling compounds that 
can be incorporated into concrete, none is currently available for zebra mussel control (Wong 
and Miller, 1992). Care should be given to selecting compounds for control of zebra mussel 
infestation. These compounds should remain innocuous to hydropower structures. 

A new framework for zebra mussel risk assessment for new hydropower projects is proposed in 
Figure 1. As presented in the column structure of the figure, the assessment process follows a 
five-step sequence: initiation events, system responses, outcomes, exposure, and 
consequences. Both natural and intentional initiating events are considered.  Various 
consequences can be considered, including loss of hydropower, shutdown for treatment, and 
potential damage to hydropower structures. 

Step 1 Risk 
Identification Initiating Event 

-Source 
System Response 
-Environment 

Outcome 
-Colonization on 
susceptible 
structure? 

Exposure 
-Turbine shutdown 
-Season 

Consequences 
-Economic 

Step 2 Risk 
Estimation 

Step 4 Risk 
Treatment 
(Control) 

Step 3 Risk 
Evaluation 

Tolerable 
Risk? 

Prevention of 
mussel 
immigration 

Structural 
Inspection 

Mussel 
Introduction 

Outcome ExposureResponse Consequences 

Design 
Modification 

Risk Treatment 
Alternatives 

Warning 
Systems 

Relocation 

No 

Yes 

Figure 1. Framework for New Hydropower Zebra Mussel Infestation 

Risk Assessment (Modified from USSD, 2003)
 

Similar to the recommended risk assessment framework by USSD (2003), there are four major 
components in zebra mussel risk assessment as illustrated in the row structure of Figure 1. 
These are: 1) risk identification, 2) risk estimation, 3) risk evaluation, and 4) risk treatment.  In 
Figure 1, the term “risk treatment” refers to the consideration of treatment alternatives (security, 
control, and reduction) using risk analysis and risk assessment. 

The framework outlined in Figure 1 is applied to the analysis of a hydropower project, Alpaslan 
II HEPP, currently under design. 
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Risk Assessment for Zebra Mussel Infestation at Alpaslan II HEPP 
Various HEPPs and reservoirs are infested by zebra mussel in Turkey (Figure 2). Alpaslan II 
HEPP is susceptible to infestation due to connection to waterways infested with the mussel.  
Various factors that are expected to control the colonization of zebra mussels in Alpaslan II 
HEPP are described below. In addition, various potential exposure pathways and possible 
treatment alternatives are explained. 

Alpaslan II HEPP 

Alpaslan I HEPP 

New HEPP Projects on Murat River 

Figure 2. The Distribution Map of D. Polymorpha in Turkish Freshwaters, 

Dams, and HEPP’s (Modified from Bobat et al., 2002)
 

Environmental Factors: 
Temperature: 
Threshold temperatures for larval development and reproduction of zebra mussel on the 
Euphrates River were determined to be 8.5�C and 11.5�C, respectively (Hengirmen et al., 2002).  
Anticipated reservoir water temperature is 4�C to 15�C for the Alpaslan II reservoir, with 
temperatures during the summer months rising within the optimal range for larval development 
and reproduction. 

Calcium: 
Porewater analyses from soil samples indicate that sufficient calcium is available to support 
zebra mussel colonization. 

Dissolved Oxygen 
Currently, no information is available on the dissolved oxygen level; however, favorable 
conditions for mussel infestation are expected. 

pH: 
The pH of Alpaslan II reservoir water is expected to be around 7, indicating moderate to high 
probability of mussel colonization. 

Salinity: 
Low salinity of Alpaslan II reservoir is expected. 
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Turbidity: 
Low turbidity is expected in Alpaslan II reservoir due to the upstream presence of Alpaslan I 
HEPP. 

Exposure: 
Construction Materials: 
Alpaslan II HEPP structures will be constructed from available, economic construction materials 
and will be susceptible to mussel infestation.   

Hydropower Structures Susceptible to Mussel Infestation, Possible Energy Losses at 
Alpaslan II HEPP, and Available Treatments 

Susceptible Structures 
Trash Rack: 
Trash rack is a simple structure that eliminates large debris from entering and/or clogging the 
penstock. Since it is a low velocity intake, it is one of the structures most susceptible to mussel 
colonization. Any activity that decreases the net effective open area of the trash rack will 
introduce an additional head loss to the hydropower system (Jones et al., 1997).  Head loss at a 
clean trash rack can be calculated using the following relationship (Coleman et al., 1999): 

V 2 

h = K n ,L t 2g 
where Vn is the velocity based on net open area and 

A � A �
2 

n nKt = 1.45 - 0.45 - � � ;
A Ag Ł g ł 

where An is the net open area of trash rack and support structure, and Ag is the gross open area 
of trash rack and support structure (300 m2 for Alpaslan II HEPP intake). 

There are many cases of mussel colonization at trash racks (Hengirmen et al., 2002). A single 
layer would have little effect on head loss; however, a major colonization can reduce the net 
area significantly, with proportionate velocity increase. Table 2 provides example calculations of 
added head loss associated with (1) minimal reduction in open area (clean); (2) single layer 
mussel growth; (3) double layer mussel growth; and (4) major colonization with reduction in 
cross sectional area by a factor of 3. 

Table 2. Friction Head Loss at Trash Rack after Colonization 
Condition An (m

2) Kt Vn (m/sec) hL (m) 
Clean 290 0.08 1.03 0.004 
Single Layer 270 0.24 1.11 0.015 
Double Layer 250 0.38 1.20 0.028 
Major Colonization 100 1.19 3.00 0.545 

The calculated head losses for major colonization are unacceptable and control mechanisms 
are required. The most effective treatment methods are antifoulant coating, cyclic drying, or 
thermal shock with mechanical cleaning. The last two methods require the minimum pool level 
to be below the trash rack. For Alpaslan II HEPP minimum pool level is above the trash racks, 
therefore, antifoulant coating is the best preventative alternative. 

6 



 

 

   

 

 
 

 

 
 

 
 

 

 

 

 

 
 

 
 

 
 

 

 

 
 

 
 

 

 
 

 
 
 

 
 

 
 

Power Tunnels and Penstock: 
Friction losses are an important consideration for hydropower projects with long tunnels. At the 
Alpaslan II project, friction losses account for approximately 40% of the total head loss.  Friction 
loss, ÄHf, can be calculated with the following equation: 

2 � g � L � n2 

DH = � h = k � hf 4 3 v v
R 

where, 
L  = length of section over which losses are being computed (m), 
R  = D/4 for full pipe, D = tunnel diameter (m). 
n  = Manning roughness coefficient, 

= velocity head (m),hv


g  = gravitational acceleration (9.80m/s2), and k is defined as:
 

2 � g � L � n2 

k = . 
R 4 3 

Roughness coefficient and open area can change due to mussel colonization. These changes 
impact the fluid velocity as well as the friction losses. 

Calculations were made to determine the impact of mussel colonization in the tunnels of the 
Alpaslan II HEPP Project.  For the base case, corresponding to negligible colonization, the 
roughness coefficient is approximated as 0.013 and 0.012 for the concrete and steel tunnels, 
respectively. 

Modifications of the roughness coefficient, n, were assumed for the three colonization 
possibilities already investigated in Table 2. For a single layer and double layer, the revised n 
values are 0.018 and 0.022, respectively both for concrete and steel tunnels. If a major 
colonization is present within the tunnel, a reduction of tunnel area can be assumed with n = 
0.022, D = 6.7 m. 

The head losses calculated for the base case, as well as the three levels of colonization are 
provided in Table 3. 

Analysis provided in Table 3 suggests that mussel colonization in the tunnel can significantly 
increase head losses. Such losses result in a decrease in power output by the turbines, and 
have a direct impact on the economic viability of the project. 

Practical considerations limit the probability of mussel colonization in the tunnels.  Water 
movement through the tunnels decreases the ability of mussel attachment and feeding. The 
penstock is most susceptible to planktonic veliger attachment and mussel colonization at 
discontinuities, especially when the turbine stops and stagnant water remains in the penstock.  
Drying and mechanical cleaning and thermal shock with mechanical cleaning are the most 
effective treatment methods for the penstock. The intake gate should be closed and the 
penstock and surge tank should be drained prior to application of any of the proposed methods.  
Antifoulant coating may not be suitable due to possible erosion in the tunnels. 
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Table 3. Friction Head Loss at Tunnels before and after Colonization. 

Condition Diameter 
(m) 

Area 
(m2) 

Velocity 
(m/s) 

hv 

(m) 
Length 

(m) k fDH 

(m) 
Clean Concrete 7.00 38.50 3.90 0.78 693 1.09 0.85 

Steel 5.40 22.90 6.60 2.20 80 0.15 0.33 
Steel 3.80 22.70 6.60 2.20 12 0.04 0.08 
Steel 3.20 16.00 9.40 4.50 12 0.05 0.21 

Total 1.47 
Single Layer at 6.95 37.94 4.00 0.80 693 2.11 1.68 
concrete tunnel, no 
colonization in 5.4, 3.8, 
and 3.2 m diameter 
steel tunnels Total 2.29 
Double Layer at 6.90 37.39 4.00 0.82 693 3.18 2.61 
concrete tunnel, no 
colonization in 5.4, 3.8, 
and 3.2 m diameter 
steel tunnels Total 3.22 
Major Colonization at 
concrete tunnel, single 
layer at 5.4m, no 
colonization in 3.8 and 

6.70 35.26 4.30 0.92 693 3.30 3.05 

5.40 22.90 6.50 2.19 80 0.34 0.75 

3.2m diameter steel 
tunnels Total 4.08 

Surge and Gate Shaft: 
The surge shaft has no direct involvement with power generation; however it is an essential 
component of the penstock. Conditions within the surge shaft are particularly favorable for 
mussel colonization. Water is stationary (with possibly a slight current due to high velocity flow 
in the tunnels) in the surge shaft. Colonization at connecting pipes and the possible resultant 
clogging can have adverse effects on the function of the surge tank. Antifoulant coating, 
chemicals, drying, and thermal shock with mechanical cleaning are the most effective methods 
of treatment in the surge shaft. Prior to the application of drying, thermal shock, or mechanical 
cleaning, the intake gate should be closed, and the penstock and surge tank should be drained. 

Water Cooling System and Fire Fighting Systems: 
It is necessary to control the heat generation in the turbine for efficient power generation. It is 
most economical to use raw water heat exchangers in a water-cooling system.  The velocity 
within the primary condenser can exceed 2 m/sec.  However, cooling filters and speed 
governors and other piping systems have been known to be clogged by zebra mussel 
infestation because of living or dead mussel shells (Hengirmen et al., 2002). Fire fighting 
systems are also susceptible to clogging.  

Backwash filtration system (Robinson and Kuhlo, 1998) or well water rather than raw river water 
can be used safely for cooling water pumped into the powerhouse. Sulfuric acid, chlorination, 
and corrosion inhibitors are the chemical methods available for reducing the probability of 
mussel infestation in these cooling water systems. 
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Possible Total Reduction in Hydropower  
A simple hydropower equation is provided below: 
 
P = 8 * Q * H * e, 
 
where P is the power generated in kW, Q is the discharge in m3/s, H is the net head in m, and e 
is the efficiency of the turbine (generally 95%).  Net head is the total head difference between 
the reservoir headwater and the turbine tail water elevation minus the losses between these two 
points. At the Alpaslan II project, the average operation levels for head and tail water are 1348 
m and 1268 m, respectively. 
 
The various head losses that are expected to incur at the Alpaslan II HEPP Project in the 
absence of mussel infestation are provided in Table 4.  Head loss at the clean trash rack is 
insignificant in comparison to the other loss terms. (Alpaslan II HEPP Consortium, 2004). 
 

Table 4.  Head Losses without Mussel Infestation  
Item hL (m) 

1. Intake 0.23 
2. Gate Shaft 0.23 
3. Vertical Bends 0.16 
4. Surge Shaft 0.08 
5. Reducer  0.22 
6. Y-branch 0.44 
7. Bend 0.22 
8. Reducer 0.45 
9. Friction 1.47 
10. Draft tube exit 0.46 
Total 3.96  

 
After mussel infestation, there will be an additional loss at the trash rack and added friction in 
the tunnels.  Since it was not possible to predict the change in the other items, no adjustments 
were made for these remaining head losses.  Possible energy reduction estimates are provided 
in Table 5. 
 

Table 5. Possible Head Loss and Reduction in Power  
Condition Additional Additional Total Head Reduction in 

Loss at  Loss in Loss Power (%) 
Trash rack (m) Tunnels (m) (m) 

Clean   3.95 0 
Single Layer 0.84 0.01 4.80 1.1 
Double Layer 1.77 0.02 5.74 2.4 
Major Colonization 2.62 0.54 7.11 4.2 

 
Results indicate that zebra mussel colonization can reduce the power generation as much as 
4.2%.  Similar reductions in power generation along with capacity reduction up to 7.0% have 
been reported by Jones et al. (1997) for Wheeler Hydro Plant due to excessive trash 
accumulation at the trash racks.   
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Proposed Proactive-Reactive Method 
Although reactive, proactive, and preventive measures have been used extensively for mussel 
control, none of these methods have been developed for the application to hydropower 
structures. Hydropower structures include both static and dynamic systems.  This duality can 
be utilized for a self-cleaning system when the penstock is most susceptible to mussel bonding.  
Proposed method includes the following two steps: 

1.	 Use of water hammer effect during rapid turbine shutdown. 
2.	 Injection of treatment chemical with water hammer, dispersion of chemical and the 

resulting effects. 

1. Water Hammer Effect: 
Hydropower systems are not purely static or purely dynamic. Some components experience 
static and dynamic loading at the same time, or from time to time, during the operation of the 
turbine. Penstock is one of the components that experiences both static and dynamic hydraulic 
pressures during operation. The significant dynamic pressure is the water hammer effect during 
the rapid turbine shutdown and its counterpart during the rapid turbine start. Water hammer is 
caused by the sudden transformation of kinetic energy to pressure energy and vice versa. The 
large pressure surges associated with water hammer can be minimized by the inclusion of a 
surge tank, which dissipates the peak pressures associated with the water hammer. Total 
pressure in the penstock with the addition of water hammer is approximately 1.5 times the static 
pressure. Mussel population is susceptible to sustained pressure changes.  However, resultant 
pressure during water hammer and/or the duration of the pressure during the water hammer are 
not expected to be sufficient for the eradication of mussel population. Therefore, a second step 
is required for the treatment of mussel infestation as described below. 

2. Injection Treatment: 
Rise of the water in the surge tank during turbine shutdown is proposed to be used for chemical 
treatment. Proactive/reactive chemical treatment will be initiated upon shutdown of the turbine 
as the water level in the surge tank starts rising. This will prevent settling of any adult mussel or 
veliger attachment on to the penstock or the surge shaft, and kill any existing colonies. 

One or more configurations are possible for an automated release of chemicals.  In one 
possible setup, chemicals will be available within a fixed open chamber attached to the surge 
tank. A rising water level in the surge tank floods the chemical chambers. This initiates mixing 
and release of chemicals at the surge tank surface.  Mixing will be accomplished with water 
hammer currents in the surge tank; dispersion; and gravity if the density of solution is different 
from that of water. 

A second alternative makes use of the rising water level to provide a buoyant lift to tanks which 
will exert a pressure on the chemical solution tank, that will result in opening of a gate. 
Chemicals will be released through this gate. Alternatively, the tank can be flexible so that 
rising water can exert pressure to it.  The tank is connected to lower elevation with a hose, 
which is terminated with a one-way valve and a perforated section.  The one-way valve prevents 
water from entering into the hose when the pressure is high, but releases chemical when the 
pressure is low. The perforated section will provide a larger area for chemical injection. In both 
designs, the chemical tank should be sufficiently close to the surface in order to have easy 
access for refilling. 
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In either setup, solution released into the surge tank and penstock moves into the stationary 
water column and kills planktonic veliger zebra mussel larvae. Depending on injection location, 
time, and concentration, the chemical can reach and be effective at the trash racks as well. 
Advective propagation and diffusion of the chemicals in the surge tank and the penstock will be 
the predominant mixing mechanisms subsequent to mechanical mixing by water hammer. 

Conclusion 

A study was conducted to perform risk assessment and to develop preventive measures for 
zebra mussel infestation at a planned hydroelectric power plant (Alpaslan II HEPP) in southeast 
Turkey. The risk assessment was conducted by considering effects of various factors on zebra 
mussel infestation. The factors included environmental conditions, factors related to materials 
used in construction of various components of a HEPP as well as the susceptibility of various 
components to infestation due to routine operation of a facility. Quantitative study of head loss 
due to major infestation for Alpaslan II HEPP indicates approximately 4% reduction in power 
generation. In addition, critical damage to the penstock and turbine is possible if surge tank 
tunnels or water cooling systems are clogged. 

A two-step process is proposed to prevent zebra mussel infestation at hydroelectric power 
plants. The method makes use of the water hammer effect that occurs during rapid shutdown of 
the turbine combined with an automated system for providing chemicals to the power plant 
water to remove and kill zebra mussels associated with various components of a facility.  The 
proposed system constitutes a proactive-reactive chemical treatment system.  While the method 
is originally developed for the Alpaslan II HEPP, it can be adapted to other HEPPs as well.  It is 
recommended that risk assessment be conducted for zebra mussel infestation for new hydro 
power plants as well as existing structures. In addition, preventive measures should be 
included against zebra mussel infestation in the design and operation of these major facilities 
based on the local conditions at a site. 
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