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Direct Extraction of Normal Mapped Meshes 
from Volume Data 

Mark Barry and Zoë Wood 

Abstract. We describe a method of directly extracting a simplified con­
tour surface along with detailed normal maps from volume data in one 
fast and integrated process. A robust dual contouring algorithm is used 
for efficiently extracting a high-quality “crack-free” simplified surface 
from volume data. As each polygon is generated, the normal map is si­
multaneously generated. An underlying octree data structure reduces the 
search space required for high to low resolution surface normal mapping. 
The process quickly yields simplified meshes fitted with normal maps 
that accurately resemble their complex equivalents. 

Introduction 

Volume data is used in scientific and medical imaging as well as in the pro­
cess of scanning physical objects [1]. This data structure has the benefit that it 
can describe surfaces, spatial extents and interior structures. The most popular 
method for viewing volume data requires extracting a contour surface or isosur­
face. Typically an extracted contour surface of high detail will contain a very 
large number of polygons. Approximating the original surface by reducing the 
extracted mesh’s resolution is desirable. 

Fig. 1. A human head extracted from a 130 x 128 x 128 volume. All meshes are dual 
contour surfaces. Left: 56,637 quads. Center: 1,406 quads. Right: same as center but 
with normal maps, generated with our algorithm in about 1 second. 



A technique known as normal mapping is one way to achieve the appearance 
of fine detail on a low resolution version of the surface. Current normal map­
ping algorithms are applicable to volume data only after a surface has been ex­
tracted, requiring a lengthy, multi-step process. We demonstrate a novel method 
of greatly shortcutting the current process by directly extracting a simplified 
surface along with normal maps in one integrated process, using the volume 
data structure to our advantage. The process is very fast - capable of extracting 
normal mapped meshes of various resolutions in the time of one second on av­
erage, giving the user the ability to quickly choose a mesh at the desired level 
of detail. A low resolution mesh extracted using our algorithm can render al­
most fourteen times faster then its high resolution equivalents. Yet even normal 
mapped low resolution meshes, with 92% fewer polygons, appear nearly identical 
to their high resolution equivalents (see Figure 5). 

2 Previous Work 

2.1 Isosurface Extraction 

The Marching Cubes (MC) algorithm [2] can generate a high-quality mesh that 
captures a contour’s fine details, but commonly generates very large meshes, 
ranging in the millions of polygons. The Extended Marching Cubes algorithm [3] 
presents an improvement over the MC algorithm by generating additional con­
tour vertices within cubes, which results in higher-quality meshes that capture 
features such as sharp edges. The downside of these methods is the generation 
of a high resolution mesh in order to display the contour surface’s finest details. 

2.2 Adaptive Contouring 

Adaptive polygonization or adaptive contouring is one method of dealing with 
high resolution meshes produced by MC. An octree structure [4] [5] [6] can 
be generated to adaptively represent the volume data. The challenge of adap­
tive contouring on simplified octrees is that the resulting polygonal mesh is not 
“water-tight”. The problem of generating a closed polygonal mesh from a sim­
plified octree has been extensively studied [7] [8] [5]. In general the solutions 
proposed require restrictions on how the octree is simplified. 

Ju et. al. [9] present an alternative to previous adaptive contouring methods 
using dual contouring. Dual contouring methods generate a contour vertex within 
a cube’s interior. The algorithm presented by Ju et. al. is an adaptive dual 
contouring method that produces a “crack-free” contour surface from a simplified 
octree. Unlike other adaptive contouring methods, this dual contouring method 
does not impose restrictions on how an octree is simplified nor requires any sort 
of crack patching. In addition, it performs as well as [3] in terms of preserving 
distinct features such as sharp edges. In order to adaptively simplify the octree 
data structure that represents the volume data, the authors use the quadric error 
functions (QEFs) introduced in [10]. Fixes and improvements to [9] are discussed 



in [11], [12], and [13]. Due to its ability to directly extract adaptive high quality 
meshes from volume data, we use this algorithm to create our low resolution 
meshes. 

2.3 Simplification and Normal Maps 

A popular approach to dealing with high resolution output meshes from MC 
involves first extracting a high resolution surface and later simplifying it [14] 
[10] [15]. The low resolution simplified meshes are often a gross approximation 
of the original mesh’s high resolution appearance. One common approach to 
achieve the appearance of a high resolution mesh using simplified geometry is 
through the use of a normal map [16] [17]. One of the most popular methods to 
generate normal maps is presented in [18]. The process first assumes that a high 
resolution mesh has been simplified into a low resolution approximation. For 
each polygon in the low resolution mesh, a texture map is created and sampled. 
For each sample, a ray is cast to determine the nearest corresponding point on 
the high resolution mesh. This is a costly operation that can involve searching 
every polygon in the high resolution mesh for a possible intersection with the 
ray. In [18], the search is optimized by partitioning the search space into cells. 
Note that creating this spatial partitioning data structure essentially requires 
the re-creation of a volume data structure if the mesh came from a volume. 

In contrast, our method avoids the initial step of extracting of a high resolution 
mesh. By using adaptive contouring, the algorithm is designed to directly extract 
the final simplified mesh. Another advantage to using our algorithm is a limited 
search space for mapping fine to coarse features, which is naturally implemented 
using the existing octree data structure. Collecting normals to create a normal 
map is limited to “searching” only four octree cubes that a polygon spans (see 
Section 3.2). 

The authors of [19] present a method of constructing a progressive mesh such 
that all meshes in the progressive mesh sequence share a common texture pa­
rameterization. Thus a normal mapped progressive mesh can easily be created. 
Our work generates a new set of normal maps for each mesh extracted, while 
the progressive mesh approach uses a single normal map for all mesh resolutions. 
The single parameterization approach may be more efficient in the end but takes 
a substantially longer time to construct for all mesh resolutions. 

3 Algorithm Overview and Contributions 

We present a method to extract geometrically simplified, low polygon meshes 
with their accompanying normal maps from volume data. The algorithm follows 
these simple stages: 

1. Create an adaptive octree from the original volume using QEF. 
2. Extract the dual contour using [9]. 
3. For each low resolution polygon, create the associated normal map using the 

octree data structure. 



Steps one and two follow the work of [9] and thus are not presented here in 
any detail. Step three is our main contribution as we know of no other method 
to directly extract normal mapped meshes from volume data. Not only is our 
method novel in its application to the volume domain, but our method of gen­
erating normal maps by gathering the fine data in a fine-to-coarse approach 
(versus a coarse-to-fine approach) is likewise new (see Section 3.3). We discuss 
the details of the algorithm in the following sections. For complete details on the 
algorithm, please see [20]. 

3.1 Dual Contouring of Volume Data With Normal Map Extraction 

Our goal is to extract a geometrically simplified surface with a normal map 
directly from volume data. In addition to being a robust adaptive contouring 
algorithm, dual contouring is ideally structured for easy extraction of normal 
maps as well. Thus we use the dual contouring method presented in [9] for both 
the creation of the octree using QEF and the surface extraction. Dual contouring 
builds the final mesh by connecting four minimizing vertices found within four 
neighboring cubes in the octree. If the adaptive structure of the octree includes 
neighboring cubes of different levels in the hierarchy, triangles are generated. 
The implementation treats triangles as quads having two vertices fused together. 
We therefore refer to all surface polygons as quads. To make up for the coarse 
appearance of the mesh alone, normal maps are created and applied to quads as 
they are generated. 

Fig. 2. Projection of fine-level contour vertices and their associated normals onto a 
contour quad. The dotted bounding box on the right represents the normal map. Note 
that there are typically many more fine-level samples then shown here. See Figure 3. 

3.2 Generating Normal Maps 

A normal map can be generated and stored in many different polygonal formats; 
triangles, rectangles, packed charts, etc. We choose to generate a normal map 
per quad. Normal map generation starts with the creation of a rectangular map. 



The dimensions of the rectangle are calculated based on the size of the quad. 
Because the quad is defined in three-dimensional space and the normal map is 
only two-dimensional, the quad must be projected onto a two dimensional space. 

The quad’s orthonormal basis is computed and used to calculate the projection 
(see Figure 2). The orthonormal basis matrix is composed of three mutually 
perpendicular row vectors: u, v, and  w. We use the cross product of the quad’s 
diagonals to compute w, leaving the vectors u and v to be computed. There 
are no constraints on the orientation of u nor v, as long as all three vectors 
are mutually perpendicular. Choosing values for u and v translates into how 
the quad will be oriented on the normal map and determines the normal map’s 
dimensions required to bound the quad. For the most efficient use of space, the 
u vector can be oriented parallel with the quad’s longest edge. The v vector can 
then be computed from w × u. Note that not all quads are planar, however, we 
have found that using the cross product of the quad’s diagonals is a reasonable 
mapping for our algorithm. 

The x-y-z coordinate of each of the quad’s vertices is multiplied with the basis 
matrix to perform the projection. After the projection, the z-component of the 
quad’s vertices can be dropped and the coordinates treated as two-dimensional. 
The two-dimensional quad is bounded with a rectangle representing the normal 
map. Next the normal map is filled with the appropriate normal vector values. 
Sampling is chosen to match the sampling rate of the volume data, thus approx­
imately one texel is created on the normal map per finest level voxel spanning 
the quad. 

The normal maps act to fill in the fine detail that the simplified contour 
surface lacks. The finest detail that can be obtained comes from the contour 
vertices generated at the leaves of the octree. Note that each finest level voxel 
has a gradient computed using a finite difference, and finest level vertices and 
normals are computed as in [9]. The process of generating a normal map involves 
capturing the normals from these fine-level contour vertices. Recall that contour 
vertices are contained within an octree cube and surface polygons are formed by 
connecting four minimizing vertices, thus each polygon spans four octree cubes. 
Normals for a low resolution quad are obtained by collecting all the fine-level 
contour vertices contained within four spanning cubes in the octree. Each cube 
calls a recursive function for each of its child cubes, traversing down the octree of 
sub-cubes until reaching a leaf cube. At a leaf cube, contour vertices, if any, are 
extracted and returned in an array. As all calls to the recursive function return, 
the arrays of fine-level contour vertices are combined. These fine-level contour 
vertices are then projected onto the quad’s normal map. 

3.3 Normal Map Sampling 

The projection step samples normals across the normal map but may leave re­
maining texels’ normal values undefined. One method to completely fill the nor­
mal map would be to interpolate the normal values at the projected points across 
undefined texels. Many methods of interpolating scattered data are available [21] 
but we found that using a very simple sampling method was sufficient for all 



Fig. 3. Close-up view of one normal map of the dragon, shown at a coarse level (16K) 
and the finest level (225K). The finest level view shows the wireframe projected onto the 
normal map extracted for the coarse mesh. The normal map shown is approximately 
30 by 30 texels, closely matching the resolution of the finest level mesh. 

example meshes shown. This approximation works by first initializing the entire 
normal map with the contour quad’s normal. After initialization, the fine-level 
vertices are projected onto the normal map as before, overwriting any initialized 
texels. Such a simple mapping works well due to the QEF used to generate the 
low resolution surface, where a low resolution polygon closely matches the high 
resolution surface. Any areas where the surface may fold back on itself should 
remain at a high resolution during simplification and thus not cause problems 
with normal map creation. As shown in figure 3, the normal map produced by 
this sampling method smoothly matches the original data. Other interpolation 
methods or even the pull-push method of [22] could be explored in future work, 
however, our simplified approximation works well due to choosing a sampling 
rate which matches the resolution of the volume and the qualities of the QEF 
surface simplification. 

Note that most previous work [18] [19] for generating normal maps use a 
ray shooting technique, where texel samples on the coarse polygon are sampled 
by searching for an associated point on the high resolution mesh. In this way, 
these approaches generate a densely sampled normal map for the coarse mesh, 
where many of the sampled normals will be an interpolated normal from an 
interior point on the face of the fine mesh. We take the opposite approach by 
projecting the high resolution sample points to the coarse mesh. This approach 
is arguably faster, not only because of the octree data structure but because of 
the number of samples being mapped from fine to coarse (versus the many texel 
samples generated across the coarse face needing an associated mapping to the 
fine mesh). Our approach could be considered as less accurate, however, the only 
sample points that are lost are the interpolated normals from the interiors of the 
high resolution faces. We found that our fine-to-coarse approach performed not 
only very quickly but also with visually pleasing results. 



The following outlines the main steps in generating normal maps: 

1. Use the dual contouring algorithm to extract quads. 
2. For each quad created, generate its normal map. 

(a) Calculate the quad’s orthonormal basis. 
(b) Transform/project the quad’s vertices into two-dimensional space by us­

ing the quad’s orthonormal basis. 
(c) Collect all fine-level contour vertices (position and normal) for the quad. 

i. For each of the four cubes which the quad spans, recursively traverse 
the octree to the leaves and append vertices to a common array. 

(d) Project all fine-level contour vertices onto the quad using the quad’s 
orthonormal basis, (associated normals are unchanged). 

(e) Bound the projected quad with a rectangular normal map. 
i. Find the max and min x and y values of vertices in the array. 
ii. Allocate normal map texels of size x extent by y extent. Initialize all 

texels to quad’s normal. 
iii. For each projected contour vertex: Copy its normal into the normal 

map using integer-rounded x and y of its position. 

4 Results  

One important measure of success is how well the low resolution normal mapped 
surface resembles the original high resolution surface without normal maps. Fig­
ures 1, 4 - 8 compare a low resolution and normal mapped mesh to its high 
resolution equivalent, demonstrating the excellent results from using our algo­
rithm. Another factor to consider is the speed at which a mesh, along with its 
normal maps, can be extracted from the volume. The longest extraction time 
for our algorithm was for the dragon mesh from a 356 x 161 x 251 volume, along 
with normal maps, at the highest resolution. This operation takes a little over 3 
seconds. Extracting simpler meshes (which would be the more frequent request) 
takes less time - an average of 1 second for the meshes shown in the following 
figures. This speed makes it easy for a user to quickly switch between varying 
levels of mesh resolution. A user may wish to begin with a low resolution mesh 
for fast display and cursory examination. Then as the user desires more geo­
metric accuracy, a higher resolution mesh may be quickly extracted. It is very 
important to emphasize that a low resolution mesh is directly extracted. 

A fast rendering time is one of the main motivations for using normal mapped 
surfaces. Table 1 compares the rendering performance of high resolution meshes 
to low resolution, normal mapped, meshes. It is clear that rendering low resolu­
tion normal mapped meshes is a lot faster, yet they retain a significant amount 
of detail as shown in Figures 1, 4 - 8. For the dragon example, even on the low­
est resolution meshes, the scales are still clearly defined. The flat-shaded meshes 
alone do not come near to displaying that kind of detail. At the lowest resolu­
tions, maintaining correct topology of the original high resolution mesh begins 
to fail. In the extreme example of Figure 6 (Right), the flat-shaded mesh alone 
grossly resembles the dragon model; applying normal maps restores most of the 



Fig. 4. All dragon models extracted from a 356 x 161 x 251 volume. All meshes are 
dual contour surfaces. Left: high resolution – 225,467 quads. Center: low resolution – 
43,850 quads. Right: same as center but with normal maps applied. 

Fig. 5. Left: 225,467 quads. Center: 16,388 quads. Right: same as center but with 
normal maps applied. 

Fig. 6. Left two: flat-shaded and normal mapped dual contour surface (558 quads). 
Right two: flat-shaded and normal mapped dual contour surface (65 quads). 

finer details. Figures of the mouse embryo and human head demonstrate that 
the process works equally well for medical imaging applications. 

4.1 Limitations 

Though we describe a method that is fast and yields excellent visual results, there 
is always room for improvement. One inefficiency in the system as it stands is 
that each polygon allocates its own normal map. Ideally the collection of normal 
maps could be packed into one or a few atlases [18] [19]. Though the result would 
be a more efficient use of memory space, the packing process is computationally 
intensive. The memory occupancy for the normal data stored in the normal maps 
created by the current algorithm for the dragon models shown in figure 5 and 6 
range from 7 megabytes for the 225K mesh to 2 megabytes for the 65 face mesh. 



Fig. 7. A mythical creature extracted from a 316 x 148 x 332 volume. All meshes are 
dual contour surfaces. Left: 150,823 quads. Center: 10,950 quads. Right: same as center 
but with normal maps. 

Fig. 8. A mouse embryo extracted from a 256 x 128 x 128 volume. All meshes are dual 
contour surfaces. Left: 64,896 quads. Center: 3,035 quads. Right: same as center but 
with normal maps. 

Table 1. Performance data for the examples shown in Figures 1, 4 - 8 

Quad Count Render Time (ms) 

Hi-Res Lo-Res Reduction Hi-Res Lo-Res Speedup 
Figure 1 56,637 1,406 97.5% 91 3 30.3 
Figure 4 225,467 43,850 80.6% 360 90 4.0 
Figure 5 225,467 16,388 92.7% 360 26 13.8 

Figure 6 (L) 225,467 558 99.8% 360 1 360 
Figure 6 (R) 225,467 65 99.97% 360 0.3 1200 

Figure 7 150,823 10,950 92.7% 245 22 11.1 
Figure 8 64,896 3,035 95.3% 103 6 17.2 

As mentioned in Section 3.2 we use the cross product of the quad’s diagonal 
to create our planar mapping. Our results on numerous input meshes show that 
such a mapping is sufficient for our application, however, other parameterizations 
could be explored. In addition, our normal map sampling method is very simple, 
more complex methods for interpolating normal data could be explored. 



5 Conclusion and Future Work 

We describe a method of directly extracting normal mapped contour surfaces 
from volume data. This method greatly shortcuts the current multi-step pro­
cess of extracting a high resolution mesh, simplifying it, and generating normal 
maps. The process of generating normal maps is greatly streamlined due to the 
use of an octree data structure and the dual contouring algorithm. The visual re­
sults of this process are of excellent quality - the low resolution normal mapped 
meshes closely resemble their high resolution equivalents. This process is also 
very fast - generating and displaying a normal mapped surface in less than a few 
seconds. 

Future work includes extending our algorithm for use in computer games. De­
structible game objects could be implemented similar to the work presented in 
[9]. Additionally, though we use dual contouring’s QEF metric for mesh simpli­
fication, the use of other error metrics could be explored. The QEF metric aims 
to preserve the most prominent features such as sharp edges. Perhaps preserving 
certain sharp edges would not be necessary if they were instead captured in a 
normal map. Finally, blending normals across large quad boundaries could be 
improved as small inconsistencies are occasionally seen. 
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