We have found a smooth variation with atomic number of induced hyperfine magnetic fields at nuclei of non-magnetic atoms dissolved in magnetic lattices. Rather than being generally negative (i.e., antiparallel to an external magnetizing field) as has been previously believed, the induced fields go systematically through zero and become positive in the 5p shell. We believe that this trend constitutes a connecting link between induced fields in metals (e.g., Cu in Fe) and in ionic ligands (e.g., F⁻ in MnF₂).

Samoilov et al. [1] first showed that large hyperfine fields exist at diamagnetic impurities in ferromagnetic lattices. These fields have received considerable attention recently, although their origins are still not well understood. Theoretical treatments based on polarization of core and conduction electrons have successfully described hyperfine fields for magnetic atoms in ferromagnetic lattices [2], but no general extension to non-magnetic atoms has been made. Two empirical rules [3] have emerged: (1) induced fields at non-magnetic atoms are negative, and (2) induced fields are proportional in magnitude to the host's atomic moment. Two apparently isolated exceptions are now known. A positive, though very small, field was found for Sn in Ni [4], and recently Samoilov has given evidence for positive fields at Sb nuclei in iron and nickel [5].

In this letter we report more hyperfine fields and show that the positive fields mentioned above are not anomalous, but are part of a systematic trend.

---

Fig. 1. a) Hyperfine Mössbauer absorption spectrum of 35.5 keV transition in Te¹²⁵. b) Angular correlation of 426-35.5 keV cascade in Te¹²⁵ normalized to the Kα X-ray intensity.

Fig. 2. Hyperfine fields for solute atoms in Fe (open circles) Ni (filled circles) hosts, vs. atomic number. Signs are known for all fields except Ru, Cd, In in Fe and Cd in Ni. Connecting lines are shown only to emphasize trends.
Table 1

Hyperfine fields in kgauss for atoms in Fe and Ni hosts.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Ru</th>
<th>Ag</th>
<th>Cd</th>
<th>In</th>
<th>Sn</th>
<th>Sb</th>
<th>Te</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>500</td>
<td>-350 (100)</td>
<td>348 (10)</td>
<td>~250</td>
<td>-81 (4)</td>
<td>~250</td>
<td>~620 (20)</td>
</tr>
<tr>
<td>Ni</td>
<td>-178 (7)</td>
<td>-108 (30)</td>
<td>65.3 (1.6)</td>
<td>+18.5 (1.0)</td>
<td>~70</td>
<td>+195 (10)</td>
<td></td>
</tr>
</tbody>
</table>

We restrict our remarks to the two hosts iron and nickel. To investigate the systematic variation of hyperfine fields with atomic number we have studied Ru in nickel, and Cd and Te in both nickel and iron. We also use Kistner's results for Ru in Fe [6], the data of Samoilov et al. [1] for In in Fe, and recent work from this Laboratory on Ag in Fe and in Ni [7].

Our Ru and Cd fields were measured by time-differential angular correlations in Ru99 and Cd111 [8]. Magnitudes only were obtained in the Cd experiments, because no polarizing field was used.

The most significant contribution to the systematization of fields was the determination of the hyperfine fields of Te in iron and nickel. Mössbauer spectra [9] of the 35.5-keV \( \frac{3}{2}^+ \) transition in Te125, using sources of Sb125 in Fe and Ni, showed a 3:2:1:2:3 pattern (fig. 1a), established \( \mu_{35.5} \) as positive (\( \mu_0 = -0.88715 \) nn [10]) and gave the magnitudes of the hyperfine fields. Independent confirmation of the sign of \( \mu_{35.5} \) was obtained by integral angular-correlation rotation measurements on the highly anisotropic 426-35.5 keV cascade, using a Ge(Li) detector for the 3.5-keV γ ray (fig. 1b). The signs of the hyperfine fields were determined by angular-correlation rotation in polarized alloys.

These fields and others in this region of the periodic table are summarized in table 1. They show an interesting systematic trend, exhibited in fig. 2. Hyperfine fields of the more metallic atoms Ru, Ag, Cd and In are negative (where the sign is measured), as expected. They probably arise from contact hyperfine interactions through polarized conduction and core electrons. For Sn, Sb and Te the 4d shell is full and the 5s and 5p shells are filling. We might expect the induced fields to become quite small after filling of the "magnetic" 4d shell and the 5s shell, but in fact the fields change sign and become quite large. We feel that there are a priori two rather distinct parameters with which this trend may be associated:

1. filling of the 5p shell per se, and
2. the tendency in Sn-Sb-Te toward non-metallic behavior. If p-shell filling is a crucial parameter we would expect the fields to follow the number of unpaired p electrons and probably to show a maximum near the middle of the 5p shell (Sn). As the p shell fills, the number of unpaired p spins must go nearly to zero. There might then be some semblance of a Slater-Pauling curve for induced fields in p shells. Already there is good evidence for such a curve in 3d series atoms dissolved in Fe3, and some evidence for 4d series atoms. The mechanism for core polarization by p electrons would presumably be similar to that operative in nitrogen [11], although already for \( Z \approx 50 \) relativistic effects may also be important. Kni and co-workers have indicated that hyperfine fields at nuclei of As (4s24p3) in MnAs and Sb in MnSb may be positive [12].

The non-metallic behavior of Sn, Sb and Te may also be responsible for positive fields. Ionic configurations such as Te\(^{\text{ox}}\) ions are large (ionic radius = 2.2 Å); Te 5s electrons should overlap with 3d electrons on neighboring Fe atoms. Ferromagnetic spin polarization of Te 5s electrons by Fe 3d electrons would produce a positive contact hyperfine field at the Te nucleus. Of course an ionic mechanism is not necessary; transferred hyperfine fields can arise by polarization through hybridized covalent bonds (still involving the 5s electrons) as well. We favor the 5s mechanisms because they can easily account for the magnitudes of the induced fields if the Te 5s electrons are polarized to the extent of a few percent [3]. Freeman and Watson have discussed similar mechanisms for F\(^-\) in transition-metal fluorides [13].

This work was performed under the auspices of the United States Atomic Energy Commission. One of us (E. M.) gratefully acknowledges a fellowship from the Miller Institute for Basic Research in Science, University of California.

References


Preliminary report by J. J. Huntzicker, R. B. Frankel, D. A. Shirley and N. J. Stone, Bull. Am. Phys. Soc. 9 (1964) 741. This work will be reported in detail elsewhere.


