
Measuring Packet Reordering

John Bellardo and Stefan Savage

Department of Computer Science and Engineering

University of California at San Diego

Abstract— The Internet architecture provides an unsequenced datagram delivery service.

Nevertheless, many higher-layer protocols, such as TCP, assume that packets are usually delivered

in sequence, and consequently suffer significant degradation when packets are reordered in flight.

While there have been several recent proposals to create protocols that adapt to reordering,

evaluating their effectiveness requires understanding the dynamics of the reordering processes

prevalent in the Internet. Unfortunately, Internet packet sequencing is a poorly characterized and

understudied behavior. This failing can be largely attributed to the lack of accurate and universally

applicable methods for measuring packet reordering. In this paper, we describe a new set of active

measurement techniques that can reliably estimate one-way end-to-end reordering rates to and

from arbitrary TCP-based servers. We validate these tools in a controlled setting and show how

they can be used to measure the time-domain distribution of the reordering process along a given

path.

I. INTRODUCTION

This paper considers a deceptively simple, yet practically challenging problem: how to

accurately measure packet reordering in the Internet environment and how to report such

measurements in a useful way.

The motivation for this problem arises from the interaction between the abstract service

guarantees provided by the Internet architecture and the concrete service assumptions made by

higher-layer protocols. The Internet architecture guarantees only a noisy, unsequenced and un-

reliable datagram service – any packet may be corrupted, dropped, or reordered in transit. In

principal, higher-level protocols must be designed to tolerate and recover from all such errors

transparently. In practice, real protocols and applications are optimized around common case

assumptions about how real Internet infrastructures behave under normal conditions.

Consequently, most protocols assume that corruption, packet loss and reordering are infrequent

events or occur primarily under deterministic conditions. When these assumptions are not met,

existing protocols can suffer in performance, correctness, or both. For example, it has been shown

that the Transmission Control Protocol (TCP) fares poorly under some wireless channels due to the

increased levels of random packet loss 1181 Similarly, recent empirical analyses of packet

corruption have suggested that many errors may be undetected in long-lived TCP streams due to

the design assumptions of the Internet checksum algorithm [15].

While less appreciated, packet sequencing errors can present similar problems to current

protocols. For example, TCP's fast retransmit optimization assumes that packet reordering is

sufficiently rare than any reordering event spanning more than a few packets implies a loss [14].

Since TCP also assumes that losses are primarily caused by buffer overflows, these reordering

events can be misinterpreted as congestion signals and cause the sender to dramatically reduce its

throughput [10], [3]. Similarly, interactive streaming media protocols, such as Voice-OverIP,

assume that sequencing errors are sufficiently rare that media playout buffers are only necessary

to absorb inter-packet jitter [7]. Finally, some protocols incorporate compression or non-

idempotent state transitions that can produce inconsistent results in the presence of sequencing er-

rors [4], [17], (13).

However, compared to network characteristics such as loss or delay, the dynamics of packet

reordering are far less well understood. A significant part of the problem is the lack of standard

experimental techniques for measuring the phenomena. Previous reordering studies have used

measurement tools that arc inherently biased, such as ping, or methodologies that scale poorly,

such as analyzing multi-site packet traces. As well, the lack of a standard measurement

methodology has hampered the creation of a standard reordering metric. Consequently, the results

between different studies can superficially vary by an order of magnitude – creating significant

confusion and controversy about the revalence of reordering.

In this paper, we describe a collection of techniques that provide one-way reordering

measurements in both directions between a probe host and most TCP-based servers on the Internet.

We also propose a primitive metric – thee number of exchanges between pairs of test packets —

that can be used to summarize reordering activity for a known load. While simplistic, this metric

captures the essence of any reordering process and can be further parameterized to capture more

sophisticated phenomena. As an example, we show how parameterizing packet exchanges by

intervening delay can be used to describe the reordering process as a function of time.

The remainder of this paper is structured as follows: In Section II we review the previous work in

this area and describe its strengths and limitations. Section III describes how our measurement

algorithms work, followed by section IV which describes our controlled validation results and our

experiences using the resulting tools in the Internet environment. This section concludes with our

early experience extracting time-domain distributions of reordering behavior, leading to our

conclusion in Section V.

II. RELATED WORK

The two best known measurement studies that discuss reordering behavior are Paxson's 1997

general measurement study [10] and Bennett et al's study of exchange point reordering [2]. Each

is worth discussing briefly.

Paxson's study is based on a series of measurements taken between 35 computers on the

Internet as follows: 100KB files were transferred between all pairs of machines, packet traces

were collected passively, and the TCP sequence numbers in each trace were analyzed to deter-

mine if any TCP segments were delivered out-of-order. One important strength of this approach is

that it allows unidirectional measurements to be made — and in fact Paxson reports that

reordering activity was asymmetric on the paths measured (although, as we will explain, it is diffi-

cult to distinguish if this is a property of the path or of the test). Overall, Paxson reports reordering

in two ways: the fraction of sessions with at least one reordering event (12 and 36 percent across

two measurement periods) and the fraction of packets that were reordered (2 and 0.3 percent in

the direction of data transfer and 0.6 and 0.1 percent in the opposite direction).

However, there are several shortcomings to this approach. First, it is difficult to scale this

methodology operationally. Performing such tests requires permission to execute code on both

endpoints of any measured path — a requirement that seems difficult to scale to significant fractions

of the Internet. For example, it seems unlikely that such an approach could be used to estimate

reordering on paths to commercial information services such as cnn.com or yahoo.com. A second

problem is that this technique does not produce an unbiased estimate of the reordering behavior on a

path. Since reordering is known to be a time- varying process, the delay between sample packets

could have a strong influence on how much reordering will occur. TCP's natural dynamics will

produce highly variable samples as packets are sometimes compressed and sometimes spread

apart. Sources of this variation include the delayed acknowledgment mechanism (also mentioned

by Paxson), differences in serialization delay due to different packet sizes, and the usual flow and

congestion control mechanisms that can suddenly increase or decrease the number of packets sent

http://cnn.com/
http://yahoo.com/

during an interval. The end result is that this style of passive measurement is effective at estimating

the reordering seen by a one-way 100KB TCP data transfer in situ, but it is unclear if it can be

generalized to infer what might happen to a different application with different dynamics.

Bennett et al. describe a very different approach to measuring reordering based on active

probes. The authors generate estimates by sending repeated ICMP echo request packets to a

remote host and then evaluating the order of the ICMP echo reply packets that are generated in

response. The benefit of this approach is that it allows paths to arbitrary hosts to be measured, so

long as the end host will respond to ICMP requests. As with Paxson, Bennett et al., also report

reordering in two different ways. For bursts of five 56-byte packets they report that over 90

percent saw at least one reordering event. Then, isolating a host with significant reordering, they

report that 100 packet bursts of 512 bytes each produce similar results using a synthetic metric

based on how many Selective Acknowledgment (SACK) option records would be needed to cover

the out-of-order replies [6].

The most obvious limitations of this approach arise from the use of the ICMP echo request/reply

protocol for measurement. Using this method it is not possible to distinguish if a packet was

reordered before it arrived at the remote host or after it left the remote host. Consequently, the

measurements produced can both underestimate the total reordering and overestimate the re-

ordering in either direction. Since most protocols are more sensitive to reordering in one direction

than another this ambiguity can be quite important [2], [3]. Also, the use of ICMP as a fine-grained

measurement tool is problematic since system and network operators alike increasingly filter and

rate-limit such traffic to address security concerns. As well, neither metric used in this study seems

easy to generalize: The number of bursts that have one reordering event is highly sensitive to the

size of the burst, while the number of SACK blocks covering a reordered sequence is highly TCP-

dependent.

Finally, there have been efforts within the IETF to define active measurement protocols designed

expressly for measuring packet reordering [8]. These approaches eliminate the biases caused by

overloading existing TCP sessions or the ICMP protocol, but still require deployment at each

endpoint measured.

Despite the limitations of existing studies, several researchers have used them to justify

modifications to TO' designed to better tolerate packet reordering [16], [3]. [20], [1]. Most of these

approaches dynamically change the fast retransmit threshold in response to estimated changes in the

reordering rate. All of these projects would benefit from access to contemporary empirical data, since

they cannot validate the impact of these changes without understanding the prevalence of reordering

phenomena in today's networks.

III. REORDERING MEASUREMENT TECHNIQUES

In developing tools that actively measure reordering we had two principle goals: accuracy and

ubiquity. An ideal tool should produce correct and consistent results, providing estimates of the

reordering activity on the forward path from the user's host to an arbitrary endpoint and on the reverse

path from the endpoint back to the user's host. Achieving these goals practically is a tricky matter, how-

ever, since it is generally infeasible to deploy new services on the remote endpoints. Consequently, our

techniques leverage the behavior of existing TCP and IP protocols and their implementations — turning

any host exporting a TCP/IP service into a de facto measurement serr•er. While this approach is very

powerful, it can also be sensitive to minor protocol violations and variations in implementation. In

particular, we encountered considerable challenges posed by network aliasing devices, such as load

balancers, that required us to develop multiple techniques.

In the remainder of this section, we first review the TCP and IP features that we leveraged to produced

our algorithms, and then describe a series of measurement techniques that use standard TCP behavior and

common IP implementation characteristics to arrive at estimates of one-way reordering behavior under

varying practical limitations.

A. TCP/IP review

IP is an unreliable, unsequenced datagram protocol. It provides three important features: network-layer

addressing, per-protocol demultiplexing, and fragmentation. For the purposes of this paper only the last

quality is worth reviewing. Since different network links may support different maximum frame sizes, it

is possible that a router may need to fragment an IP datagram into several smaller data-grams. To allow a

remote host to reassemble these fragments, the IP packet header includes an identification field (LIND),

that is specified by the sender. When a datagram is fragmented, the same identification field is copied into

each fragment and the receiver uses this value as a key to associate fragments from the same datagram. For

this procedure to work the value of WED must be unique for all outstanding packets between a sender and

receiver pair. In practice, most implementations guarantee this property by minimizing the probability that

any IPID will be repeated in a given time period. The traditional implementation of IPID uses a single

global counter that is incremented for every packet that a host sends. This common implementation artifact

implies that when looking at two packets from the same host, with IPID x and IPID y, if y > x, the packet

with value x was sent before the packet with value y (modulo wraparound, which is easily detected). How-

ever, some newer implementations use alternative schemes for security reasons, such as small random

increments and per host-pair counters, so any assumptions about this field must be validated before they

can be trusted.

TCP is a connection oriented protocol that provides full-duplex reliable in-order data communication

over unreliable network protocols, particularly IP. To provide the ordering guarantee, TCP includes a

sequencing mechanism that associates a sequence number with each byte of data. Each TCP header

contains the sequence number of the first byte of data being transmitted, and an acknowledgment (ACK)

number indicating the next byte of data that the host is expecting to receive. The receiving host uses the

sequence numbers written by the sender to reassemble packets in the correct order, while the sending host

uses the ACK numbers written by the receiver to advance its sliding flow control and congestion control

windows.

A receiver can generate an ACK for each data packet received, but in practice most TCP

implementations use a delayed acknowledgment algorithm in the hopes of piggybacking an ACK on

an outgoing data packet. Implementation guidelines indicate that ACKs should not be delayed by

more than 500ms or two received data packets, but these guidelines are not uniformly followed,

especially during slow start [9].

Finally, when a TCP receiver receives an out-of-order data packet it responds by acknowledging the

last in-sequence packet it received. This signal allows the sender to quickly infer that a packet has been

lost if multiple duplicate acknowledgments are received. To make this optimization work, the delayed

acknowledgment algorithm is suspended for out-of-order data and acknowledgments are sent

immediately.

B. Single Connection Test

The Single Connection Test, as its name implies, uses a single connection to the remote host,

established using the standard TCP three-way handshake. Once this connection is established,

measurement samples are obtained one at a time, each composed of two phases: a preparation

phase and a measurement phase. During the preparation phase, a sequence "hole" is created at the

receiver by sending a slightly out-of-order packet repeatedly until the sender receives an

acknowledgment indicating that an earlier packet is expected. For example, in Figure 1, it is

assumed, without loss of generality, that the initial sequence number expected is 1. The local host

then transmits a packet with sequence number 2 (abbreviated here as data 2) to the remote host.

The receiver responds with an acknowledgment indicating that byte 1 is still expected

(abbreviated ack 1) and permits the sender to infer that byte 2 has been queued at the receiver.

Once the connection has been prepared a reordering measurement is made by sending two sample

packets to the remote endpoint. The sequence numbers of these packets arc selected to straddle the

previous out-oforder data packet queued at the remote host. In the illustrated example, these

sample packets are 1 byte TCP data packets labeled data 1 and data 3 respectively.

[Insert Figure 1]

This particular relationship between the sequence numbers used is chosen because it forces the

receiver to respond differently depending on the order in which the sample packets are received.

This quality allows the sender to eventually infer whether the packets, or their acknowledgments,

were reordered in flight. If both packets arrive in order, then the receiving host will acknowledge

them in order — ack 2 and ack 4 in the figure. If the packets are delivered out-of-order, then the

receiving host will first generate an acknowledgment for the "hole" followed by an

acknowledgment for the whole series — ack 1 followed by ack 4. Since these are the only two

combinations possible, the sender can determine if the acknowledgments were reordered

themselves by checking if the acknowledgment for the whole sequence, ack 4, arrives first.

A limitation of this approach is that it requires two samples to be generated and delivered from

the remote endpoint. There are two practical reasons why this may not occur. First, if one of the

sample packets or one of We acknowledgments is lost then the resulting single acknowledgment

may be insufficient to determine whether the sample packets on the forward path were reordered

and can never determine if there was reordering on the reverse path. For reasonable loss rates

this problem can be addressed simply by discarding such samples (although this may bias the

measurement if loss is correlated with reordering).

However, the second and more serious problem is posed by the delayed acknowledgment

algorithm. In the common case in which packets are delivered in-order, the receiver may choose to

only send a single acknowledgment for the whole sequence, ack 4, which does not allow the sender

to infer anything about ordering in either direction. To mitigate, but not solve, this problem we can

reverse the order in which sample packets are sent (data 3 is sent followed by data 1) since the

receiver will not delay acknowledgments for out-of-order packets (as mentioned before, this is

critical to support the fast retransmit error detection function). To infer whether these packets are

reordered, we simply invert the forward path algorithm (e.g. the arrival of ack 1 followed by ack 4

indicates that the packets arrived in order, while ack 3 followed by ack 4 indicates reordering).

However, the sending host still cannot differentiate between a lost packet on the reverse path and a

forward path reordering event (e.g. a lone ack 4 is ambiguous).

C. Dual Connection Test

To address the previous limitations, we developed an alternative approach leveraging the

traditional IND generation function across pairs of TCP connections between local and remote

hosts. En this Dual Connection Test, a measurement sample is a pair of packets, one sent on each

connection, that are labeled with sequence numbers one greater than that expected by their

respective receivers. Since these packets are interpreted as being outof-order they are

acknowledged immediately by the receiver, thereby avoiding the delayed acknowledgment issue.

Under the assumption that IPID increases monotonically across TCP connections to the same

destination, we can infer whether the acknowledgments were reordered by validating that packets

are received in the same order of their respective IPIDs. Once we have determined the order the

packets were sent by the remote host it is possible to determine the order in which the sample

packets were received. This is based on the observation that packets arc acknowledged in the order

they are received by the remote host (this is true in almost all systems since transport-layer

processing is handed in the kernel, frequently driven directly by an interrupt). Consequently, the

sender may infer whether its sample packets were reordered by comparing whether the difference

between the IPIDs of the acknowledgments is consistent with the order in which the sample data

packets were sent. It is for this reason that two connections are used, since each data packet can be

easily associated with its companion acknowledgment using the source and destination port

numbers as a key.

[Insert Figure 2]

Unfortunately, while the dual connection test does not fall prey to delayed acknowledgments, it

does have problems of its own. The first problem is the reliance on a strictly increasing function

used to generate the IPID values. For example, recent versions of Linux (2.4 and on) use MTU

Path Discovery by default and, since fragmentation cannot happen, transmit packets with IPID

equal to 0. Moreover, modern versions of OpenBSD generate pseudorandom INPIDs and

FreeBSD has a similar option that can be enabled.
1
 Consequently, we must validate any assump-

tions about IPID before using it to disambiguate packet order. Another, more serious, related issue

is that our reliance on two connections creates problems when cOnnecdons are aliased through a

transparent load balancing device. While in our experience these devices do not manipulate the

IPID field, by design they may assign each connection to a separate host- therby invalidating our

assumption that both connections use the same IPID address space and producing spurious results.

1 As well, modem versions of Solaris maintain a per-destination IPID counter, but since our techniques do not depend on IPID
being unique across destinations this is not a complication. Lion to a separate host — thereby invalidating our assumption
that both connections use the same IPID address space and producing spurious results. Figure 3 provides a graph-
ical depiction of this problem. Unfortunately, while most hosts on the Internet do not sit behind load
balancers, many sites of interest do — particularly those providing consumer content.

Figure 3 provides a graphical depiction of this problem. Unfortunately, while most hosts on the

Internet do not sit behind load balancers, many sites of interest do – particularly those providing

consumer content.

To address both issues, we compare the difference of the IPID values between each pair of

adjacent packets between connections and each pair within a connection. If the underlying IPID

space is shared between connections and is strictly increasing, then the latter differences will

continually dominate the former (since a new data packet is only sent after both connections

receive their ACK). In contrast, if IPID is set randomly or if a load balancer is present then there

will be poor correlation in this measure. This analysis allows us to validate whether a particular

host is amenable to the dual connection test before collecting spurious measurements.

D. SYN Test

For the specific problems presented by load balancers, we present a third approach, the SYN

Test, based on related pairs of TCP SYN packets. We observe that load balancers cannot operate

on a per-packet basis, but instead must balance requests per-flow or at larger granularities. Conse-

quently, for any given TCP connection a load balancer will always forward packets to the same

host. The most common implementation strategy to ensure per-flow granularity is to hash on the

four-tuple: (sources address, source port, destination address, destination port), but others will use

SYN packets to establish explicit per-flow state.

We can exploit the per-flow granularity of load balanccrs by transforming our measurement

packets to appear to belong to the same flow. In particular, we send pairs of sample packets that

arc identical TCP SYNs that differ only in their starting sequence number being slightly offset.

Since all fields that arc used to key a flow identity are the same, these packets will be routed to

the same host.

[Insert Figure 4]

To determine reordering, this test exploits details of TCP's Ihree way handshake. The first SYN

packet will cause the remote host to enter the SYN_RECV state and generate a SYN/ACK in

response. However, when the second SYN arrives, a number of things may happen. Strictly

following the TCP specification, if the second SYN's sequence number is inside the allowable

window (which it will be if the SYNs arrive in order) then a RST should be generated, otherwise

the remote host should respond with a pure ACK (indicating the SYNs arrived out of order).

However, in practice, this portion of the TCP specification is poorly understood and the most

common implementations always respond to a second SYN with a RST, allowing reordering to be

inferred simply as shown in Figure 4. Finally, we can always determine if the original SYNs were

reordered in flight by examining the sequence number in the first transmitted SYN/ACK. Since

the SYWACK will acknowledge the sequence number of the first packet received, it is easy to

determine if it was sent in response to the first or second packet transmitted by the sender.

While this test is singularly useful for tolerating the effects of load balancers, it has two

obvious drawbacks. First, it depends on parts of TCP semantics that are not consistently

implemented. For example, a small number of implementations generate dual RST packets or

only respond to the first SYN. Second, this test has a significant non-technical challenge since a

large number of trials may be misconstrued as a small "SYN Flood" Denial-ofService attack. In

practice, we have not experienced this problem, but we have also been very careful to limit the

rate at which SYNs arc generated and make sure to fully establish a connection and then close it

down.

TCP Data Transfer test

Finally, an obvious point of comparison is to simply initiate a TCP data transfer (for example,

an HTTP GET request to a Web server) and evaluate whether packets are delivered in order. We

can mitigate the problems of TCP congestion control dynamics by generating acknowledgments

for the largest sequence number received, even if intermediate data is lost., and by artificially

restricting the flow of information from the remote server by restricting the advertised receiver

window and the advertised Maximum Segment Size (MSS). However, this test is only useful for

measuring reverse path reordering, from the remote host to the local host. It cannot be used to

determine if packets sent to the Web server are likely to be reordered. As well, it requires that the

remote host be running a Web server, or similar public data transfer server, and requires that there

be an object of sufficient size to fill two packets (this is a problem in practice for sites that use

HTTP redirects, which fit in a single packet).

IV. VALIDATION AND EXPERIENCE

All of the tests previously described were implemented as an extension to the sting tool

described in [121. Programmable packet filters and firewall filters were used to allow a user-

level test program to generate and receive arbitrary IP packets without conflicting with the

kernel's network stack.

A. Controlled Validation

We tested the resulting tool in a controlled environment in which all traffic was routed through a

FrecBSD-based router under our administration. We modified the popular dumrnynet traffic

shaping package on the router to swap adjacent packets according to a specified probability dis-

tribution [111. During the testing period a machine in close proximity to the measurement machine

was chosen as the remote host to keep the amount of real reordering at a minimum. We used two

separate uniform random distributions for the forward and reverse path reordering rates, and the

mean of each distribution was varied to include all combinations of 1%, 3%, 5%, 10%, 15%, and

40% (in the TCP data transfer test only the reverse path distribution was manipulated). We

collected 100 samples for each measurement technique for each combination of the distribution

means. A network trace was captured for every test run and this trace was analyzed to find the

actual number of sample packets that were reordered during the trace. This number was compared

to the number reported by the various reordering tests. Out of the 114 tests there were 8

discrepancies in the forward direction and 2 in the reverse direction. Of these, 7 of these were off

by one reorder event (out of 100 samples) and the remainder were off by 2 reorder events. We

believe both discrepancies reflect minor implementation corner cases that were incorrectly

handled (although we have not completely confirmed that hypothesis). Overall, of the 114,000

samples, 99.99% of the samples were confirmed as correct. [Insert Figure 5]

B. Experience

We also ran the same tests against a set of live hosts on the Internet from a single probe machine

located at UCSD. We selected 15 hosts to include a representative from all major operating

systems and to include several highly popular hosts (such as yahoo.com and hotmail.com). We also

included 35 hosts chosen randomly from approximately 18,000 hosts generated from the Yahoo

random URL database [19]. Over the duration of 20 days, we conducted continuous measurements

of these hosts, cycling through all four tests on each host and then cycling round-robin to the next

host. Over the three week period, this produced approximately 850 measurements per host per test,

where each individual measurement consisted of 15 samples .
2
 Not all tests were able to work with

all hosts. In particular, the dual connection test was ruled out due to non-monotonic IPID behavior

2 The TCP Data Transfer test is an exception. It consists of variable number of samples depending on the number of packets mquired

to transfer the root Web object from the remote host

http://yahoo.com/
http://hotmail.com/

from 8 hosts (likely due to transparent load balancers) and a constant IPID value of 0 from another

9 hosts (likely running Linux 2.4).

These measurements are not intended to be representative of the Internet as a whole, but

simply to demonstrate the variety of results that can be obtained using our methods. Overall, as

illustrated in the CDF in Figure 5, we observed that over 40% of the paths tested experience

some reordering during the 20 day period. It is also clear that for the sites we chose there is more

forward path reordering that reverse path reordering. It is possible that this is an artifact of using

a single vantage point, but it is impossible to determine without using additional probe hosts.

Furthermore, we found that the amount of reordering is directly related to the time between

consecutive packets sent from the probing host; we study this behavior in more detail in Section

IV-C. Finally, although not shown here, our experiments showed more than 15% of

measurements had at least one reordered sample. [Insert Figure 6]

It is difficult to perfectly validate results in the Internet setting since we do not know the true

order in which packets were sent or received by the remote host. Instead, the best alternative is to

compare the results of the different tests to one another, under the assumption that since they all

measure the same underlying process their results should be similar. For example, Figure 6 illus-

trates the mean reordering rate measured on the path to www.apple.com using the single

connection test and the SYN test. As demonstrated by this example, the comparison cannot be

perfect since the samples of each test are taken at different times. Consequently, these measure-

ments can only be considered "paired" under the assumption that the reordering process is

stationary over the time-period between measurements.

Given these limitations, we compute a standard pair-difference test statistic [5] for each host,

comparing the results of each pair of tests. The null hypothesis is that the difference between tests

http://www.apple.com/

can be explained purely in terms of intra-test variability. With a 99.9% confidence interval we

find that the single connection test and the SYN test provide similar results (78% of the forward

path tests and 93% of the reverse path tests support the null hypothesis). The dual connection test

however shows lower similarity to the other forward path tests, and to the SYN reverse path test,

but has high similarity to the other two reverse path tests. We do not currently have an

explanation for this discrepancy, other than the limitations of this analysis (visual inspection of

the raw measurement data does not reveal obvious differences). Finally, the results from the TCP

data transfer test closely matched the SYN and dual tests (90%) but was significantly different

from the single connection test (73% of hosts rejected the null hypothesis). Examining these cases

by hand, we find that during periods of significant reordering, the TCP data transfer tests can pro-

duce significantly lower estimates of reordering than the other approaches — sometimes less than

half as many reordering events.

C. Characterizing Reordering Dynamics

The discrepancy between our tests and the baseline TCP data transfer experiment led us to

reexamine the metric we use to describe reordering. In all of our approaches we chose to report

reordering as the probability that a pair of back-to-back packets is reordered over a given time

interval. This is a fairly primitive notion of reordering that can easily be extrapolated to calculate

the reordering probability of a sequence of packets under the assumption that reordering is an IlD

process. However, for several reasons, this assumption is almost certainly invalid.

In thinking about this problem, we reflected on the physical source of reordering in existing

Internet routers. From previous work [2] and discussions with router designers we identified two

likely culprits. The first is inverse multiplexing and load balancing within a switch, which can allow

a newer packet to be placed in a long queue while an older packet is placed in a short queue.

Generally, most vendors using these techniques spend considerable effort to avoid this situation,

particularly within a flow. Another source of packet reordering is packet striping across multiple L2

links. Many vendors continue to implement such striping on a per-packet basis and consequently, if

a newer packet is placed on a link with a longer queue than an older packet, then reordering may

occur. Since queues drain at a constant rate, the likelihood that this occurs is related to the inter-

arrival time between the two packets. Packets that are more spread apart can tolerate a greater queue

imbalance than those that are more compressed in time.

In the case of the TCP data transfer test, full-sized data packets of 1500 bytes were used,

whereas the other tests consist of minimum sized packets of roughly 40 bytes. Consequently, the

added serialization delay in the former case increases the delay between the leading edge of each

packet — possibly reducing the probability that the two packets will be reordered if they are

assigned to different queues. [Insert Figure 7]

To explore this hypothesis, we modified our tests to accept an inter-packet gap as a parameter.

By varying the spacing between two sample packets we can evaluate the dynamics of the

reordering process as a function of time (although this is currently limited to forward path

reordering where we can easily control packet spacing in a fine-grained manner). Figure 7

illustrates the results of this approach applied to one path that demonstrated significant reordering.

Minimum-sized back-to-back packets are reordered more than 10 percent of the time, which

quickly drops off to less than 2 percent after 50 microseconds of delay is added and approaches

zero after 250 microseconds. Distribution measurements such as these are strictly more powerful

than a traditional summary statistic, such as the average reordering rate. Using the distribution it

is possible to predict how different protocols and applications would be impacted by the

reordering process, without needing to construct a unique test (e.g., SACK blocks) for each

protocol. For example, we can infer that, during bulk data transfer, full-sized data packets are less

likely to be reordered than streams of compressed acknowledgment packets.

V. CONCLUSION

The Internet architecture makes few guarantees about the underlying service provided.

Nevertheless, higher-layer protocols are engineered to take advantage of the common behavior,

and as a consequence they are penallied when these assumptions are not met. At the same time

the Internet is highly heterogeneous and is constantly changing. For any set of assumptions, there

is a time or place on the network where they are invariably incorrect and will cause problems. To

debug such problems and understand how network characteristics are evolving, it is critical to

have the tools and metrics for measuring and describing these conditions in a complete manner.

In this paper we focused on the problem of packet reordering. Packets may be reordered for

many reasons, including DiffSery scheduling and buffer management, multi-path routing, layer 2

retransmission (particularly across wireless links), or simply due to highly variable load when

routers make use of fine grained data parallelism. Whatever the reason, this violation of the in-

sequence assumption can significantly degrade the performance of protocols like TCP. However,

there has not previously been an accurate technique for easily measuring reordering, nor

sufficient understanding of how reordering works to define a meaningful metric.

We have developed three techniques for accurately measuring one-way packet reordering rates

in the existing Internet infrastructure. Each of these has its strengths and flaws, but as a whole they

provide a significant advancement on previous methods. We have validated each approach in a

controlled environment and shown that the tests are roughly consistent with one another in a live

Internet setting. Moreover, we demonstrate that our tests can be modified to measure the

distribution of the reordering process over time and argue that this representation is more

meaningful than a single scalar metric. Finally, looking forward, we believe that the toolset we

have developed provides a reasonable framework for producing more conclusive results about

reordering in different parts of the Internet and evaluating whether it occurs frequently enough to

justify changes to existing protocol assumptions.

VI. ACKNOWLEDGMENTS

We would like to thank our shepherd, Vern Paxson, and the anonymous reviewers for their

comments and suggestions. This research was supported in part by DARPA Grant N66001-01-1-

8933.

REFERENCES

111 M. Allman, H. Balakrishnan, and S. Floyd. RFC 3042: Enhancing TCP's Loss Recovery

Using Limited Transmit, January 2001.

[2] J. Bennett, C. Partridge, and N. Shearrian. Packet Reordering is not Pathological Network

Behavior. IEEE/ACM Transactions on Networking, 7(6):789-798, 1999.

[3] E. Blanton and M. Allman. On Making TCP More Robust to Packet Reordering. ACM

Computer Communication Review, 32(1), 2002.

[4] V. Jacobson. RFC 1144: Compressing TCP/IP Headers for Low-Speed Serial Links,

February 1990.

[53 Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley & Sons, 199I.

[6] M. Mathis, J. Mandavi, S. Floyd, and A. Romanow. RFC 2018: TCP Selective

Acknowledgement Options. RFC2018, October 1996.

[7] D. Minoli and E. Minali. Delivering Voice over IP Networks. John Wiley & Sons, 1988.

[8] A. Morton, L. Ciavattone, and G. Ramachandran. Internet Draft: Reordering Metrics for

IPPM using Non-Reversing Sequence. draft-morton-ippm-nonrev-reordering-00.txt,

February 2002.

[9] V. Paxson. Automated Packet Trace Analysis of TCP Implementations. In Proceedings of

the 1997 SIGCOMM Conference, pages 167-179, Cannes, France, September 1997.

[10] V. Paxson. End-to-end Internet Packet Dynamics. IEEFJACM Transactions on Networking,

7(3):277-292, 1999.

[II] Luigi Rizzo. Drumrnyrtet: a Simple Approach to the Evaluation of Network Protocols. ACM

Computer Communication Review, 27(1):31-41, 1997.

[12] S. Savage. Sting: A TCP-based Network Measurement Tool. In USEN1X Symposium on

Internet Technologies and Systems, pages 71-79, Boulder, CO, October 1999.

[13] W. Simpson. RFC 1661: The Point-to-Point Protocol (PPP), July 1994.

[14] W. Stevens. RFC 2001: TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast

Recovery Algorithms, January 1997.

[15] J. Stone and C. Partridge. When the CRC and TCP Checksum Disagree. In Proceedings of

the 2003 SIGCOMM Conference, pages 309-319, Stockholm, Sweden, August 2000.

[16] Y. Tamura, Y. Tobe, and H. Tokuda. EFR: A Retransmit Scheme For TCP in Wireless

LANs. In IEEE Conference on Local Area Networks, volume 23, pages 2-11,1998.

[17] W. Townsley, A. Valencia, A. Rubens, G. Pall, G. Zorn, and B. Palter. RFC 2661: Layer

Two Tunneling Protocol, August 1994.

[18] G. Xylomenos and C. Polyzos. TCP Performance Issues over Wireless Links. IEEE

Communications Magazine, 39(4):52-58, April 2001.

[19] Yahoo! Inc. Random Yahoo! Link.

http://random.yahoo.com/binkyl.

http://random.yahoo.com/binkyl.

[20] M. Zhang, B. Karp, S. Floyd, and L. Peterson. Improving TCP's Performance under

Reordering with DSACK. Technical Report TR-02-006, International Computer Science

Institute, July 2002.

Fig. 1. Packet sequences generated by the single connection test. All forward path packets are denoted

with a dashed line and all reverse path packets a solid line. Sequence numbers and acknowledgment

numbers are labeled explicitlyabove each packet.

Fig. 2. Packet sequences generated by the dual connection test. It is assumed that two TCP

connections are already established. Packets belonging to each connection are distinguished by

wavy and straight lines respectively.

Fig, 3. An example of what happens to the Dual Connection test when there is a transparent load

balancer in the middle. There is no way to differentiate between the two situations in this

example.

 Fig. 4. All possible packet sequences for the SYN Reorder test.

 Fig. 5. CDF of reorderering rates across all paths measured.

Fig. 6. Forward path reordering as measured by the Single Connection test and the SYN Test. The

Dual Connection test could not he used because www.apple.com uses a load balancer.

http://www.apple.com/

Fig. 7. Reordering probability along a single path as a function of inter-packet spacing between two

minimum sized TCP packets using the dual connection test. The spacing, indicated on the y-axis, is

measured in microseconds. 1000 samples were taken at each point using 1 usec increments between

points for all spacings below 200 usecs, and 20 usec increments thereafter.

