
INCREASING CUBESAT DOWNLINK CAPACITY WITH

STORE-AND-FORWARD ROUTING AND DATA MULES

Trevor Koritza John M. Bellardo

ABSTRACT
Pico-satellites have recently gained substantial traction in
research and educational communities due to their rela­

tively low cost. The largest factor in keeping the cost down,
their small size, also poses their biggest engineering chal­

lenge. The tiny, low power radios used to communicate
with earth have extremely slow data rates. A typical pico­

satellite is within communication range of the ground sta­

tion for approximately 40 minutes per day with a theoreti­

cal maximum data rate of 1200 bps. At this speed a high-

resolution digital photograph can take weeks to download.
This paper presents a novel communication protocol

that allows a sparse network of pico-satellites to transfer
data directly between one another. This capability is used
to get the data to a “data mule”. The data mule is a spe­

cialized satellite capable of relaying traffic back to earth at
higher rates than the current satellites.

This work includes an implementation of the commu­

nication protocol and a simulator used to evaluate the pro­

tocol. Simulation results show that, regardless of varying
satellite topologies and traffic workloads, the protocol has a
significant increase in both the quantity of data transferred
to earth and a reduction in the total time required to transfer
all the data.

KEY WORDS
Wireless Communications Protocols and Standards, Perfor­

mance Evaluation, Sensor Networks, CubeSat

1 Introduction

Satellites are becoming commonplace for applications in­

cluding connecting the most remote regions of the world
to digital communications networks, positioning systems,
military applications and scientific research. For the most
part the satellites used for these applications are very large
and expensive to design, build, and launch. These eco­

nomic factors prevent satellites’ use as a platform for learn­

ing and important small-scale science, inspiring a pico­

satellite revolution.
Pico-satellite projects, lead by CubeSat [12], have be­

gun to explore cheaper solutions to flying satellites in very
low earth orbits. These satellites are very small, 10 cen­

timeters cubed, and have extremely constrained operating

budgets for weight, power, and communications. The low
orbits of these satellites permit the use of lower power,
shorter range radios, but also creates additional communi­

cation problems. Due to the low orbits there is a very lim­

ited window of radio communication exposure to ground
stations that operate the satellite. Each satellite is typically
in range of the ground station for approximately 40 min­

utes. This, along with the maximum possible data rate of
1200 bps, yields roughly 350Kb during a single pass, ig­

noring communication protocol overhead. Goodput is sub­

stantially less once overhead and interference is taken into
account. While this data rate is sufficient to operate the ba­

sic satellite systems, it is rapidly becoming a liability for
performing more sophisticated scientific experiments.

This work proposes a store and forward network ar­

chitecture and related protocols that increases the overall
downlink capacity for a small cluster of CubeSat satel­

lites. The cluster of satellites is heterogeneous, containing
at least one “data mule”. The data mule is equipped with a
more powerful radio capable of faster communication with
the ground station. This radio comes at the expense of any
scientific payload in the satellite. Satellites in the cluster
can communicate directly with each other. They cooperate
to forward data, potentially over multiple hops within the
cluster, to the data mule. The data mule finally transfers the
data to earth.

This work also evaluates the proposed protocol using
an accurate orbital simulator and actual CubeSat orbits as
observed from prior launches based on their TLEs. The pa­

per shows this communication architecture is able to send
more data over a given amount of time with less end-to­

end delay. Depending on the number of satellites and traffic
characteristics the overall capacity of the network increases
between three and five times and the end-to-end delay is re­

duced between 50 and 75 percent.

The remainder of the paper is organized into 5 addi­

tional sections. Section 2 reviews other work related to this
problem. Section 3 proposes the network protocol. Section
4 discusses the simulator, the experiments that were run,
and their results. Sections 5 and 6 present future directions
for this work and conclude the paper.

2 Related Work

Solutions to the unique set of challenges facing pico­

satellite constellations are not readily apparent in related
work. These challenges are created by the low earth orbits
the satellites fly in. The network is rarely, if every, fully
connected. This precludes discovering a single path from a
source satellite to the data mule and using it for the duration
of the network. The network is also extremely sparse. It is
expected that two satellites may wait a few months before
flying within communication range of each other. Due to
the nature of orbits, it is also the case that these communi­

cation opportunities are predictable with a high degree of
accuracy.

2.1 Satellite Constellation Protocols

Most related work in the area of store and forward satellite
networks is focused specifically on fully connected constel­

lations and satellites with much higher orbits [8]. Parts of
these works can be used in a sparse network of LEO satel­

lites, but most of the protocols described are impractical
solutions to the problem.

The most common protocol being used in satel­

lite communications is adapted from asynchronous trans­

fer mode (ATM). ATM based protocols such as [7] use
Geosynchronous satellites to connect several ground sta­

tions. This protocol focuses on a network with GEO satel­

lites, which are always connected and have a static net­

work topology, making this protocol impractical for pico­

satellite constellations.
Other routing algorithms have been proposed to cre­

ate more purpose built protocols that specifically take ad­

vantage of satellite networks, but most of these assume that
the satellite network is fully connected. CRT is an adap­

tive routing protocol that aims at providing routing to large
constellations of LEO satellites. The main focus of this
algorithm is to provide congestion control and load bal­

ancing over the constellation. CRT is specialized because
it requires hardware that can receive from all neighboring
satellites simultaneously [6]. Because of these constraints
it is not directly applicable to the pico-satellite application.

Precomputed routes in satellite constellations were
proposed by [5]. This routing protocol is not used for inter-

satellite links (ISLs), but aimed at communicating from
ground stations through satellites to other ground stations.
Precomputed routes works well on static networks, such as
GEO satellites connecting to a ground station, but it is not
well suited to the dynamic network found in pico-satellites.

All of these projects deal with either inter-satellite
communications focused on fully connected large meshes
of satellites or with communicating directly to ground sta­

tions only. This paper, however, focuses on satellites that
are very sparse, and will rarely be in range of one another.
Because of the sparseness and discontinuity of the network,
store and forward techniques need to be used not only when
communicating with the ground stations, but also when

communicating between satellites.

2.2 Sensor Networks

The existing research literature on sensor networks is more
closely related to pico-satellite constellations than the re­

search focused on GEO satellites and satellite constella­

tions. The size and sparseness of the pico-satellites along
with the low power budget and difficulty of getting data
back to a single end-point make this problem closely re­

lated to a sensor network. In sensor networks there are
several small nodes collecting data and transmitting that
data back to a single place, the sink. In many cases the
nodes, including the sink, can be moving. It is also possi­

ble to have multiple sinks in the same network. The com­

mon approach for improving the throughput and decreasing
power consumption of a sensor network is the use of a data
mule [14]. In [15] a submarine robot was used as a data
mule to retrieve observation data from mobile sensors on
the ocean floor that were collecting information on marine
microorganisms. A conceptually similar data mule would
be ideal for collecting data from various pico-satellites and
relaying the data to the sink (ground station).

2.3 CubeSat

The GENSO Project [13] is building a cooperative network
of ground stations that all contribute to the CubeSat project.
This approach is valuable because the communication win­

dow between a single ground station and a single satellite
in orbit is small. Increasing the number and geographic
diversity of ground stations may allow nearly constant con­

tact with any of the CubeSat satellites. The GENSO project
compliments this work by also increasing the communica­

tion window with the orbiting data mule. Using the pro­

posed protocol in conjunction with GENSO could further
increase the network throughput.

3 Communication Protocol

The communication protocol is based on a simple premise
– orbits are predictable. This assumption is appropriate
because current CubeSat satellites lack attitude and direc­

tional control. Once the individual satellites learn the rela­

tive orbits of each other, they can schedule when and how
much data to be sent back to earth either directly through
the data mule, indirectly through the data mule and other
intermediary satellites, or directly to the ground stations.
This section describes the details of the communication
protocol, including forwarding, routing / packet schedul­

ing, MAC protocol, and the transport protocol. A more
detailed explanation of this protocol can be found in Mr.
Koritza’s thesis [9].

ID1 ID2 Type1 Type2 Last Connection Duration Bit Rate Time Between
S 1 SNSR SNSR 9/18/2008 2s 5 bytes/s 34 days
S D SNSR HBM 10/03/2008 3s 5 bytes/s 60 days
1 D SNSR HBM 8/30/2008 4s 5 bytes/s 76 days

Table 1. Example of what a link state table looks like (SNSR is a Sensor)

3.1 Routing

Terrestrial routing protocols typically operate on a next-

link basis. The routing to any destination either implicitly
selects the next-hop link using a distance-vector protocol,
or explicitly selects the next-hop link using a link-state pro­

tocol. Due to the unique characteristics of low earth orbit
satellite networks, there is no single persistent link to use
as the basis for routing. Satellites are within communica­

tion range for a relatively short period of time and then can
not directly communicate for a much longer period of time.
This work uses the concept of a connection to capture this
fundamental difference.

A connection is single, contiguous 1 period of time
where two satellites are within communication range of
each other. Over the course of a year a satellite may be in­

volved in five unique connections with the same peer satel­

lite. The protocol is similar to a link state protocol because
every node in the network has a complete view of the global
topology. It differs because the topology is composed of
connections and not links.

Tracking individual connections requires the addition
of three pieces of information to each entry in the routing
table. It is necessary to store the anticipated duration of
a connection. This information, used in conjunction with
the expected data rate, gives the routing logic a close ap­

proximation of the maximum amount of data that can be
transmitted during the connection. This is an important part
of scheduling a single, larger data transfer across multiple
connections.

The two other new pieces of information are the last
time the connection with the same peer was established and
the period of connections. Using these two pieces of infor­

mation it is possible to accurately predict the start of the
next n connections to the same peer. This information is
necessary for sending a large file across multiple connec­

tions.

3.2 Learning Connection Parameters

CubeSats are launched as secondary payloads on much
larger missions. As a result there is almost no control over
the actual orbit of the satellites, making it extremely diffi­

cult to pre-program a table of connection parameters. To
work around this problem a newly launched satellite enters
the network in an “active learning” state.

1Due to orbits and rotational velocity it is possible there are short com­

munication “grey periods” that interrupt an otherwise contiguous connec­

tivity. The protocol accounts for these periods by decreasing the goodput
estimate for the connection, but the periods do not cause one connection
to terminate and the next one begin.

In the active learning state a satellite broadcasts a
HELLO packet once every 120 seconds. All satellites that
hear the broadcast respond, initiating a new connection.
The initialization time is one of the connection parameters
that gets recorded in the routing table. Once the connec­

tion is initiated routing and payload data is transferred as
described below.

After there is no more data to transmit a satellite sends
one “you there?” request per minute to its peer satellite.
The peer will always acknowledge the “you there?” re­

quest. Once the satellites are out of range all responses will
stop. The timestamp of the last response is used to deter­

mine the duration of the entire connection.
The final piece of information needed is the period be­

tween connections. To learn this parameter it is necessary
to observe a second connection to the same peer satellite.
The difference in start timestamps between the connections
is the period.

Due to the nature of orbits realistic period values are
anywhere from a few days to many months. If a satellite
cluster has a set of orbits with a period measured in months,
it will take that long before there is enough information
to begin routing data through the entire network. As an
optimization, it is possible for the earth station to seed the
connection states based on the observed two line elements
(TLEs). These accurate orbit descriptions are provided by
NORAD based on radar tracking data within a few days
of launch. Note that seeding the network in this way is an
optimization, not an operational requirement.

There are two requirements for leaving the “active
learning” state and entering the “normal operations” state.
First, the connection parameters for all nodes in the clus­

ter must be learned. This requires directly observing two
connections, as described above. The second requirement
is identifying which satellite or satellites are data mules.

In the “normal operations” mode a satellite stops peri­

odically broadcasting the HELLO packet. Instead, the node
schedules the next HELLO packet based on the information
in the connection state table. It determines the anticipated
start time of the next earliest connection, and begins broad­

casting the HELLO packet 5 minutes before the anticipated
start of the connection. This small buffer compensates for
small errors in the start time estimation. Not transmitting
the HELLO packets at other times reduces the power con­

sumption of the satellite. The other main difference in “nor­

mal operations” mode is that data, and not just routing in­

formation, is exchanged during a connection.
Regardless of the operating mode, the properties of

each subsequent connection are used to refine and update
the connection state table.

3.2.1 Duration Calculations

“Grey periods” complicate the connection duration calcu­

lation. The three-dimensional orbit of two satellites cause
the straight-line distance between the two to vary. The dis­

tance is not strictly decreasing as the satellites approach
each other, and it isn’t strictly increasing as they fly apart.
This interesting characteristic prevents duration calcula­

tions from simply subtracting the connection end time from
the start time. Instead the algorithm keeps track of the
last time a packet was received from the other satellite, in­

cluding acknowledgments. If the time between packets is
greater than five minutes the algorithm assumes a grey pe­

riod occurred and adds the interval to a running total of
time taken by grey periods. Every two hours the satellites
check to see when the last time a packet was received, if no
packet has been received in the past two hours then the con­

nection is ended and the duration is calculated, subtracting
the running grey period total from the duration. Two hours
was chosen based on experience with and observation of
existing CubeSat orbits.

3.2.2 Best Path

Finding the shortest path from one satellite to another is
more complicated in sparse satellite networks than in most
terrestrial and dense satellite networks. In most dense satel­

lite networks the topology is static and fully connected.
This enables a routing protocol to use either a classic
distance-vector algorithm, or to initiate a single route dis­

covery process every time it needs to communicate with
a new endpoint. Even in a dynamic, fully connected net­

work protocols such as AODV, DSDV, or DSR can re-run
the route determination logic to compensate for a broken
link [2]. However, in a sparse satellite network the short­

est path changes as a function of the physical location and
relative speeds of every other satellite in the network.

The metric optimized by this routing protocol is la­

tency. Given the positions of other satellites and other in-

transit packets, it always delivers data with the smallest
possible latency. To accomplish this it is necessary to look
at all combinations of connections between all satellites,
even subsequent connections between the same satellite.
The information contained in the link state table enables the
protocol to predict connection capacities into the indefinite
future. The routing path algorithm must also take into ac­

count the preexisting load on each of the connections. The
protocol uses a modified version of the Ford Fulkerson [4]
flow algorithm to find the available flow in combination
with the lowest latency path to the destination.

The Ford Fulkerson Algorithm is an iterative method
that is initialized by setting all flow in the network to zero.
Each iteration finds an “augmenting path” from the source
to the sink, increasing the flow along that path. The max­

imum capacity of each edge in the graph minus the cur­

rent assigned flow is an edge’s residual flow (the remaining
available flow for that edge). An augmenting path is a path

from source to sink in the residual network. The iterations
are repeated until there are no remaining augmenting paths
in the residual network.

3.2.3 Topology Graph

The protocol uses a standard internal graph representation
for the satellite network topology. The node originating the
data is the one and only source node in the network. Except
for connections involving the source node, each connection
results in a new edge and new destination node in the net­

work. A single satellite typically results in many nodes in
the topology graph. To capture the ability of a single satel­

lite to store and forward data across multiple future con­

nections, an edge with infinite capacity is added between
nodes representing the same satellite. This edge is directed
so that data can only flow forward in time, not backwards.

The maximum capacity of each edge is computed
based on the anticipated bitrate and duration of a connec­

tion. This maximum is reduced by a small percentage to al­

low for protocol overhead and other unforeseen factors that
reduce connection goodput. The residual capacity for each
edge is initialized to zero. The residual capacity is only
changed as the result of augmenting flows and based on
actual transferred data. The residual is never reset to zero
during the life of the satellite. Each edge also includes a
timestamp indicating when the edge will become available.
This timestamp is used to decide between two otherwise
equivalent edges.

The topology is always evolving. Nodes are ac­

tively pruned from the graph once a connection has oc­

curred. Maximum connection capacities, connection du­

rations, and timestamps are continually updated as better
estimates become available. Also, residual edge weights
get updated to reflect the quantity of data actually transmit­

ted during a connection, not just the anticipated amount of
data.

The topology graph is extended on-demand by adding
nodes and edges for future, predicted connections. The
graph is only expanded when there is more data that needs
routing and no additional augmenting flow in the residual
network.

3.2.4 Routing Algorithm

All data received from application(s) running on the satel­

lite and received from other satellites in the network is
routed the same way. The next best path through the resid­

ual network is determined using a DFS algorithm based on
time of delivery. This algorithm returns the lowest latency
path that still has non-zero residual flow available. If no
such path exists the topology graph is expanded as previous
described. This augmenting path includes the maximum
number of bytes that can be transmitted over the path. If
the path can accommodate all the data, just that one path is
used. If the data is too big for the path, the data is split into
two pieces. The first piece is the exact size of the path, and

gets scheduled for transmission over the path. The rout­

ing algorithm then iterates with the remaining data until a
path has been selected for all pieces of the original data.
After using some of a path’s capacity the algorithm always
updates the residual network graph.

Once the path for each piece of data has been deter­

mined, the data itself it queued in the output queue corre­

sponding to the next-hop satellite. Typically the final des­

tination for the data will be the data mule, which will for­

ward it on to earth. However this is not a requirement. The
same protocol works to enable multi-hop satellite to satel­

lite communication simply by finding an augmenting flow
to a different destination.

3.3 Data Link Layer

The data link layer is responsible for establishing connec­

tions, estimating the connection parameters between two
adjacent satellites, and detecting and recovering from col­

lisions, dropped packets, and timeouts.
The data link layer is currently implemented using a

basic Aloha protocol. Aloha is a naive mac protocol that
simply sends data as soon as it becomes available. If a colli­

sion occurs it exponentially backs off to minimize the prob­

ability of future collisions. Even though Aloha has a max­

imum capacity of 18% [1] it is acceptable in this network
because the vast majority of data is generally flowing to­

wards the data mule. Other than acknowledgements, there
isn’t much bi-directional communication. If it was desired
to be able to upload large amounts of data to the satellites
then a more sophisticated protocol would be needed. Such
an improvement is left for future work.

The data link layer uses explicit acknowledgements to
detect data loss. The recipient of a data packet is required
to immediately acknowledge as much to the sender. If the
sender doesn’t hear the acknowledgement within a short
period of time it retransmits the packet. The timing of the
Aloha protocol is such that the sender anticipates the ac­

knowledgement and will not begin transmission of the next
packet until it arrives. Therefore the acknowledgement and
subsequent data packet will not collide.

3.4 Network Layer

The network layer is responsible for routing and uses the
algorithm previously described. In addition, it also con­

trols the exchange of information across each connection.
The data link layer notifies the network layer when a new
connection becomes available. The first few packets in the
connection exchange the link state table between the satel­

lites. This enables each satellite to learn about all other
satellites in the cluster, whether or not the two will every
have a direct connection. Once the entire link state table
has been exchanged, the two satellites transfer any pending
data.

Pending data is kept in a separate queue for each satel­

lite. Once a piece of data has been routed and the next-hop

satellite is determined, the data is added to the outbound
queue for that satellite. The network layer begins transmit­

ting the data from this queue after a connection is estab­

lished and the link state tables have been exchanged. De­

pending on the size of the queue, the capacity of the con­

nection, and the number of transmission errors, the queue
may or may not be completely drained in a single connec­

tion. If there is data left in the queue that was supposed to
be transmitted during the connection, it gets removed from
the queue and rerouted. If there is data remaining in the
queue that wasn’t scheduled for transfer until a future con­

nection, it remains in the output queue.

4 Protocol Evaluation

Due to the expense of building, flying, operating satellites,
and the uncertainties of testing a new communication pro­

tocol, we decided to prototype the protocol in a simulator.
For the simulator to be useful it must be able to simulate ac­

curate three dimensional orbits of CubeSat pico-satellites,
detect collisions, and determine whether or not two satel­

lites are within communication range. It is important to
simulate actual CubeSat orbits rather than idealized orbits
or orbits of much higher satellites.

After considering various commercial alternatives,
we decided to build our own simulator around the open
source PREDICT [10] orbit tracking software. The PRE­

DICT code provided the logic to accurately determine 3D
location of a satellite at any point in its orbit. To further
increase realism all orbits used in the simulator are actual
orbits of previous CubeSat satellites as reported by NO­

RAD’s satellite tracking facility. A discrete event simula­

tor was added to the PREDICT code. This enabled precise
simulation of fine-grained network events.

The radio reception model was based on two parame­

ters, bitrate and communication range. Events were sched­

uled for the beginning end of a transmission, and the be­

ginning and end of a reception. These events were used to
detect collisions at a receiver. A collision happens when
another packet arrives at the receiver while it is actively re­

ceiving a different packet. In order for a transmission to be
successful there can not be any collisions and the satellites
must have remained within communication range the entire
time.

The simulator is designed in such a way that the pro­

tocol implementation code can not access the internal sim­

ulator data. For example, it is impossible for the protocol
implementation to “cheat” and obtain a list of all satellites
and their positions from the simulation engine. This forces
the protocol implementation to not cut corners, and makes
it much easier to port the implementation to a CubeSat plat­

form in the future.

Average Daily Goodput Collisions

0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3 3.5 4

G
oo

dp
ut

CP4
MAST

all, single-hop
all, multi-hop

N
um

be
r

of
 C

ol
lis

io
ns

100000

 10000

 1000

 100

 10

CP4
MAST

all, single-hop
all, multi-hop

0 0.5 1 1.5 2 2.5 3 3.5 4

Number of Satellites (Excluding Mule)

Figure 1. Maximum amount of data through network for a
varying number of hops and transmission sources.

4.1 PolySat Communication Protocol

The PolySat program at Cal Poly operates two CubeSat
satellites, CP3 and CP4. The only communication that
takes place is done at 1200 bps directly between the ground
station and either the CP3 or CP4 satellites. Due to the or­

bits of the satellites there are less than 40 minutes per day
where communication actually takes place. The satellites
lack the capability to communicate directly with each other.
The “PolySat” direct communication protocol is used as the
baseline performance data point to evaluate the effective­

ness of the data mule protocol.

4.2 Results

The results show that this protocol has substantial improve­

ment over the PolySat protocol in both goodput and end-to­

end delay. The satellites used in this evaluation were CP3
and CP4 from the PolySat project [3], SAUDICOMSAT 4
and 6 commercial satellites from Saudi Arabia, and MAST
from Stanford University [11].

4.3 Goodput

Goodput incorporates all protocol overhead, such as packet
headers and retransmissions, to determine the actual net­

work performance as seen by the applications. We ran
several 365 day simulations to gather goodput data. The
results presented in this paper are average daily goodput
values, ignoring the 138 days required to establish the link
state table. Ignoring these days is justified because the or­

bit mode seeding optimization described previously is ex­

pected to almost eliminate this startup time.
Figure 1 shows how the goodput changes as a func­

tion of the number of satellites in the network. This data is
shown for three network configurations. The common as­

sumptions across the configurations are the presence of just
one data mule and a satellite-to-satellite radio with 150km

Number of Satellites (Excluding Mule)

Figure 2. Absolution number of collisions observed while
performing the goodput experiments in Figure 1. Note the
Y-axis is log-scale.

range capable of communication at 100kbps. These param­

eters were chosen to be as realistic as possible given exist­

ing radio technology. The configurations vary in the num­

ber of transmitting satellites and the utilization of multi-hop
routes. In the simplest case there is just one source satel­

lite talking directly to the data mule. This is shown in the
“CP4” and “MAST” lines in the graph. This data provides
a reasonable upper bound on the amount of data that can be
communicated between two satellites using the radios in
the simulation. It also confirms the expectation that the ac­

tual amount of data transferred is dependent on the relative
orbits of the two communicating satellites.

The second configuration tested was all satellites
sending as much data as possible directly to the mule (“all,
single-hop”). This simulates how the network would be­

have if there was no multi-hop inter-satellite communica­

tion. This isolates the benefit of a data mule from the bene­

fit of a multi-hop path to the data mule. The last configura­

tion was all satellites sending as much data as possible via
multi-hop paths to the mule (”all, multi-hop”).

The zero value on the X-axis in figure 1 is the max­

imum goodput in the current PolySat satellites. This is a
theoretical maximum calculated on the properties of the ac­

tual connection and orbits. Each connection has a data rate
of 1.2kbps and a maximum of 40 minutes per day exposure.

Figure 1 shows the PolySat communication only
achieves 0.34 MB per day of data transfer. Both CP4 and
MAST alone communicating to a data mule are a big im­

provement. CP4 is approximately double with 0.6 MB per
day and MAST is almost five times better with 1.43 MB
per day.

4.4 Collisions

Collisions are undesirable. One source of collisions is
two separate radio transmissions arriving overlapped at the
same receiver. In this case both transmissions are corrupted

End-to-End Delay

0

 100

 200

 300

 400

 500

 600

 700

 0 0.5 1 1.5 2 2.5 3 3.5 4

A
ve

ra
ge

 E
nd

-t
o-

E
nd

 D
el

ay
 (

da
ys

)

125MB
250MB

1MB per day

Number of Satellites (Excluding Mule)

Figure 3. End-to-end Delay of large files transferred back
to the ground station. Each line represents a different series
of simulations.

and must be retransmitted, resulting in overall lower good-

put from the network. Collisions are also one measure of
the effectiveness of a MAC protocol. As the number of
collisions created by the MAC protocol increases, so does
the importance of fixing that protocol to improve overall
performance. Figure 2 shows the absolute number of colli­

sions seen in each corresponding experiment from figure 1.
Figure 2 shows that collisions remain relatively infre­

quent with one, two, or three satellites in the network. 800
collisions is a small number when compared to the several
hundred thousand or millions of packets that are transmit­

ted. However once the 4th satellite is added to the network
the collisions increase dramatically to over 31000 in the
case of “MAST”. In addition, the number of collisions in
the “all, multi-hop” case is high. The network load is much
higher in this case as well, because every node is transmit­

ting as much data as possible.
There are two reasons for this. First, with 4 satellites

in the network all transferring large amounts of data, it is
more probable for two satellites to have slightly different
forwarding schedules. That is, if the source satellite S is
expecting the packet to traverse the path S ⇒ T ⇒ U ,
but intermediate satellite T decides that T ⇒ V is more
efficient, other packets that S has scheduled on the path
S ⇒ V will cause a large increase in collisions. One pos­

sible solution to this problem is to introduce a source rout­

ing scheme where the original sender can specify the entire
route the packet traverses.

The second step that can be taken to reduce the num­

ber of collisions is to implement a more intelligent mac
protocol that does a more accurate job of scheduling radio
transmissions.

4.5 End-to-End Delay

End-to-end delay of large transfers is another benefit of this
protocol. Figure 3 shows that using this protocol even with
a naive mac protocol, there is still significant improvement

in end to end delays for larger files. The results also show
the delay times achieved, as well as the amount of data that
can be sent in those times, differs greatly between different
satellites due to the differences in orbits.

As in previous simulations, each transmitter/receiver
pair was tested with a varying number of other satellites in
orbit. When adding the extra satellites the do not originate
any data. These additional satellites will forward the data
but do not have any of their own data to send.

The number of satellites at zero on the X-axis signi­

fies the current PolySat method of sending data between
a satellite and Earth directly. This is the same theoretical
maximum calculation discussed earlier. Including this data
point makes it obvious that all configurations of the multi-

hop protocol outperform what is currently being used.
One interesting result seen in figure 3 is that the

amount of time to transfer the 250MB file actually goes
up when three additional satellites are used in the network.
This is caused by a large number of collisions occurring
during the data transfer. Once the third extra satellite is
added the number of collisions goes from about 700 to
over 5000. The solutions to this problem were discussed
in section 4.4. It is worth noting that despite this behavior,
the CubeSat network is able to transfer data back to earth
quicker than what is currently being used.

4.6 Data Mule Capacities

The graphs in the previous section assume the data mules
that are being used are not acting as a bottleneck in the
system. Even though this data mule needs to transmit a
longer distance to the ground station it should be able to
get much higher speeds than the satellites are currently able
to achieve. This is due to the larger communication budget
afforded by not including any scientific payload on the data
mule. Table 2 shows the minimum bit rates needed by the
mule compared to the bit rate of the satellite to satellite ra­

dio. Table 2 assumes two satellites in the network always
send the maximum amount of data and the data mule has
only 40 minutes per day exposure time to the ground sta­

tion. As the table shows, when there are two satellites in
the network the data mule needs to send data to the ground
station at less than half the speed of the satellites. As the
number of satellites increases the bit rate required by the
data mule will also need to increase, but because these net­

works are sparse with very few satellites this is a realistic
constraint. When the data needs of a constellation grow too
large for the downlink capacity of a single data mule, it is
always possible to add additional data mules. Assuming
there are equal bit rates in both the inter-satellite radios and
the data mule, there should be approximately one data mule
per four satellites.

5 Future Work

This work can be extended in many different directions.

Sensor (bps) Mule (bps)
1.2k 0.47k
10k 4.7k
100k 47k
1M 470k
10M 4.7M
50M 21.4M

Table 2. MULE data rates required to not be a bottleneck,
using 40 minutes per day exposure time

The simulator currently only supports the satellite to
satellite communication links. The satellite to ground link
capacities are a theoretical evaluation. Simulating these
links will further increase the accuracy of the results.

The simulations identified collisions and medium
contention as a problem in larger networks. This should
be addressed by using a more sophisticated MAC protocol.

Satellites in the network currently assign flow with
complete disregard to other flows from other satellites that
may have been already be assigned to the same connec­

tion. One approach to alleviating this problem is using the
low capacity satellite to ground station link to exchange
flow assignment information and incorporate this into the
scheduling algorithm.

Further improvements to the connection prediction al­

gorithm, perhaps by incorporating first and second order
derivatives, has the potential to reduce power consumption.

Another intriguing direction is evaluating the applica­

bility of this protocol to satellites in different orbits, includ­

ing medium earth orbit satellites using GEO stationary data
mules.

A final improvement to this protocol is utilizing net­

work of multiple ground stations, as is being developed by
the GENSO [13] project. This is complimentary work that
will only increase the overall capacity of the network.

6	 Conclusion

The protocol proposed in this paper for connecting a sparse
satellite network with the use of data mules shows improve­

ment over sending data directly from each satellite down to
the ground. Both maximum throughput and end-to-end de­

lay are improved. The hardware assumed in the simulations
was well within a reasonable range, only 150km range and
100kbps data rate. The maximum goodput was increased
by three times when all satellites have large amounts of
data to send, and almost five times when only one satel­

lite is sending large amounts of data. The end-to-end de­

lay was almost cut in half when sending 1MB per day per
satellite and is decreased by a factor of at least three when
sending large amount of data from only one satellite. In­

creasing the hardware of the satellites or connecting more
ground stations into the network as well as adding some of
the recommended future improvements this protocol will

outperform the current one by even more.

7	 Acknowledgements

This work was sponsored by the Department of the Navy,
Office of Naval Research, under Award # N00014-07-1­

1152.

References

[1] N. Abramson.	 THE ALOHA SYSTEM: another alter­

native for computer communications. In Proceedings of
the November 17-19, 1970, fall joint computer conference,
pages 281–285, Houston, Texas, 1970. ACM.

[2] S. Bansal, R. Shorey, and A. Misra. Comparing the routing
energy overheads of ad-hoc routing protocols. In Wireless
Communications and Networking, 2003. WCNC 2003. 2003
IEEE, volume 2, pages 1155–1161 vol.2, 2003.

[3] C.	 Cal Poly San Luis Obispo. PolySat.
http://polysat.calpoly.edu/index.php, 2009.

[4] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.	 pages
651–663. McGraw-Hill Book Company, 2nd edition edi­

tion, 2001.

[5] H. Cruz-Sanchez, L. Franck, and A. Beylot. Precomputed
routing in a store and forward satellite constellation. In Ve­
hicular Technology Conference, 2007. VTC-2007 Fall. 2007
IEEE 66th, pages 240–243, 2007.

[6] Y. He and S. Pelagatti. CRT: an adaptive routing protocol for
LEO satellite networks. In Information and Communication
Technologies, 2006. ICTTA ’06. 2nd, volume 2, pages 2496–
2501, 2006.

[7] A. Hung, M. Montpetit, and G. Kesidis. ATM via satellite:
a framework and implementation. Wirel. Netw., 4(2):141–
153, 1998.

[8] O. Korcak and F. Alagoz. Analysis of priority-based adap­

tive routing in satellite networks. In Wireless Communica­
tion Systems, 2005. 2nd International Symposium on, pages
629–633, 2005.

[9] T.	 Koritza. Store and forward routing for sparse
pico-satellite sensor networks with data-mules.
http://digitalcommons.calpoly.edu/theses/104, 2009.

[10] J. Magliacane.	 PREDICT - a satellite Tracking/Orbital
prediction program. http://www.qsl.net/kd2bd/predict.html,
2009.

[11] N2YO.com. LIVE REAL TIME SATELLITE AND SPACE
SHUTTLE TRACKING. http://www.n2yo.com/, 2009.

[12] C. S. L. Obispo.	 CubeSat community website - home.
http://cubesat.calpoly.edu/, Feb. 2009.

[13] G. Project. GENSO. http://www.genso.org/, 2009.

[14] S. Shapiro.	 Generalizations of random store and for­

ward communication networks. Proceedings of the IEEE,
55(12):2191–2192, 1967.

[15] B. Zhang, G. Sukhatme, and A. Requicha. Adaptive sam­

pling for marine microorganism monitoring. In Intelligent
Robots and Systems, 2004. (IROS 2004). Proceedings. 2004
IEEE/RSJ International Conference on, volume 2, pages
1115–1122 vol.2, 2004.

http:http://www.genso.org
http:http://cubesat.calpoly.edu
http:http://www.n2yo.com
http:N2YO.com
http://www.qsl.net/kd2bd/predict.html
http://digitalcommons.calpoly.edu/theses/104
http://polysat.calpoly.edu/index.php

