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ABSTRACT 
Pico-satellites have recently gained substantial traction in 
research and educational communities due to their rela­

tively low cost. The largest factor in keeping the cost down, 
their small size, also poses their biggest engineering chal­

lenge. The tiny, low power radios used to communicate 
with earth have extremely slow data rates. A typical pico­

satellite is within communication range of the ground sta­

tion for approximately 40 minutes per day with a theoreti­

cal maximum data rate of 1200 bps. At this speed a high-

resolution digital photograph can take weeks to download. 
This paper presents a novel communication protocol 

that allows a sparse network of pico-satellites to transfer 
data directly between one another. This capability is used 
to get the data to a “data mule”. The data mule is a spe­

cialized satellite capable of relaying traffic back to earth at 
higher rates than the current satellites. 

This work includes an implementation of the commu­

nication protocol and a simulator used to evaluate the pro­

tocol. Simulation results show that, regardless of varying 
satellite topologies and traffic workloads, the protocol has a 
significant increase in both the quantity of data transferred 
to earth and a reduction in the total time required to transfer 
all the data. 

KEY WORDS 
Wireless Communications Protocols and Standards, Perfor­

mance Evaluation, Sensor Networks, CubeSat 

1 Introduction 

Satellites are becoming commonplace for applications in­

cluding connecting the most remote regions of the world 
to digital communications networks, positioning systems, 
military applications and scientific research. For the most 
part the satellites used for these applications are very large 
and expensive to design, build, and launch. These eco­

nomic factors prevent satellites’ use as a platform for learn­

ing and important small-scale science, inspiring a pico­

satellite revolution. 
Pico-satellite projects, lead by CubeSat [12], have be­

gun to explore cheaper solutions to flying satellites in very 
low earth orbits. These satellites are very small, 10 cen­

timeters cubed, and have extremely constrained operating 

budgets for weight, power, and communications. The low 
orbits of these satellites permit the use of lower power, 
shorter range radios, but also creates additional communi­

cation problems. Due to the low orbits there is a very lim­

ited window of radio communication exposure to ground 
stations that operate the satellite. Each satellite is typically 
in range of the ground station for approximately 40 min­

utes. This, along with the maximum possible data rate of 
1200 bps, yields roughly 350Kb during a single pass, ig­

noring communication protocol overhead. Goodput is sub­

stantially less once overhead and interference is taken into 
account. While this data rate is sufficient to operate the ba­

sic satellite systems, it is rapidly becoming a liability for 
performing more sophisticated scientific experiments. 

This work proposes a store and forward network ar­

chitecture and related protocols that increases the overall 
downlink capacity for a small cluster of CubeSat satel­

lites. The cluster of satellites is heterogeneous, containing 
at least one “data mule”. The data mule is equipped with a 
more powerful radio capable of faster communication with 
the ground station. This radio comes at the expense of any 
scientific payload in the satellite. Satellites in the cluster 
can communicate directly with each other. They cooperate 
to forward data, potentially over multiple hops within the 
cluster, to the data mule. The data mule finally transfers the 
data to earth. 

This work also evaluates the proposed protocol using 
an accurate orbital simulator and actual CubeSat orbits as 
observed from prior launches based on their TLEs. The pa­

per shows this communication architecture is able to send 
more data over a given amount of time with less end-to­

end delay. Depending on the number of satellites and traffic 
characteristics the overall capacity of the network increases 
between three and five times and the end-to-end delay is re­

duced between 50 and 75 percent. 

The remainder of the paper is organized into 5 addi­

tional sections. Section 2 reviews other work related to this 
problem. Section 3 proposes the network protocol. Section 
4 discusses the simulator, the experiments that were run, 
and their results. Sections 5 and 6 present future directions 
for this work and conclude the paper. 



2 Related Work 

Solutions to the unique set of challenges facing pico­

satellite constellations are not readily apparent in related 
work. These challenges are created by the low earth orbits 
the satellites fly in. The network is rarely, if every, fully 
connected. This precludes discovering a single path from a 
source satellite to the data mule and using it for the duration 
of the network. The network is also extremely sparse. It is 
expected that two satellites may wait a few months before 
flying within communication range of each other. Due to 
the nature of orbits, it is also the case that these communi­

cation opportunities are predictable with a high degree of 
accuracy. 

2.1 Satellite Constellation Protocols 

Most related work in the area of store and forward satellite 
networks is focused specifically on fully connected constel­

lations and satellites with much higher orbits [8]. Parts of 
these works can be used in a sparse network of LEO satel­

lites, but most of the protocols described are impractical 
solutions to the problem. 

The most common protocol being used in satel­

lite communications is adapted from asynchronous trans­

fer mode (ATM). ATM based protocols such as [7] use 
Geosynchronous satellites to connect several ground sta­

tions. This protocol focuses on a network with GEO satel­

lites, which are always connected and have a static net­

work topology, making this protocol impractical for pico­

satellite constellations. 
Other routing algorithms have been proposed to cre­

ate more purpose built protocols that specifically take ad­

vantage of satellite networks, but most of these assume that 
the satellite network is fully connected. CRT is an adap­

tive routing protocol that aims at providing routing to large 
constellations of LEO satellites. The main focus of this 
algorithm is to provide congestion control and load bal­

ancing over the constellation. CRT is specialized because 
it requires hardware that can receive from all neighboring 
satellites simultaneously [6]. Because of these constraints 
it is not directly applicable to the pico-satellite application. 

Precomputed routes in satellite constellations were 
proposed by [5]. This routing protocol is not used for inter-

satellite links (ISLs), but aimed at communicating from 
ground stations through satellites to other ground stations. 
Precomputed routes works well on static networks, such as 
GEO satellites connecting to a ground station, but it is not 
well suited to the dynamic network found in pico-satellites. 

All of these projects deal with either inter-satellite 
communications focused on fully connected large meshes 
of satellites or with communicating directly to ground sta­

tions only. This paper, however, focuses on satellites that 
are very sparse, and will rarely be in range of one another. 
Because of the sparseness and discontinuity of the network, 
store and forward techniques need to be used not only when 
communicating with the ground stations, but also when 

communicating between satellites. 

2.2 Sensor Networks 

The existing research literature on sensor networks is more 
closely related to pico-satellite constellations than the re­

search focused on GEO satellites and satellite constella­

tions. The size and sparseness of the pico-satellites along 
with the low power budget and difficulty of getting data 
back to a single end-point make this problem closely re­

lated to a sensor network. In sensor networks there are 
several small nodes collecting data and transmitting that 
data back to a single place, the sink. In many cases the 
nodes, including the sink, can be moving. It is also possi­

ble to have multiple sinks in the same network. The com­

mon approach for improving the throughput and decreasing 
power consumption of a sensor network is the use of a data 
mule [14]. In [15] a submarine robot was used as a data 
mule to retrieve observation data from mobile sensors on 
the ocean floor that were collecting information on marine 
microorganisms. A conceptually similar data mule would 
be ideal for collecting data from various pico-satellites and 
relaying the data to the sink (ground station). 

2.3 CubeSat 

The GENSO Project [13] is building a cooperative network 
of ground stations that all contribute to the CubeSat project. 
This approach is valuable because the communication win­

dow between a single ground station and a single satellite 
in orbit is small. Increasing the number and geographic 
diversity of ground stations may allow nearly constant con­

tact with any of the CubeSat satellites. The GENSO project 
compliments this work by also increasing the communica­

tion window with the orbiting data mule. Using the pro­

posed protocol in conjunction with GENSO could further 
increase the network throughput. 

3 Communication Protocol 

The communication protocol is based on a simple premise 
– orbits are predictable. This assumption is appropriate 
because current CubeSat satellites lack attitude and direc­

tional control. Once the individual satellites learn the rela­

tive orbits of each other, they can schedule when and how 
much data to be sent back to earth either directly through 
the data mule, indirectly through the data mule and other 
intermediary satellites, or directly to the ground stations. 
This section describes the details of the communication 
protocol, including forwarding, routing / packet schedul­

ing, MAC protocol, and the transport protocol. A more 
detailed explanation of this protocol can be found in Mr. 
Koritza’s thesis [9]. 



ID1 ID2 Type1 Type2 Last Connection Duration Bit Rate Time Between 
S 1 SNSR SNSR 9/18/2008 2s 5 bytes/s 34 days 
S D SNSR HBM 10/03/2008 3s 5 bytes/s 60 days 
1 D SNSR HBM 8/30/2008 4s 5 bytes/s 76 days 

Table 1. Example of what a link state table looks like (SNSR is a Sensor) 

3.1 Routing 

Terrestrial routing protocols typically operate on a next-

link basis. The routing to any destination either implicitly 
selects the next-hop link using a distance-vector protocol, 
or explicitly selects the next-hop link using a link-state pro­

tocol. Due to the unique characteristics of low earth orbit 
satellite networks, there is no single persistent link to use 
as the basis for routing. Satellites are within communica­

tion range for a relatively short period of time and then can 
not directly communicate for a much longer period of time. 
This work uses the concept of a connection to capture this 
fundamental difference. 

A connection is single, contiguous 1 period of time 
where two satellites are within communication range of 
each other. Over the course of a year a satellite may be in­

volved in five unique connections with the same peer satel­

lite. The protocol is similar to a link state protocol because 
every node in the network has a complete view of the global 
topology. It differs because the topology is composed of 
connections and not links. 

Tracking individual connections requires the addition 
of three pieces of information to each entry in the routing 
table. It is necessary to store the anticipated duration of 
a connection. This information, used in conjunction with 
the expected data rate, gives the routing logic a close ap­

proximation of the maximum amount of data that can be 
transmitted during the connection. This is an important part 
of scheduling a single, larger data transfer across multiple 
connections. 

The two other new pieces of information are the last 
time the connection with the same peer was established and 
the period of connections. Using these two pieces of infor­

mation it is possible to accurately predict the start of the 
next n connections to the same peer. This information is 
necessary for sending a large file across multiple connec­

tions. 

3.2 Learning Connection Parameters 

CubeSats are launched as secondary payloads on much 
larger missions. As a result there is almost no control over 
the actual orbit of the satellites, making it extremely diffi­

cult to pre-program a table of connection parameters. To 
work around this problem a newly launched satellite enters 
the network in an “active learning” state. 

1Due to orbits and rotational velocity it is possible there are short com­

munication “grey periods” that interrupt an otherwise contiguous connec­

tivity. The protocol accounts for these periods by decreasing the goodput 
estimate for the connection, but the periods do not cause one connection 
to terminate and the next one begin. 

In the active learning state a satellite broadcasts a 
HELLO packet once every 120 seconds. All satellites that 
hear the broadcast respond, initiating a new connection. 
The initialization time is one of the connection parameters 
that gets recorded in the routing table. Once the connec­

tion is initiated routing and payload data is transferred as 
described below. 

After there is no more data to transmit a satellite sends 
one “you there?” request per minute to its peer satellite. 
The peer will always acknowledge the “you there?” re­

quest. Once the satellites are out of range all responses will 
stop. The timestamp of the last response is used to deter­

mine the duration of the entire connection. 
The final piece of information needed is the period be­

tween connections. To learn this parameter it is necessary 
to observe a second connection to the same peer satellite. 
The difference in start timestamps between the connections 
is the period. 

Due to the nature of orbits realistic period values are 
anywhere from a few days to many months. If a satellite 
cluster has a set of orbits with a period measured in months, 
it will take that long before there is enough information 
to begin routing data through the entire network. As an 
optimization, it is possible for the earth station to seed the 
connection states based on the observed two line elements 
(TLEs). These accurate orbit descriptions are provided by 
NORAD based on radar tracking data within a few days 
of launch. Note that seeding the network in this way is an 
optimization, not an operational requirement. 

There are two requirements for leaving the “active 
learning” state and entering the “normal operations” state. 
First, the connection parameters for all nodes in the clus­

ter must be learned. This requires directly observing two 
connections, as described above. The second requirement 
is identifying which satellite or satellites are data mules. 

In the “normal operations” mode a satellite stops peri­

odically broadcasting the HELLO packet. Instead, the node 
schedules the next HELLO packet based on the information 
in the connection state table. It determines the anticipated 
start time of the next earliest connection, and begins broad­

casting the HELLO packet 5 minutes before the anticipated 
start of the connection. This small buffer compensates for 
small errors in the start time estimation. Not transmitting 
the HELLO packets at other times reduces the power con­

sumption of the satellite. The other main difference in “nor­

mal operations” mode is that data, and not just routing in­

formation, is exchanged during a connection. 
Regardless of the operating mode, the properties of 

each subsequent connection are used to refine and update 
the connection state table. 



3.2.1 Duration Calculations 

“Grey periods” complicate the connection duration calcu­

lation. The three-dimensional orbit of two satellites cause 
the straight-line distance between the two to vary. The dis­

tance is not strictly decreasing as the satellites approach 
each other, and it isn’t strictly increasing as they fly apart. 
This interesting characteristic prevents duration calcula­

tions from simply subtracting the connection end time from 
the start time. Instead the algorithm keeps track of the 
last time a packet was received from the other satellite, in­

cluding acknowledgments. If the time between packets is 
greater than five minutes the algorithm assumes a grey pe­

riod occurred and adds the interval to a running total of 
time taken by grey periods. Every two hours the satellites 
check to see when the last time a packet was received, if no 
packet has been received in the past two hours then the con­

nection is ended and the duration is calculated, subtracting 
the running grey period total from the duration. Two hours 
was chosen based on experience with and observation of 
existing CubeSat orbits. 

3.2.2 Best Path 

Finding the shortest path from one satellite to another is 
more complicated in sparse satellite networks than in most 
terrestrial and dense satellite networks. In most dense satel­

lite networks the topology is static and fully connected. 
This enables a routing protocol to use either a classic 
distance-vector algorithm, or to initiate a single route dis­

covery process every time it needs to communicate with 
a new endpoint. Even in a dynamic, fully connected net­

work protocols such as AODV, DSDV, or DSR can re-run 
the route determination logic to compensate for a broken 
link [2]. However, in a sparse satellite network the short­

est path changes as a function of the physical location and 
relative speeds of every other satellite in the network. 

The metric optimized by this routing protocol is la­

tency. Given the positions of other satellites and other in-

transit packets, it always delivers data with the smallest 
possible latency. To accomplish this it is necessary to look 
at all combinations of connections between all satellites, 
even subsequent connections between the same satellite. 
The information contained in the link state table enables the 
protocol to predict connection capacities into the indefinite 
future. The routing path algorithm must also take into ac­

count the preexisting load on each of the connections. The 
protocol uses a modified version of the Ford Fulkerson [4] 
flow algorithm to find the available flow in combination 
with the lowest latency path to the destination. 

The Ford Fulkerson Algorithm is an iterative method 
that is initialized by setting all flow in the network to zero. 
Each iteration finds an “augmenting path” from the source 
to the sink, increasing the flow along that path. The max­

imum capacity of each edge in the graph minus the cur­

rent assigned flow is an edge’s residual flow (the remaining 
available flow for that edge). An augmenting path is a path 

from source to sink in the residual network. The iterations 
are repeated until there are no remaining augmenting paths 
in the residual network. 

3.2.3 Topology Graph 

The protocol uses a standard internal graph representation 
for the satellite network topology. The node originating the 
data is the one and only source node in the network. Except 
for connections involving the source node, each connection 
results in a new edge and new destination node in the net­

work. A single satellite typically results in many nodes in 
the topology graph. To capture the ability of a single satel­

lite to store and forward data across multiple future con­

nections, an edge with infinite capacity is added between 
nodes representing the same satellite. This edge is directed 
so that data can only flow forward in time, not backwards. 

The maximum capacity of each edge is computed 
based on the anticipated bitrate and duration of a connec­

tion. This maximum is reduced by a small percentage to al­

low for protocol overhead and other unforeseen factors that 
reduce connection goodput. The residual capacity for each 
edge is initialized to zero. The residual capacity is only 
changed as the result of augmenting flows and based on 
actual transferred data. The residual is never reset to zero 
during the life of the satellite. Each edge also includes a 
timestamp indicating when the edge will become available. 
This timestamp is used to decide between two otherwise 
equivalent edges. 

The topology is always evolving. Nodes are ac­

tively pruned from the graph once a connection has oc­

curred. Maximum connection capacities, connection du­

rations, and timestamps are continually updated as better 
estimates become available. Also, residual edge weights 
get updated to reflect the quantity of data actually transmit­

ted during a connection, not just the anticipated amount of 
data. 

The topology graph is extended on-demand by adding 
nodes and edges for future, predicted connections. The 
graph is only expanded when there is more data that needs 
routing and no additional augmenting flow in the residual 
network. 

3.2.4 Routing Algorithm 

All data received from application(s) running on the satel­

lite and received from other satellites in the network is 
routed the same way. The next best path through the resid­

ual network is determined using a DFS algorithm based on 
time of delivery. This algorithm returns the lowest latency 
path that still has non-zero residual flow available. If no 
such path exists the topology graph is expanded as previous 
described. This augmenting path includes the maximum 
number of bytes that can be transmitted over the path. If 
the path can accommodate all the data, just that one path is 
used. If the data is too big for the path, the data is split into 
two pieces. The first piece is the exact size of the path, and 



gets scheduled for transmission over the path. The rout­

ing algorithm then iterates with the remaining data until a 
path has been selected for all pieces of the original data. 
After using some of a path’s capacity the algorithm always 
updates the residual network graph. 

Once the path for each piece of data has been deter­

mined, the data itself it queued in the output queue corre­

sponding to the next-hop satellite. Typically the final des­

tination for the data will be the data mule, which will for­

ward it on to earth. However this is not a requirement. The 
same protocol works to enable multi-hop satellite to satel­

lite communication simply by finding an augmenting flow 
to a different destination. 

3.3 Data Link Layer 

The data link layer is responsible for establishing connec­

tions, estimating the connection parameters between two 
adjacent satellites, and detecting and recovering from col­

lisions, dropped packets, and timeouts. 
The data link layer is currently implemented using a 

basic Aloha protocol. Aloha is a naive mac protocol that 
simply sends data as soon as it becomes available. If a colli­

sion occurs it exponentially backs off to minimize the prob­

ability of future collisions. Even though Aloha has a max­

imum capacity of 18% [1] it is acceptable in this network 
because the vast majority of data is generally flowing to­

wards the data mule. Other than acknowledgements, there 
isn’t much bi-directional communication. If it was desired 
to be able to upload large amounts of data to the satellites 
then a more sophisticated protocol would be needed. Such 
an improvement is left for future work. 

The data link layer uses explicit acknowledgements to 
detect data loss. The recipient of a data packet is required 
to immediately acknowledge as much to the sender. If the 
sender doesn’t hear the acknowledgement within a short 
period of time it retransmits the packet. The timing of the 
Aloha protocol is such that the sender anticipates the ac­

knowledgement and will not begin transmission of the next 
packet until it arrives. Therefore the acknowledgement and 
subsequent data packet will not collide. 

3.4 Network Layer 

The network layer is responsible for routing and uses the 
algorithm previously described. In addition, it also con­

trols the exchange of information across each connection. 
The data link layer notifies the network layer when a new 
connection becomes available. The first few packets in the 
connection exchange the link state table between the satel­

lites. This enables each satellite to learn about all other 
satellites in the cluster, whether or not the two will every 
have a direct connection. Once the entire link state table 
has been exchanged, the two satellites transfer any pending 
data. 

Pending data is kept in a separate queue for each satel­

lite. Once a piece of data has been routed and the next-hop 

satellite is determined, the data is added to the outbound 
queue for that satellite. The network layer begins transmit­

ting the data from this queue after a connection is estab­

lished and the link state tables have been exchanged. De­

pending on the size of the queue, the capacity of the con­

nection, and the number of transmission errors, the queue 
may or may not be completely drained in a single connec­

tion. If there is data left in the queue that was supposed to 
be transmitted during the connection, it gets removed from 
the queue and rerouted. If there is data remaining in the 
queue that wasn’t scheduled for transfer until a future con­

nection, it remains in the output queue. 

4 Protocol Evaluation 

Due to the expense of building, flying, operating satellites, 
and the uncertainties of testing a new communication pro­

tocol, we decided to prototype the protocol in a simulator. 
For the simulator to be useful it must be able to simulate ac­

curate three dimensional orbits of CubeSat pico-satellites, 
detect collisions, and determine whether or not two satel­

lites are within communication range. It is important to 
simulate actual CubeSat orbits rather than idealized orbits 
or orbits of much higher satellites. 

After considering various commercial alternatives, 
we decided to build our own simulator around the open 
source PREDICT [10] orbit tracking software. The PRE­

DICT code provided the logic to accurately determine 3D 
location of a satellite at any point in its orbit. To further 
increase realism all orbits used in the simulator are actual 
orbits of previous CubeSat satellites as reported by NO­

RAD’s satellite tracking facility. A discrete event simula­

tor was added to the PREDICT code. This enabled precise 
simulation of fine-grained network events. 

The radio reception model was based on two parame­

ters, bitrate and communication range. Events were sched­

uled for the beginning end of a transmission, and the be­

ginning and end of a reception. These events were used to 
detect collisions at a receiver. A collision happens when 
another packet arrives at the receiver while it is actively re­

ceiving a different packet. In order for a transmission to be 
successful there can not be any collisions and the satellites 
must have remained within communication range the entire 
time. 

The simulator is designed in such a way that the pro­

tocol implementation code can not access the internal sim­

ulator data. For example, it is impossible for the protocol 
implementation to “cheat” and obtain a list of all satellites 
and their positions from the simulation engine. This forces 
the protocol implementation to not cut corners, and makes 
it much easier to port the implementation to a CubeSat plat­

form in the future. 
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Figure 1. Maximum amount of data through network for a 
varying number of hops and transmission sources. 

4.1 PolySat Communication Protocol 

The PolySat program at Cal Poly operates two CubeSat 
satellites, CP3 and CP4. The only communication that 
takes place is done at 1200 bps directly between the ground 
station and either the CP3 or CP4 satellites. Due to the or­

bits of the satellites there are less than 40 minutes per day 
where communication actually takes place. The satellites 
lack the capability to communicate directly with each other. 
The “PolySat” direct communication protocol is used as the 
baseline performance data point to evaluate the effective­

ness of the data mule protocol. 

4.2 Results 

The results show that this protocol has substantial improve­

ment over the PolySat protocol in both goodput and end-to­

end delay. The satellites used in this evaluation were CP3 
and CP4 from the PolySat project [3], SAUDICOMSAT 4 
and 6 commercial satellites from Saudi Arabia, and MAST 
from Stanford University [11]. 

4.3 Goodput 

Goodput incorporates all protocol overhead, such as packet 
headers and retransmissions, to determine the actual net­

work performance as seen by the applications. We ran 
several 365 day simulations to gather goodput data. The 
results presented in this paper are average daily goodput 
values, ignoring the 138 days required to establish the link 
state table. Ignoring these days is justified because the or­

bit mode seeding optimization described previously is ex­

pected to almost eliminate this startup time. 
Figure 1 shows how the goodput changes as a func­

tion of the number of satellites in the network. This data is 
shown for three network configurations. The common as­

sumptions across the configurations are the presence of just 
one data mule and a satellite-to-satellite radio with 150km

Number of Satellites (Excluding Mule) 

Figure 2. Absolution number of collisions observed while 
performing the goodput experiments in Figure 1. Note the 
Y-axis is log-scale. 

range capable of communication at 100kbps. These param­

eters were chosen to be as realistic as possible given exist­

ing radio technology. The configurations vary in the num­

ber of transmitting satellites and the utilization of multi-hop 
routes. In the simplest case there is just one source satel­

lite talking directly to the data mule. This is shown in the 
“CP4” and “MAST” lines in the graph. This data provides 
a reasonable upper bound on the amount of data that can be 
communicated between two satellites using the radios in 
the simulation. It also confirms the expectation that the ac­

tual amount of data transferred is dependent on the relative 
orbits of the two communicating satellites. 

The second configuration tested was all satellites 
sending as much data as possible directly to the mule (“all, 
single-hop”). This simulates how the network would be­

have if there was no multi-hop inter-satellite communica­

tion. This isolates the benefit of a data mule from the bene­

fit of a multi-hop path to the data mule. The last configura­

tion was all satellites sending as much data as possible via 
multi-hop paths to the mule (”all, multi-hop”). 

The zero value on the X-axis in figure 1 is the max­

imum goodput in the current PolySat satellites. This is a 
theoretical maximum calculated on the properties of the ac­

tual connection and orbits. Each connection has a data rate 
of 1.2kbps and a maximum of 40 minutes per day exposure. 

Figure 1 shows the PolySat communication only 
achieves 0.34 MB per day of data transfer. Both CP4 and 
MAST alone communicating to a data mule are a big im­

provement. CP4 is approximately double with 0.6 MB per 
day and MAST is almost five times better with 1.43 MB 
per day. 

4.4 Collisions 

Collisions are undesirable. One source of collisions is 
two separate radio transmissions arriving overlapped at the 
same receiver. In this case both transmissions are corrupted 
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Figure 3. End-to-end Delay of large files transferred back 
to the ground station. Each line represents a different series 
of simulations. 

and must be retransmitted, resulting in overall lower good-

put from the network. Collisions are also one measure of 
the effectiveness of a MAC protocol. As the number of 
collisions created by the MAC protocol increases, so does 
the importance of fixing that protocol to improve overall 
performance. Figure 2 shows the absolute number of colli­

sions seen in each corresponding experiment from figure 1. 
Figure 2 shows that collisions remain relatively infre­

quent with one, two, or three satellites in the network. 800 
collisions is a small number when compared to the several 
hundred thousand or millions of packets that are transmit­

ted. However once the 4th satellite is added to the network 
the collisions increase dramatically to over 31000 in the 
case of “MAST”. In addition, the number of collisions in 
the “all, multi-hop” case is high. The network load is much 
higher in this case as well, because every node is transmit­

ting as much data as possible. 
There are two reasons for this. First, with 4 satellites 

in the network all transferring large amounts of data, it is 
more probable for two satellites to have slightly different 
forwarding schedules. That is, if the source satellite S is 
expecting the packet to traverse the path S ⇒ T ⇒ U , 
but intermediate satellite T decides that T ⇒ V is more 
efficient, other packets that S has scheduled on the path 
S ⇒ V will cause a large increase in collisions. One pos­

sible solution to this problem is to introduce a source rout­

ing scheme where the original sender can specify the entire 
route the packet traverses. 

The second step that can be taken to reduce the num­

ber of collisions is to implement a more intelligent mac 
protocol that does a more accurate job of scheduling radio 
transmissions. 

4.5 End-to-End Delay 

End-to-end delay of large transfers is another benefit of this 
protocol. Figure 3 shows that using this protocol even with 
a naive mac protocol, there is still significant improvement 

in end to end delays for larger files. The results also show 
the delay times achieved, as well as the amount of data that 
can be sent in those times, differs greatly between different 
satellites due to the differences in orbits. 

As in previous simulations, each transmitter/receiver 
pair was tested with a varying number of other satellites in 
orbit. When adding the extra satellites the do not originate 
any data. These additional satellites will forward the data 
but do not have any of their own data to send. 

The number of satellites at zero on the X-axis signi­

fies the current PolySat method of sending data between 
a satellite and Earth directly. This is the same theoretical 
maximum calculation discussed earlier. Including this data 
point makes it obvious that all configurations of the multi-

hop protocol outperform what is currently being used. 
One interesting result seen in figure 3 is that the 

amount of time to transfer the 250MB file actually goes 
up when three additional satellites are used in the network. 
This is caused by a large number of collisions occurring 
during the data transfer. Once the third extra satellite is 
added the number of collisions goes from about 700 to 
over 5000. The solutions to this problem were discussed 
in section 4.4. It is worth noting that despite this behavior, 
the CubeSat network is able to transfer data back to earth 
quicker than what is currently being used. 

4.6 Data Mule Capacities 

The graphs in the previous section assume the data mules 
that are being used are not acting as a bottleneck in the 
system. Even though this data mule needs to transmit a 
longer distance to the ground station it should be able to 
get much higher speeds than the satellites are currently able 
to achieve. This is due to the larger communication budget 
afforded by not including any scientific payload on the data 
mule. Table 2 shows the minimum bit rates needed by the 
mule compared to the bit rate of the satellite to satellite ra­

dio. Table 2 assumes two satellites in the network always 
send the maximum amount of data and the data mule has 
only 40 minutes per day exposure time to the ground sta­

tion. As the table shows, when there are two satellites in 
the network the data mule needs to send data to the ground 
station at less than half the speed of the satellites. As the 
number of satellites increases the bit rate required by the 
data mule will also need to increase, but because these net­

works are sparse with very few satellites this is a realistic 
constraint. When the data needs of a constellation grow too 
large for the downlink capacity of a single data mule, it is 
always possible to add additional data mules. Assuming 
there are equal bit rates in both the inter-satellite radios and 
the data mule, there should be approximately one data mule 
per four satellites. 

5 Future Work 

This work can be extended in many different directions. 



Sensor (bps) Mule (bps) 
1.2k 0.47k 
10k 4.7k 
100k 47k 
1M 470k 
10M 4.7M 
50M 21.4M 

Table 2. MULE data rates required to not be a bottleneck, 
using 40 minutes per day exposure time 

The simulator currently only supports the satellite to 
satellite communication links. The satellite to ground link 
capacities are a theoretical evaluation. Simulating these 
links will further increase the accuracy of the results. 

The simulations identified collisions and medium 
contention as a problem in larger networks. This should 
be addressed by using a more sophisticated MAC protocol. 

Satellites in the network currently assign flow with 
complete disregard to other flows from other satellites that 
may have been already be assigned to the same connec­

tion. One approach to alleviating this problem is using the 
low capacity satellite to ground station link to exchange 
flow assignment information and incorporate this into the 
scheduling algorithm. 

Further improvements to the connection prediction al­

gorithm, perhaps by incorporating first and second order 
derivatives, has the potential to reduce power consumption. 

Another intriguing direction is evaluating the applica­

bility of this protocol to satellites in different orbits, includ­

ing medium earth orbit satellites using GEO stationary data 
mules. 

A final improvement to this protocol is utilizing net­

work of multiple ground stations, as is being developed by 
the GENSO [13] project. This is complimentary work that 
will only increase the overall capacity of the network. 

6	 Conclusion 

The protocol proposed in this paper for connecting a sparse 
satellite network with the use of data mules shows improve­

ment over sending data directly from each satellite down to 
the ground. Both maximum throughput and end-to-end de­

lay are improved. The hardware assumed in the simulations 
was well within a reasonable range, only 150km range and 
100kbps data rate. The maximum goodput was increased 
by three times when all satellites have large amounts of 
data to send, and almost five times when only one satel­

lite is sending large amounts of data. The end-to-end de­

lay was almost cut in half when sending 1MB per day per 
satellite and is decreased by a factor of at least three when 
sending large amount of data from only one satellite. In­

creasing the hardware of the satellites or connecting more 
ground stations into the network as well as adding some of 
the recommended future improvements this protocol will 

outperform the current one by even more. 
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