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Abstract 

This paper focuses on the optical mode analysis of laser diodes to improve light 

emission. Under the mode analysis, we compare the optical confinement factor (OCF) 

percentage of the emitting light from the LDs. There are two structures which we 

analyze: a basic GaN waveguide structure and an InGaN waveguide structure. The 

second structure has additional InGaN waveguides and is analyzed under two additional 

design variations: the concentration of Indium and the thickness of the top waveguide 

layer. The results of this study indicate introducing InGaN waveguide layers correlates 

with lower order modes (zero and first order) and increase the OCF values. The top 

InGaN waveguide layer, which has a higher concentration of Indium, appears to increase 

the OCF. However, the increased thickness of the InGaN layer causes the lower modes’ 

OFC to decrease. Over all, in the best case, InGaN LD has an OCF of 1.8896%, which is 

about a 312% improvement compared to that of GaN LD ( OCF=0.4535%). 
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Chapter I. Introduction 

Today Laser Diodes (LDs) are used for multiple applications. The use of solid 

state laser devices has been found in fiber optics, visual imaging, and in high quality 

media storage [1]-[3].  

1.1 Understanding the Laser Diode 

Laser diodes are classified under PN junction sense they have both donor (p-type) 

and acceptor (n-type) doped material. PN junctions form a bad gap created at the 

connecting section of the two materials. When a voltage is applied to the PN junction the 

potential energy, which is required for an electron to jump across the bad gap, is reduced 

allowing electrons to continually jump across for current to flow through the device. 

Consequently when the electron jumps across this band gap energy is released in the form 

of light (photons) or heat (phonons). This release of energy can be controlled depending 

on the type of martial being used, which lead to different types of electron devices such 

as diodes, light emitting diodes (LEDs), and LDs. 

The distinction of LDs from other PN junctions is that LDs emit light under a 

controlled reaction. In order for LDs to emit light the device must be stimulated by 

obtaining a certain threshold of energy in the form of photons. Once this threshold is 

obtained light is emitted in a narrow polarized beam. In order to improve efficiency 

different methods have been used to reduce the energy threshold and improve the light 

extraction of LDs. 

1.2 The Prospect of Gallium Nitride 

Recently major development in wide-gap III-V nitride semiconductors by Shuji 

Nakamura have shown the practical application for LEDs and LDs [4][5]. GaN devices 

have been used for commercial blue and green LEDs due to direct band gap properties. 

The direct band gap properties allow electrons to jump across directly to holes creating 

photons, in comparison to indirect band gaps that do not produce photons due to an 

intermediate phase the electrons must jump through to reach the hole [6]. However there 

are disadvantages with GaN such as poor crystal quality, inability to receive p-type 

doping, high resistive p-type layer, and high refractive index [7]. S. Nakamura overcame 

these flaws by performing two techniques. The first technique was the Two Flow Metal 
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Organic Chemical Vapor Deposition (TFMOCVD), which improved the lateral growth of 

crystals by pumping in gas perpendicular and parallel to the substrate [4][5]. The second 

technique involved annealing the substrate in a hydrogen free environment at high 

temperatures [4][5]. This process released p-type impurities bound with hydrogen atoms 

such as Mg-H preventing the p-type semiconductor from becoming intrinsic and fixed the 

issues involving the p-type layer.  

1.3 Current Issues and Progression with GaN 

However the high refractive index of GaN was still an issue that reduces the 

efficiency of these structures due to total internal reflection [8]. The refractive index is a 

property of the material that defines how light waves will interact with the boundaries of 

the material, represented by Snell’s law in equation (1). 

n1 sin θ1( )= n2 sin θ2( )         (1) 

The high refractive index causes multiple passive waveguide to form in the device 

leading to transverse mode coupling [9][10]. The total internal reflection along transverse 

mode coupling is the cause of ghost modes forming within the structure. This is due to 

the light being refracted back into the structure at the boundaries of the multiple passive 

waveguides [11][12]. Recently, InGaN waveguide layers have been used to enhance the 

intensity of GaN LDs in experiments [13]. This is due to the higher refractive index that 

Indium introduces in comparison to Gallium. The difference in refractive index helps 

control the photons in an active region to stimulate light emission [6]. Studies have found 

that lower active modes use less current and lower power to operate the LDs, which can 

also improve the lifetime of the LD [14]. The various modes can be compared by their 

optical confinement factor (OCF) percentage, which is a ratio comparing the amount of 

light emitted over the active region in relation to the entire structure [15]. In this paper, 

we use mode analysis to prove how the addition of InGaN waveguide layers improves the 

light emission of mode patterns in theory. 
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Chapter II. Simulations 

2.1 Simulation Software 

This paper focuses on understanding how each waveguide layer in a GaN based 

LD contributes to the traverse mode coupling and optical confinement factor of the entire 

device. For simplicity, we propose to use a 1D multi-layered structure model using 

RSOFT’s LaserMOD software to run optical mode calculations [16]. The software 

defines each layer of the structure under a user defined material file. Once the structure is 

constructed the software uses the Ritz simultaneous iteration method perform the mode 

analysis. The Ritz simultaneous iteration uses Maxwell’s waveguide theory by applying 

the Helmholtz equation, defined in equation 1, and iterating the propagation of the waves 

induced by the current. With the Ritz simultaneous iteration we can comparing the energy 

of a mode to the energy of the active region to calculate the strength and location of each 

mode of the optical confinement factor. 

     (2) 

This equation (2) uses the following variables from the material file to perform 

the calculation of the optical confinement factor: the propagating field Em(x,y,z), 

refractive index neff,m, dielectric constant ε(x,y), and the propagation factor ko.  

 

2.2 Laser Diode LaserMOD Design 

In this study our objective is to improve the optical confinement factor and reduce 

ghost mode of GaN based LD devices by comparing two structures, a basic GaN 

waveguide structure and an InGaN waveguide structure. The injector and buffer layers 

are used for electric contacts to inject current. Additionally the n-GaN buffer layer is used 

as a base material to grow the laser diode. The cladding layers uses the small change in 

refractive indexes between the multiple layers to confined the photons from being 

released. The Electron Blocking Layer (EBL) controls the flow of electrons through the 

laser diode slowing the flow of electrons so they can be readily used for the active region. 

The spacer has a similar function to the cladding since it acts as a small buffer for the 

EBL and active region, while at the same time not letting a lot of photon emission due to 

the small changed in index of refraction from the EBL. The active region is the primary 
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waveguide layer that emits photons out by using the large change in index of refraction 

from the space and using quantum wells. The first and second structure are identical 

expect for the two additional InGaN waveguides waveguide layers introduced in the 

second structure.  

The first structure constructed was a basic GaN waveguide structure. The GaN 

waveguide structure can be seen in Figure 1 displaying the each layer. The properties and 

dimensions of each layer are defined in Table I. It includes the material, the thickness, the 

refractive index, and doping levels. 

 

 

Figure 1 Basic GaN Waveguide Structure 
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Table I Properties of the Basic GaN Waveguide Structure 

Layer Material Thickness 

[nm] 

Refractive 

Index 

Composition 

Injection p-GaN 30 2.5 - 

Cladding 90 

Pairs 

p-GaN/ 

p-AlGaN 

2.5/2.5 2.5/2.48 0.16 

Waveguide p-GaN 100 2.5 - 

Electron 

Blocking 

Layer 

p-AlGaN 20 2.48 0.18 

Spacer GaN 8.8 2.5 - 

Active 

Region 2 

Pairs 

InGaN/ 

n-GaN 

2.8/8.8 2.59/2.5 0.18/- 

Waveguide n-GaN 100 2.5 - 

Cladding 150 

pairs 

n-GaN/ 

n-AlGaN 

2.5/2.5 2.5/2.48 -/0.16 

Buffer n-GaN 3000 2.5 - 

 

The second structure constructed was an InGaN waveguide structure. The InGaN 

waveguide structure can be seen in Figure 2 displaying the each layer. The properties and 

dimensions of each layer are defined in Table II. It includes the material, the thickness, 

the refractive index, and doping levels. 
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Figure 2 InGaN Waveguide Structure 

Table II Properties of the InGaN Waveguide Structure 

 Layer Material Thickness 

(nm) 

Refractive 

Index 

Composition 

Injection p-GaN 30 2.5 - 

Cladding 90 Pairs p-GaN/ 

p-AlGaN 

2.5/2.5 2.5/2.48 0.16 

Waveguide p-GaN 100 2.5 - 

Electron Blocking 

Layer 

p-AlGaN 20 2.49 0.18 

Waveguide InGaN 80 2.59 0.03 

Spacer GaN 8.8 2.5 - 

Active Region 2 pairs InGaN/ 

n-GaN 

2.8/8.8 2.59/2.5 0.18/- 

Waveguide InGaN 80 2.59 0.03 

Waveguide n-GaN 100 2.5 - 

Cladding 150 Pairs n-GaN/ 

n-AlGaN 

2.5/2.5 2.5/2.48 -/0.16 

Buffer n-GaN 3000 2.5 - 
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 The first two simulations performed were modal analysis of the basic GaN 

waveguide structure and the InGaN waveguide structure. The analysis wave performed to 

measure the optical confinement factor for the first ten transverse electric modes at a 

wavelength of 450nm. 

 The third simulation performed was on the InGaN waveguide structure. This 

simulation focused improving the optical confinement factor of the fundamental modes 

and reducing ghost modes by altering the top InGaN waveguide. We altered the 

concentration of Indium in the top InxGa1-xN waveguide from 3% to 15% in steps of 3% 

at 450nm wavelength. By altering the concentration of Indium in the InxGa1-xN 

waveguide we change the refractive index of the waveguide. Below in Table III are the 

refractive indexes for each concentration of Indium. 

Table III Refractive indices of InxGa1-xN for each concentration of Indium  

Material Composition Refractive index 

In(0.03)Ga(0.97)N 2.59 

In(0.06)Ga(0.94)N 2.63 

In(0.09)Ga90.91)N 2.67 

In(0.12)Ga(0.88)N 2.71 

In(0.15)Ga(0.85)N 2.75 

 

The final simulation performed was on the InGaN waveguide structure. Similarly 

this simulation focused on altering the top InGaN waveguide to improve the optical 

confinement factor of the fundamental modes and reduce ghost modes. Using the mode 

analysis at 450nm wavelength, we observe how the OCF changes with each mode for the 

first ten modes. We altered the thickness of the top InGaN waveguide layer from 0.8µm 

to 1.08µm in steps of 0.1µm. 
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Chapter III. Simulation Results 

3.1 Basic GaN Waveguide Structure and InGaN Waveguide Structure Results 

For the first two simulations we performed modal analysis for the basic GaN 

waveguide structure and the InGaN waveguide structure as explained in the Simulation 

section Laser Diode LaserMOD Design. The basic GaN waveguide structure was used as 

a reference in comparison to the InGaN waveguide structure. The results of the basic 

GaN waveguide structure simulation can be seen below in Figure 3 displaying the OCF 

of each mode. The results show the maximum value of the OFC in our simulation is 

0.4535% for modes 2 and 9, while the fundamental modes (modes 0 and 1) remain below 

0.15%. The InGaN waveguide structure shows that the additional InGaN waveguides do 

in fact improve the performance in comparison to the basic GaN waveguide structure. 

The results of the InGaN waveguide can been seen below in Figure 4 displaying the OCF 

of each mode. Notice the structure clearly prefers fundamental modes (modes 0 and 1) 

with the OCF values of 1.5687%. The OCF here is increased by about 247% compared to 

the InGaN waveguide structure (OCF=0.4525%). Concurrently, the mode orders reduce 

from mode 2 and 9 to modes 0 and 1. This variation of mode order, to lower modes, 

shows the effects of the InGaN waveguide layers on the optical mode emission.  
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Figure 3 Modal analysis of the first structure displaying each mode's optical confinement 

factor 

 

Figure 4 Modal analysis of the second structure displaying each mode's optical 

confinement factor
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3.2 InxGa1-xN Waveguide Concentration Alteration Results 

 We perform the additional modal analysis for the InGaN waveguide structure by 

varying the doping level of the InGaN waveguide located above the active region, on the 

y-axis. The simulation was performed using the same parameters as explained in the 

Simulation section Laser Diode LaserMOD Design. The results of the simulation can be 

seen below in Figure 5, which is the mode analysis under different doping levels of the 

top InGaN waveguide layer. The plot displays each modes’ OCF and the legend displays 

the composition of the InGaN waveguide. The maximum values are always around the 

fundamental modes, with the highest values around 1.889%. As the concentration of 

Indium increased, we find an increase in the OCF from 1.5687% at In(0.03) to 1.889% at 

In(0.15). Furthermore, the OCFs decrease at the second order mode from 0.25% at 

In(0.03) to 0.08% at In(0.15). The improvement only seems significant in steps leading 

up to a 12% concentration of Indium at an OCF of 1.8696% since there is only a 0.02% 

increase in OCF from 12% Indium to 15% Indium concentration. From these results, the 

OCF has a 20% gain by using the In0.12Ga0.88N waveguide layer over the basic 

In0.03Ga0.97N structure. 
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Figure 5 Modal analysis of the second structure with varying concentration of indium in 

the InGaN waveguide 

 

3.3 InGaN Waveguide Thickness Results 

 In the last simulation, we varied the thickness of the same In0.03Ga0.97N 

waveguide layer. Again the simulation was performed using the same parameters as 

explained in the Simulation section Laser Diode LaserMOD Design. Figure 6 displays 

the OCF in relation to the changing thickness and the legend refers the mode order. From 

Figure 6(a), we notice fundamental modes share an inverse relationship between OCF 

and thickness since the increase in thickness relates to a decrease in OCF. However, for 

modes 2 and 3, we notice high values of an OCF about 1.02% at 0.38µm thickness and 

remains above 0.7% until a thickness of 0.68µm reached. From Figure 6(b), the high 

value of the OCF for mode 4 is 0.797% at 0.28µm, for mode 5 an OCF of 0.866% at 

1.08µm. From Figure 6(c), the highest OCF value for mode 7 is 0.866% at 1.08µm, for 

mode 9 a high OCF value of 0.549% at 0.58µm. The results show the fundamental modes 
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are most effective with thin layers, as well as in modes 2 and 3. The higher order modes 

display no clear trends, but have high OCF values with thicker waveguide layers. For the 

best results, the 0.08µm thickness has the highest OCF of 1.5687% for the lowest modes 

and the lower OCF for the high modes. 

 

(a) 
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(b) 

 

(c) 

Figure 6 Top grating transmission efficiency for period A=200nm with grating height h= 

(a) 50nm, (b) 100nm, and  (c) 150nm 
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3.4 Conclusion 

 Our simulations show that adding the InGaN waveguide layers can improve the 

OCF efficiency of the modal pattern. By using the first simulation model as a reference, 

the second simulation model shows that the InGaN waveguide shifts the active modes to 

modes 1 and 2 from 2 and 9, and increases the maximum OCF values to 1.5687% which 

is a 247% improvement. The increase concentration of Indium in the top InGaN 

waveguide results in a further increase in the OCF for lower order modes while 

decreasing the OCF for higher modes to 1.889% with a plateau at a 12% Indium 

concentration. This is about a 322% improvement compared to simulation model 1. 

Increasing the thickness of the top InGaN waveguide decreases the OCF of lower order 

modes and allows active high order modes to appear. In general, the 0.08µm is an ideal 

thickness of the InGaN layer in our simulations. 
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Chapter IV. Future Objectives 

 This paper focused on further understanding the effects of additional InGaN 

waveguide layer to the GaN LD. In the past InGaN waveguide layers have shown 

improvements in light extraction from the GaN LD. We have shown that the InGaN 

waveguide layers can reduce the mode order and improve the OCF of the device. Now it 

is important that we continue to understand how these additional InGaN waveguide 

layers affect GaN LDs by improving upon the top InGaN waveguide layer doped at 12% 

Indium with a 0.08µm thickness. This can be done understanding how the bottom layer 

could affect the mode pattern and OCF of the device. Further more, we can continue to 

understand how InGaN waveguide layers affect the current and voltage range of the 

device by performing Light-Current-Voltage (L-I-V) simulations. With a better 

understanding of the current and voltage range in relation to light extraction we could in-

turn find methods to improve the efficiency of the device.   
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