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DSP (digital signal processor) board. Experimental results show that it outperforms conventional
a b s t r a c t

An adaptive controller based on multi-layer feed-forward neural network is developed for real-time

voltage regulation of a class of PSFB (phase-shifted full-bridge) DC–DC converters. The controller has the

unique advantages of nonlinear mapping and adaptive learning, and performs well over a wide range of

input voltages and output load currents. The controller is implemented and tested in hardware using a

controllers in both line regulation and load regulation.
1. Introduction

A DC–DC converter is an integral part of many electrical
devices, especially in portable electronic equipment that requires
low-voltage/low-power operation and high reliability. Pulse-
width modulation (PWM) is often employed to control the DC
output voltage by modulating the duty cycle via electronic
switching circuits. To improve the power efficiency, many
different switching circuit topologies [2,3,5,6,10,16] have been
proposed, including phase-shifted zero-voltage switching full-
bridge (PSFB) converters. Unlike other topologies which may
require additional active circuit components or variable operating
frequencies, PSFB employs a soft-switching technology called
zero-voltage-switching (ZVS) that is especially suitable for the
advanced MOSFETs (metal oxide semiconductor field-effect
transistors) implementation [5,6,16].

To keep the output of a DC–DC converter stable, an appropriate
control signal should be applied. In conventional controller
design, it is assumed that all the circuit components are ideal
with no performance degradation and power loss; and the circuit
is operated at a stable bias point so that it can be modeled by a set
of linear equations [4,17]. However, in practice, the switching
network is highly nonlinear and an accurate mathematical model
is very difficult to obtain. In addition, the supply voltage and load
current may also fluctuate over a wide range. Thus, real-time
adaptive control becomes necessary to achieve proper system
performance.

Recently, artificial neural networks (ANN) have been applied to
improve the performance of DC–DC converters to dynamical
system changes [8,15]. However, no prior work has yet been
reported to control a PSFB converter using a neural network
approach.

In this paper, a controller design employing a multi-layer feed-
forward neural network is investigated. A Matlab Simulinks

model is developed to generate the data set; and the neural
network is trained off-line using a back-propagation algorithm.
A network pruning algorithm is also applied to determine the
appropriate size of the controller. Finally, the proposed neural
network controller for a PSFB DC–DC converter is implemented on
a DSP (digital signal processor) evaluation board. To accommodate
variations in system dynamics and parameters while maintaining
fast response, an on-line training routine is included to fine-tune
the weights of the neural network controller in real-time.
Satisfactory experimental results are obtained to show that
this neural network controller can provide improved performance
over conventional controllers in both line regulation and load
regulation.
2. Modeling and simulation

2.1. The neural network controller for PSFB DC–DC converter

The conventional approach to control the output voltage of a
DC–DC converter is to modulate the duty cycle of gate control
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Fig. 1. Basic configuration of a typical PSFB DC–DC converter.
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Fig. 2. The neural network controller.
signals (i.e., the ratio of time when the signal is at the ‘‘high’’ level
versus its period) in a switching network. The basic configuration
of a typical PSFB DC–DC converter is shown in Fig. 1. The circuit
consists of four power switches (Q1, Q2, Q3, and Q4), a transformer
(TX1), and an output stage. The power switches act as the gate for
currents to flow from the source Vdc to the load. The timing signals
for each switch to turn on and off are provided by the driver
circuit. The high frequency transformer (TX1) provides isolation
and steps down the input voltage to slightly above an appropriate
output voltage level. Note that there is a small inductor (Lr)
connected in series with the transformer to ensure proper
resonant frequency for the soft switching. The output stage
consists of two diodes (D01 and D02) to convert AC pulse signals
out of the transformer into DC pulses. The LC filter (L0 and C0)
cleans up the DC signal further to yield a DC voltage with
acceptable ripple at the load. Based on circuit analysis, the duty
cycle and timing scheme to drive the four switching MOSFETs (Q1,
Q2, Q3, and Q4) is highly nonlinear [1,16] and leads to a very
complicated controller design using conventional approaches.

In this research, a multi-layer feed-forward artificial neural
network is employed to achieve real-time adaptive control. Since
the duty cycle is a nonlinear function of input voltage Vin and load
current I0 [11,12], they are chosen to be the inputs of the neural
network. In practice, Vin and I0 may fluctuate over a wide range.
The converter output voltage should be kept at a constant;
otherwise, the control signal should be changed and a different
duty cycle should be applied. Thus, we choose the output voltage
change as another input to the neural network. The output of the
neural network controller is the duty cycle F, a positive real
number bounded between 0 and 1:

0rFr1 ð1Þ

The nonlinear sigmoid function is chosen as the activation
function for each neuron:

f ðxÞ ¼
1

1þe�ax
ð2Þ

where a is a constant parameter (a40). Fig. 2 shows an input–
output diagram of the neural network controller.
2.2. The neural network pruning algorithm

It is well known that a multi-layer feed-forward neural
network of an appropriate size can approximate any nonlinear
function to a desired accuracy after it is fully trained [7,14].
However, before such a neural network can be employed, an
optimal configuration (i.e., number of layers, number of neurons
in each layer) should be pre-determined, especially in the real-
time environment where speed is crucial.

In this research, a sensitivity based neural network pruning
approach [9,13,18] is employed to determine an optimal neural
network controller configuration. Sensitivity is a performance
measure which indicates the contribution of each individual
weight/node to the overall neural network performance. The
sensitivity of a global error function J( � ) with respect to each
weight, sij, can be defined as the following [13]:

sij ¼ Jðwij ¼ 0Þ � Jðwij ¼wf
ijÞ ¼ Jðwithout wijÞ � Jðwith wijÞ ð3Þ

where wij is the weight/connection of the neural network from
node i to j; wf

ij is the final value of weight after training; and J( � ) is
the RMSE (root mean square error) of NN output. In [9], it is
shown that for the back-propagation algorithm, Eq. (3) can be
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Fig. 4. The RMS of output error vs. training epochs.
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Fig. 5. The system block diagram.
approximated by

ŝ ij ¼
XN

n ¼ 1

½DwijðnÞ�
2

wf
ij

Zðwf
ij �wi

ijÞ
ð4Þ

where Z is the learning rate (usually in the range between 0 and 1.
In this simulation, Z is chosen to be 0.5); Dwij is the weight
update; and N is either the number of training patterns for each
NN weight update (if bench training is employed), or N=1 (for on-
line training).

Once a neural network is trained to achieve the input/output
mapping with desired accuracy, the sensitivity calculation based
on Eq. (4) can be activated. If the sensitivity of a particular weight
is smaller than a pre-set threshold, this weight is insignificant and
can be deleted. Furthermore, a neuron can be removed when the
sensitivities of all the weights related with this neuron are below
the threshold:

wij ¼
0 if jŝ ijjot
wij if jŝ ijjZt

(
ð5Þ

A Matlab Simulinks model is developed to train the neural
network off-line [11]. To determine the optimal size for the neural
network controller, we start with a three layer feed-forward
neural network which has one hidden layer with 10 neurons. The
network weights are initialized at random with uniform distribu-
tion over the interval [�1, 1]. The total number of weights is 51,
including the bias term of each hidden neuron and the output
neuron. The training performance is shown in Fig. 3, which
illustrates that the RMSE decreases with training epochs. After
500 training cycles (using the back-propagation algorithm), an
RMSE of 0.0119 is obtained.

The network pruning algorithm is applied to reduce the size of
neural network. The choice of the threshold value for sensitivity is
generally application dependent and based on a trial-and-error
process. The sensitivity value used in this simulation is 0.03 for all
the weights, which is also the median of all the sensitivities of the
network. After removing 22 weights with smaller sensitivities, the
RMSE of the reduced network output is increased to 0.0257. To
improve the performance of the pruned neural network, training
is continued further. After another 500 training epochs, the RMSE
is reduced to 0.0096, as shown in Fig. 4. Note that the neural
network dimension is reduced dramatically by 43.14% (from 51 to
29 weights) while still maintaining similar performance.
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Fig. 3. The RMS of output error vs. training epochs.
3. Experimental results

The proposed neural network controller is implemented on a
Texas Instruments DSP (digital signal processor) evaluation board
(eZdsps F2812) to control a commercially available phase-shifted
zero-voltage-switching DC–DC converter module (UCC3895EVM-
001). The on-board digital signal processor TMS320F2812 is a 32-
bit CPU with 150 MIPS (million instructions per second) operating
speed; and the neural controller is programmed in C language.
The PSFB DC–DC converter board has a nominal input voltage of
48 V and a nominal output voltage of 3.3 V, with a built-in
conventional analog controller (UCC3895).

The overall system block diagram is shown in Fig. 5. To test the
performance of neural network controller, the on-board
conventional controller (UCC3895) is removed and replaced
with the neuro-controller. The input voltage, output voltage, and
load current of the DC–DC converter are connected to the ADC
(analog to digital converter) input channels of the DSP module.
Note that the power circuit is driven by 400 KHz PWM signals;
thus the raw output voltage signal can be quite noisy, especially
during the switch turn-on and turn-off time. To reduce switching
noise, multiple samples are taken to obtain the time averaged
inputs. The neural network controller output is connected to the
power circuit through the DAC (digital to analog converter) output
channel of the DSP board and the jumpers on the power circuit
module. Because the neural network is trained off-line (see
Section 2), the converter output voltage is systematically lower
than the desired value. This is due to our ideal Simulink model
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Fig. 7. Output voltage deviation vs. load current (at nominal input).
which does not take into account parasitic voltage drops and
power consumptions, as well as the value variations of circuit
components. Therefore, on-line training is implemented to fine-
tune the weights of the neural network. With this correction, the
performance of the neural network controller is significantly
improved.

In the back-propagation algorithm, the gradient of the output
error function with respect to each weight should be calculated. In
the DC–DC converter, PWM (pulse-width modulation) is em-
ployed to control the output voltage by adjusting the duty cycle of
square waves. Note that the duty cycle, i.e., the output of the
neural network controller, is not monitored directly from the
circuit; one only monitors the output voltage of the DC converter.
And in fact, our control objective is to keep the output stable
under various input voltage and load current conditions. That is,
the following objective function is minimized:

E¼
1

N

XN

n ¼ 1

½V0ðnÞ � VNN
0 ðnÞ�

2 ð6Þ

where V0ðnÞ represent the desired output of the DC converter,
VNN

0 ðnÞ represents the output voltage with the neural network
controller.

To design the neural network controller more efficiently, the
difference between the current output voltage of the power circuit
and the desired value is monitored and compared with a preset
threshold. The control signal (i.e., duty cycle) is unchanged if this
deviation is less than the threshold. When it is larger than the
threshold, the neural network controller is activated and a new
duty cycle is applied to the circuit. If the DC–DC converter output
is still not satisfactory, then on-line training is performed and the
neural network weights are adjusted to minimize the voltage
deviation.

The neural network controller is tested over a range of different
input voltages with full load, as shown in Fig. 6, where the y-axis
represents the deviation of the output voltage (with respect to the
nominal value) and the x-axis represents the input voltage. The
ability of a power circuit to maintain a constant output voltage
under various input conditions is called line regulation. In Fig. 6,
the solid line represents the voltage deviation with neural
network controller while the dashed line represents the results
using the on-board built-in analog controller. For most cases, the
output voltage controlled by the neural network is more stable
than the one controlled by the conventional controller; in other
words, the neural network controller achieves better line
regulation, especially at lower input voltages.
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Fig. 6. Output voltage deviation vs. input voltage (at load current 15 A).
Load regulation is a measure of the ability of the power
circuit to maintain its output constant when the load current
changes. The experimental results are shown in Fig. 7, where
the y-axis represents the deviation of the output voltage (with
respect to the nominal value) and the x-axis represents the load
current. Similar to Fig. 6, the solid line represents the voltage
deviation with neural network controller while the dashed line
represents the results with the conventional controller. The input
voltage is at 48 V (nominal value). The neural network controller
also achieves better load regulation, especially at high load
currents.
4. Conclusions

A neural network controller for a class of PSFB DC–DC
converters is designed, implemented and tested on a digital
signal processor evaluation board. To determine the appropriate
dimension of this neural network controller, sensitivity analysis is
applied and a network pruning algorithm is employed. Our
experimental results show that real-time adaptive control is
achieved under various input and load conditions; and the neural
network controller outperforms a conventional controller in terms
of both line regulation and load regulation. More research works
will be performed to optimize the software to further speed up the
response of neural network controller.
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