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Abstract 

An improved capacity-demand-diagram method that uses the well-known constant-
ductility design spectrum for the demand diagram is developed and illustrated by 
examples. This method estimates the deformation of inelastic SDF systems 
consistent with the selected inelastic design spectrum, while retaining the attraction 
of graphical implementation of the ATC-40 Nonlinear Static Procedure. 

Introduction 

The Nonlinear Static Procedure in ATC-40 (Applied Technology Council, 1996) 
and FEMA-274 (FEMA, 1997) documents is based on the capacity spectrum 
method (Freeman et al., 1975) which is used to determine the seismic deformation 
of an SDF system derived from the pushover curve. This method is based on the 
belief that the earthquake-induced deformation of an inelastic SDF system can be 
estimated satisfactorily by an iterative method requiring analysis of a sequence of 
equivalent linear SDF systems, thus avoiding the response history analysis (RHA) 
of the inelastic SDF system. 

The principal objective of this investigation is to develop improved simplified 
analysis procedures, based on capacity and demand diagrams using the well-
established inelastic response (or design) spectrum (e.g., Chopra, 1995; Section 
7.10). 

Inelastic Design Spectrum 

The excitation is characterized by the elastic design spectrum of Fig. 1, constructed 
by the procedures of Newmark and Hall (1982), as described in Chopra (1995; 
Section 6.9), with u��go = 1g , u�go = 122 cm/s (48 in./sec) , and ugo = 91.4 cm (36 in.) , 
and amplification factors of αA = 2.71, αV = 2.30 , and αD = 2.01  for the median
plus-one-standard-deviation spectrum for 5% damping. 
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Definition. A constant-ductility spectrum for an elastoplastic hysteretic system is a 
plot of Ay  versus the initial elastic period T n  for selected values of µ. The pseudo-
acceleration Ay  is related to the yield strength f y  by 

Ay (1)
f y = w 

g 

where w is the weight of the system. The yield strength reduction factor is given by 

f o A (2)
Ry = = 

f y Ay 

where 

� A � (3)
f o = �� w 

g 

is the minimum yield strength required for the structure to remain elastic during the 
earthquake; A is the pseudo-acceleration ordinate of the elastic design spectrum at 
(T n ,ζ) . 

Elastic design c V = αV u̇ go d
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Figure 1. Construction of elastic and inelastic design spectrum. 

A constant-ductility design spectrum is established by dividing the elastic design 
spectrum by appropriate ductility-dependent reduction factors that depend on T n 

(Fig. 1). The earliest recommendation for the reduction factor, Ry , goes back to the 



  

  

work of Veletsos and Newmark (1960), which is the basis for the inelastic design 
spectra developed by Newmark and Hall (1982). 

�1 T n < T a (4) 
Ry = � 2µ − 1 T b < T n < T c ' 

�µ T n > T c 
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Figure 2. Variation of R y  with T n  for µ = 4 based on three different sources: 
Newmark and Hall (NH), Krawinkler and Nassar (KN), and Vidic, Fajfar, and 
Fischinger (VFF). 

This equation is plotted in Fig. 2 for µ = 4. Starting with the elastic design spectrum 
of Fig. 1 and these Ry −µ  relations for acceleration-, velocity-, and displacement-
sensitive spectral regions, the inelastic design spectrum constructed by the 
procedure described in Chopra (1995, Section 7.10), is shown in Fig. 3a. 
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Figure 3. (a) Inelastic design spectra and (b) Inelastic demand diagrams, based on NH 
recommendations. 



  
 

 

 

   
 

 

 

   

 

  

In recent years, several recommendations for the reduction factor have been developed by 
regression analysis of the data from RHA of many SDF systems (e.g., Krawinkler and 
Nassar, 1992; Vidic, Fajfar, and Fischinger, 1994). Equations for these R y −µ − T n and 
resulting inelastic design spectra are available in Chopra and Goel (1999) and plotted in 
Fig. 2. 

Yield Strength Demand from Design Spectrum. Given the design spectrum and the 
properties T n  and ζ of an SDF system, we can readily determine the yield strength for the 
system consistent with a selected ductility factor µ. Corresponding to T n , ζ and µ, the 
value of Ay ÷ g is read from Fig. 3a. The desired yield strength is then given by Eq. (1). 

Deformation Demand from Design Spectrum. An equation for the peak deformation 
can be derived in terms of Ay  as follows: 

um = µ uy (5) 

with the yield deformation defined by 
2  (6)f y � T n � uy = = � Ayk � 2π 

where k is the initial elastic stiffness of the system. Putting Eqs. (4) and (5) together gives 

(7)� T n �
2

um = µ � Ay
� 2π 

This equation can be expressed in terms of A, the pseudo-acceleration ordinate of the 
elastic design spectrum, by using Eq. (2) 

2  (8)1 � T n � u = µ � Am 
Ry � 2π 

Presented in Fig. 4 are the deformations determined by using three different R y −µ − T n 

equations mentioned earlier. Observe that two of these recommendations lead to similar 
results except for T n < 0.3 sec , indicating that the inelastic design spectrum is a reliable 
approach to estimate the earthquake-induced deformation of yielding systems, reliable in 
the sense that different researchers have produced similar results. 

Capacity-Demand-Diagram Method 

Demand Diagram. The inelastic design spectra of Fig. 3a will be plotted in the A-D 
format to obtain the corresponding demand diagrams. The peak deformation, D = um , of 
an inelastic system is determined from Eq. (8). Such data pairs (Ay , D) are plotted to 
obtain the demand diagram for inelastic systems (Fig. 3b). 



  

 
 

 
 

   
  

  
  

   
 

 
 

 
 

 

 

 
  

 
  

 
  

 

    
   

 

  

Graphical Procedure. A procedure, which uses the demand diagram for inelastic 
systems (Fig. 3b), will be illustrated with reference to six elastoplastic systems defined by 
two values of T n  = 0.5 and 1.0 sec and three different yield strengths, given by Eq. (1) 
corresponding to µ = 6, 4, and 2 (Systems 1 to 3), respectively. For systems with T n  = 
0.5 sec, f y ÷ w = 0.5995, 0.8992, 1.5624 and for µ = 6, 4, and 2, respectively. The 
corresponding values for systems with T n  = 1 sec are f y ÷ w = 0.2997, 0.4496, and 
0.8992 (Systems 4 to 6). Superimposed on the demand diagrams are the capacity 
diagrams for three inelastic systems with T n  = 0.5 sec (Fig. 5a) and T n  = 1.0 sec (Fig. 
5b). The yielding branch of the capacity diagram intersects the demand diagram for 
several µ values. One of these intersection points, which remains to be determined, will 
provide the deformation demand. At the one relevant intersection point, the ductility 
factor calculated from the capacity diagram should match the ductility value associated 
with the intersecting demand curve. Determined according to this criterion, the 
deformation for each system is noted in Fig. 5. This result will be essentially identical to 
that given by Eq. (8). Implementation of this procedure is illustrated for two systems. 

Examples. The yield deformation of System 1 is uy = 3.724cm . The yielding branch of 
the capacity diagram intersects Newmark-Hall the demand curves for µ = 1, 2, 4, 6, and 8 
at 133.93 cm, 66.96 cm, 33.48 cm, 22.3 cm, and 16.5 cm, respectively (Fig. 5a). Dividing 
by uy , the corresponding ductility factors are: 133.93÷3.724=35.96 (which exceeds µ = 1 
for this demand curve), 66.96÷3.724=17.98 (which exceeds µ = 2 for this demand curve), 
33.48÷3.724=8.99 (which exceeds µ = 4 for this demand curve), 22.3÷3.724=6 (which 
matches µ = 6 for this demand curve), and 16.5÷3.724=4.43 (which is smaller than µ = 8 
for this demand curve). Thus, the ductility demand is 6 and the deformation of System 1 
is D = 22.3 cm. 

For System 3, uy = 9.681cm . The yielding branch of the capacity diagram intersects the 
Newmark-Hall demand curve for µ = 1 at 51.34 cm (Fig. 5a). The corresponding ductility 
factor is 51.34÷9.681=5.3, which is larger than the µ = 1 for this demand curve. The 
yielding branch of the capacity diagram also intersects the demand curve for µ = 2 
continuously from 9.681 cm to 25.2 cm, which correspond to ductility factors of 1 to 2.6. 
The intersection point at 19.29 cm corresponds to ductility factor = 19.39÷9.681=2 which 
matches µ = 2 for this demand curve. Thus, the ductility demand is 2 and the deformation 
of System 3 is D = 19.39 cm. 

Observe that for the presented examples, the ductility factor at the intersection point 
matched exactly the ductility value associated with one of the demand curves because the 
f y  values were chosen consistent with the same µ values for which the demand curves 

have been plotted. In general this is not the case and interpolation between demand 
curves for two µ values would be necessary. Alternatively, the demand curves may be 
plotted at a finer µ interval avoiding the need for interpolation. 
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Figure 5. Application of Improved Procedure using NH inelastic design spectra: (a) 
Systems 1 to 3, and (b) Systems 4 to 6. 

Comparison with ATC-40 Method 

The deformation estimates by the ATC-40 method, as determined by Chopra and Goel 
(1999), are also included in Fig. 4. Relative to the deformation value from inelastic 
design spectra, the percentage discrepancy in the approximate result is plotted in Fig. 6. 
The ATC-40 method underestimates the deformation significantly, except for very long 
periods (T n > T f  in Fig. 1). On the other hand, the proposed method gives deformations 
consistent with (exactly the same as) the selected inelastic design spectrum. 
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Figure 4. Deformation of inelastic Figure 6. Discrepancy in deformations 
systems (µ= 4) determined from inelastic computed by ATC-40 procedure relative 
design spectra using ATC-40 Procedure to three different (NH, KN, VFF) 
and three (NH, KN, VFF) R y −µ − T n inelastic design spectra: µ= 4. 
equations. 



 
   

  

 

 
 

 
  

 
  

 
  

 

  
   

 

In passing, note that the ATC-40 method is deficient relative to even the elastic design 
spectrum in the velocity-sensitive and displacement-sensitive regions (T n > T c) . For 
T n in these regions, the peak deformation of an inelastic system may be taken equal to 
that of the corresponding elastic system (Veletsos and Newmark, 1960; Chopra, 1995: 
Section 7.10), and the latter is given by the elastic design spectrum. However, the ATC
40 procedure requires analyses of several equivalent linear systems and still produces 
worse results. 

Conclusions 

This investigation of capacity-demand-diagram methods to estimate the earthquake-
induced deformation of inelastic SDF systems has led to the following conclusions: 

1.	 An improved capacity-demand-diagram method that uses the well-known constant-
ductility design spectrum for the demand diagram has been developed and illustrated 
by examples. When both capacity and demand diagrams are plotted in the A-D 
format, the yielding branch of the capacity diagram intersects the demand curves for 
several µ values. The deformation is given by the one intersection point where the 
ductility factor calculated from the capacity diagram matches the value associated 
with the intersecting demand curve. 

2.	 The ATC-40 method significantly underestimates the deformation of inelastic 
systems for a wide range of T n  and µ values compared to the value determined from 
the inelastic design spectrum using three different Ry −µ − T n equations, all of which 
provided similar results. 

In this paper we have focussed on improving the one step in the NSP or CSM to 
determine the earthquake induced deformation demand of an inelastic SDF system. In 
particular, the improved capacity-demand-diagram method presented here, while 
retaining the simplicity and graphical appeal of the NSP and CSM, provides results 
consistent with selected elastic design spectrum and chosen rules for constructing the 
inelastic design spectrum. Although illustrated for elastoplastic systems, this method is 
extendable to any force-deformation relation. However, additional work is necessary to 
evaluate approximations inherent in other steps of the NSP and CSM – in computing the 
pushover curve for a MDF system and converting it to a capacity diagram. 
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