An Overview of Binary Arithmetic Architectures &
Their Implementation in DSP Systems

By Joseph Waddell

Table of Contents

Ta1ageTe [V AT] o HUUT TP P PR URTOPPTTOUPRI 1
oY [=Totf o - 3RS 1
DT F=d o I =T [T =T 0 0 1=] o LT PPPPPPPPPPPPPRY 2
Ve Yot o o =Y W a=Te [T =T g 1] o] ARSIt 2
Performance SPECIH ICATIONSuiii it e e e s e e e sbee e e e sbee e e e eertaeeesenreeeeenee 2
DT F=d Iy o LTy ot 4 o USRS 3
N R (=T DT 1= o T TP SRR PPPPP RPN 3
DSP_BB.vhd, Arithmetic Component GENerator DESIZNc.uveeeeciiiieieiiiee ettt e e et e e 5
CONVERTER_CTRL.Vhd, SP1 CONTIOl DESIZNcvvvieeeiiieeeeciieee ettt ectte e et e e e eare e e e sarve e e s nae e e seaaree e s nnaeeaean 5
SAMPLE_CTRL.vhd, Sampling Timing Control DESIZNccccuiiiiiiieee ettt e e e e 6
1LY G (U U S B LT = o PSPPSRt 7
NORMAL.vhd, Normal Direct Form | Filter Realizationcccoeeeeeeeeeeeeeeeee e, 7
CASCADE.vhd, Cascade Direct FOrm 11 REalizatioN.........uuueeeerereuereriieiiriiiiiiiinsisesesesesesesesesesenesesanenene. 9

F XU Te [o X [0} A=Y = ol T DT - o TSRSt 13
Fi¥e Lo LY BT = { o SRRt 14
RC_ADDER_32BIT.vhd, Ripple-Carry Adder DESIZNcc.covueeriieieniiieniieeriee et e e e 15
CLa_ADDER_32BIT.vhd, Carry-Lookahead Adder Designc...ccouerieriieenieeneeneenie e 17
CSe_ADDER_32BIT.vhd, Carry-Select Adder DESIZNccceieeriiriiniinieereesee e 19
CSa_ACCUM_32BIT.vhd, Carry-Save Accumulator DESIZNccccuerueriieeiieenieenienie e 20

Y L0 LA o =Y g 1Y = o N 21

Y a1 ey [o Y TUT LT o] = PRSP 21
Modified BOOth IMUIIPIETcciiiieee et e s bre e e sbre e e s sbee e e s sntaeeesanes 23
MULTL8X18 MUILIPIIEI DESIGN ..uveeuveeieeiiteeiteeie ettt ettt sttt et esbe e saeesaeesabeebeebeenns 25

[V 101 I o o o] (=T g =T o1 = 4T o SRS 25
Sample Rate & SPI Control IMmplementation..........ooocieii e 25
Fi¥o Fo L=T 1o 0T o] [=T o g T=T ol =Y i o o[PS 27
Y UL L aT o T =T T aT o1 1T aT=T o1 = o Lo o USRSt 29
SNV (=T T [T o1 1T 01T o1 = Lo o S 31
NEXYS2 IMPIEMENTATION ...ccciiiieeeiiee e e et e e e st e e e e st e e e e satbeeeeenbaeeeesasaeeeenseeesennsenas 35
Normal Direct FOrm | IMmplementationccuiieiiciiiiiciee et e e tae e e e aae e s e s aaa e e e saeaeeeeas 35
=] A - 1=t TP PP OPPPROPPPRRON 35

BT O T I ORI 37

Cascade Direct Form [IMplementationcccuueiiiiiiie et e e e e e ae e s e 39

LI S = L=t PO PPN 39

TEST CASE 2 ittt e s s e e s sna e e e s snes 41

JANU T [Te TN [0T o] [=T o =T o} = o o PRSPPI 43
DSP PerformanCe ANAIYSISuuiiii ittt ettt e st e e e s e e e e s b e e e s aba e e e s nbe e e s e nabeeeeenbeeeeenareeas 45
Arithmetic COMPONENT ANAIYSIS ..eeiiiiiiieiciiee et et e e et e e e s eta e e e s ataeeesaatseee e nssaeesansaneenan 47
TIMINE ANGIYSIS 1. et e e e et e e e et te e e e e bteeeeebtaeesabtaeeesstaeeesstaeessstaeeesstenassnes 47
[T TN oI AN =1 1Y 2 [48
PO BT ALY SIS 1etiiiitiiit ittt ettt ettt ettt e e sttt e e et e e e sttt e e e e et e e e e eaattee e et b ae e e ettt e e eabaaeeeataeeeeabraeeearaeeeean 49
CONCIUSIONS ...ttt ettt ettt e st e st e e s ab e e s bt e e sabeesabee e bt e e sabeeeabeesaseesabeeesabeesabeeennbeesasaeesareesn 50
RETEIENCES .ttt ettt e st e sa bt e s bt e e s bt e e bt e e s st e e sabeeesabeesabeesabeeesabeesbeeennbeesbeeenars 53
F YT o 1< o Yo [P N e g T =Tl o =Y Y Y o= SR 55
Appendix B: Project Hardware & Software INformationcccceeeciiiiiiiiiii e e 59
Appendix C: VHDL MOAUIE COUE........uuiiiiiiiieceiiee ettt ettt e ee e e e e eta e e e st e e e eeasaee e s asseeeeensseeesannaneeaan 61
o1 I 1Y o o TSR 61

NN @241V IR o o ISR 63
(07N 0721 T SR o T TR 72
DSP_BB.VA. . eeveeeeeeteeeeeeeteeeee e eee et eeeee et e e e et e e e et e st s e e e et e e e e et e s eee et s et e ee et eea et e s et et e eeeeeeee et e et eeeenaees 89

Y AN o 8 S O I 2 { IR o USRI 94
(00]\ VAV 2 I 1 2 O 24 IR o o RSP 98
SA_MULT_LBBIT.VAA ..ttt sttt st e san e s e neeneenns 102
BOOTH_MULT _LBBIT.WAG. . ittt sttt e s e sane e 104
MULTLIBXLBVNA ..ttt sttt ettt sttt sttt e b e sme e s e e ean e et e e sneesbeesanesane e 105
RC_ADDER_32BIT-VI 1.ttt et et est e e et sess et eseseeseesesaseeenseeeseasseeeseasseseseaenenaeseneees 106
CLA_ADDER_32BIT.VHT ottt e et eeese et eeeeesseeeseesseseeseeeseeesaseseesseeesseeseestaesaseesaeneeeeseneees 107
CSE_ADDER_B2BIT.VAT ..ottt et e et e e e s e eeeeseeeeeeseseeeeaseseesseeesseeeeeesaeseneeeaeneeaeseneees 108
CSA_ACCUM_32BIT.Vh. e ittt e s e s e eane s 109
OVERFLOW.VRG ...ttt st st sttt e b e sbe e st st s bt e bt e meesmeesmeeenneenneen 111
HALFADDER.VIRG. ...ttt ettt st sttt b e s s e et et e sbeesbeesieesane e 112
FULLADDER.VI ...ttt ettt ettt e st e e s be e e s s abbee e s enabeeesssbeeessnnbeeessnnsenas 112
PARTIAL_FAVNG. .ttt e st e st e e s st e e e s s abbe e e s sabbeeesessbeaesesbeeesesbeeessnnsenas 113
RC_ADDER _ABIT.VIA ..ttt sttt ettt e e st e e s s bbe e e s s e e e s sabeeesssbeeessnnnenas 114
CLA_ABIT.VIR ettt st ettt e b e s bt e s et st s bt e b b e b e s beesaneenre s 115

SIPO_SHR.WI .ottt 116

CLK _DIV.VNG. ..ttt s s e s a e st sr e s ne s 117

DEFINITIONS. VA ..ttt ettt ettt st st ettt e b e s be e st e et e et e e nbeesbeesaeesanenas 118
CTRL_CONSTANTS. VR ittt ettt ettt ettt et e st ae e s bt e e s ab e e sabeesbaeesabeeesaseesateesanenesareenn 122
AppPendix D: VHDL TESTDENCNES....cii ettt e sbe e e st e e e s abee e s s beeesenareeas 125
21| R 3 Vo B O TSP UUPPRTOUPTROPRPINt 125
ADD _TBVAG ...ttt ettt ettt e h e s bt s a e sttt e bt e b e e s be e sae e et e e teesheenanenas 139
IMIULT _TBLVIG. ettt sttt ettt b e she e st st et e e b e s be e saeesaee et e enteenbeesbeesnnenas 142

Figures, Tables, & Equations

Figure 1. System BlackbDOX DIiagrami.......ccoicuieeeeiiiieieiiee e citee e ettt e e eeite e e stte e e esttaeeseabaeeesabeeeeastaeaeanssaeeeansaeseansseeeassseeennsees 3
Figure 2. System BlOCK DIQZIamccoiueiiueiiiiieiite et ettt et e sttt e rtte e bt e sbteesae e e sate e bt e e shbeesseeesabeesaseesabeesnseesabeesaseesabeennseesas 4
Table 1. CTRL_CONSTANTS.vhd Description Of CONSTANTS.....c..eiiiiiiiiiiiieiiie ettt 4
Figure 3. CONVERTER_CTRL.vhd ADC State Transition DIagramcccueereierieeniieiieeneeesreeseeesreesieeesbeesreesreesaneesas 6
Figure 4. CONVERTER_CTRL.vhd ADC State Transition DIiagramcccccueeeeiiiieeeiiee e ciee e et e e ree e sire e e e sar e e e esrae e e 6
Figure 5. SAMPLE_CTRL.vhd State Transition DIagramccccvieieiiieeiiiee et e et e e e st e e eetra e e s eabae e e stbeeeestaeeeeanes 6
Figure 6. Normal Direct FOrm | Filter REAlIZAtIONeeeiiiiieeeiiii ettt et e et ba e e e et e e e eara e e eennas 7
Eqg. 1. Direct FOrm | Differe@nce EQUATIONc.uoiieiiiieeiei ettt ettt st e st esabe e sae e e sabeesaseesabeesaneesas 7
Figure 7. NORMAL.vhd State Transition DIiagram......ccc.eieiueiiiieiieesiit et e sttt e sttt st et e e st e e sateesabeesateesabeesnseesaseesaseesas 8
Figure 8. NORMAL.vhd Serial Calculation Implementation BlOck Diagramcceevueerieerieeniieeniieenieesieesreesveeseee s 8
Figure 9. Parallel Calculation IMplemeEntation ..ot e e e e e earrb e e e e e s e nearaeeas 9
Eq. 2. Direct Form Il Difference Equations for Each 2" Order Filter Stage for Serial Calculations...........ccccccvveeennneen. 10
Eq. 3. Direct Form Il Difference Equations for Each 2" Order Filter Stage for Parallel Calculations..........ccccuveeeuneee. 10
Figure 11. Cascade Direct Form Il Filter Realization for Parallel Calculationsccccoeviinierniiinienniieeeee e, 10
Figure 12. CASCADE.vhd State Transition DIagramccceeeieieniieriieieniieeiite et esiee e siee sttt e e saeeesateesae e e sateesseeesaneenaneas 11
Table 2. CASCADE.vhd State TranSitionN LOZICueiieiiiieieiieeesiiie e ettt e seitee sttt e s e st e e s ate e e ssabeeeesnteeessasseessnseeessnsenenanns 11
Figure 13. CASCADE.vhd Serial Calculation Implementation Block Diagramcccoecvuiieeiieiiiiiiiiiieeeeececiieeee e e e 12
Figre 14. CASCADE.vhd Parallel Calculation Implementation Block Diagramcccoviiieiiiiiciiiiiieee e 13
Figure 15. Level Shifter Circuit LTSPICE SChEMAtiC..ccccii i e e e st e e e e e e e e eanees 14
Figure 16. Level Shifter Circuit LTspice Simulation RESUILS........cccccuiiiieiiiie et cree e 14
Figure 17. Adder BlackboX DI@agram......cccccueiiiciieeiiiieeeeriee e st e e e sttt e e s e eee e e s tteeeesataeessaseesesssseeeastaeesansseeessseeesnssseesnnnens 15
Figure 18. Accumulator BlackboX DIagram......c..eeeiiiieeieiie e cieee ettt et e e s tee e e e e e sae e e e s e e e e e nteeessnsneeesnsseeeenneneesnnnnes 15
Figure 19. OVERFLOW.VAG FIOWCKRAIT......eiiiiiiiiiiiiee ettt ettt e e e e sttt e e e e e e s e b ta e e e e e e seaaataeesaeesesanntaaasaeesensnnnes 15

Figure 20. 32-Bit Ripple-Carry Adder SChEMAtiCcicii it e e e e e e s nra e e e e e e e e e eanens 15

Figure 21. FUll Adder LOZIC DIGBIamcccccieieicieee e iieeeeeitte e etee e ettt e e sette e e staeeeestaeesensaeeesassaeeastaeessnsseeesnsseeesnssseesnnsees 16

EQ. 4. FUll Adder DeSIZN EQUATIONSvvieeeiiieeccieee ettt e ettt e e stee e ettt e e s eaete e e satbeeeestaeesesnseeessssaeeassasessnsseeesnssesessssaeesnnsnes 16
Figure 22. Half Adder LOGIC DI@Bramc.c.eiiiuieriiieiieiieeeiite ettt et sttt et s bttt e e bt e bt e sbe e e sbbe s beeesbbe e bt e e smbesaneeesnneenneeas 16
EQ. 5. Half Adder DeSiN EQUAtIONSccotiiiiiiiiii ettt ettt ettt et e st sbe e e bt e sbbe e bt e e sabeenneeesaneenneeas 16
Figure 23. Carry-Lookahead Adder SChemMatiC........cuiiiiiiiieii e s 17
Figure 24. Partial Full Adder LOZIC DIagramueeciiieeeeiieecieeeecieeeeeite e e stveeeestte e e seanaeeesassaeeastaeessnssaeesnsseeesnssseesnnsnes 17
Eqg. 6. Partial FUull Adder DeSiZN EQUAtIONSccueeeeiiieeeeiite e cttee ettt e ee e e e s tveeeestte e e seaateeesassaeeastaeesenssaeesnsseeesnssseesnnsnes 17
Figure 25. 4-Bit Carry-Lookahead LOGIC DIagram........cccccuuiieiiiieeciiieeeeitee e steeeestte e e e eaae e e sareeessntaeeessnaaeesnsseeesssaeesennnes 18
EQ. 7. 4-Bit CLA UNit DESIN EQUATIONS ..eueviiiiiiiiiiiiiee ettt et e st sra e s sne e e s e e e snnnes 18
Figure 26. Carry-Select Adder SChEMATICc.eiiiiiiieiiie ettt et be e sabe e b e e saneesaeeas 19
Figure 27. Carry-Save ACCUMUIAtOr SChEMAtIC .. cciiuiiiiiiiiieei et s naee s 20
Figure 28.Multiplier BlackbOX DIQBIramciiiciiieeiiiee et e ette e estt e e ee e e e eette e e esata e e seasteeesbaaeeastaeeseasaaeesnsseeesassaessnnsees 21
Figure 29. Shift-Add MUILiplier SCHEMATIC......ccuiie et e et e e e et e e e e sate e e seasaee e satreeesntaeeeennees 22
Figure 30. 6-Bit Multiplication Using the Shift-Add AlgOrithmooociiiiiiiee e s 22
Figure 31. Modified Booth Multiplier FIOWCNAItcoc.eiiiiiiiiiieet ettt 23
Table 3. Generated Partial Products for Modified Booth Algorithmc.ccoviiiiiiiiiiii e, 24
Figure 32. 6-Bit Multiplication Using the Modified Booth’s Multiplication Algorithmccccoovveiiiiiniinniienieeee, 24
Figure 33. SAMPLE_CTRL.vhd Behavioral Simulation — Verification of CSand SYNCccccceeviiiiicciee s 26
Figure 34. SAMPLE_CTRL.vhd Behavioral Simulation — Verification of CS and SYNC Toggling Ratesccccccvvveneee. 26
Figure 35. RC_ADDER _32BIT.vhd Behavioral Simulation...........cooiiiiiiiiii ettt e e e e sree e e e s e e 27
Figure 36. CSA_ACCUM_32BIT.vhd Behavioral SImUItion............cooiiiiiiriiiiiieeit ettt 27
Figure 37. RC_ADDER_32BIT.vhd Timing Simulation — N0 OVERFLOW.VAQcccccueriuiiniieniienieeiee et 28
Figure 38. RC_ADDER_32BIT.vhd Timing Simulation — With OVERFLOW.VAQccccoeuiiniiiiiiinieeniiesieesiee e 28
Table 4. Summary of Propagation Delays for Adder MOAUIESooociiiiiiiiie ettt e 28
Figure 39. LUT from Ripple-Carry Adder Carry Chaincooiiie ettt e e etvee e e va e e e e aae e e etveeeentaeeeeanes 29
Table 5. Summary of Adder Module Nexys2 Resource Utilizationcccccociieeeciiie et 29
Figure 40. BOOTH_MULT_16BIT.vhd Behavioral SIMUlationc.cceovieiiiiinieeiii e 30
Figure 41. SA_MULT_16BIT.vhd Timing SIMUIGTION ...c...eiiiiiiiiiiiee et s es 30
Figure 42. MULT18X18.vhd Timing SIMUIGLIONuiiiieiii ettt see e e e s e e e sta e e e s aae e e snreeeenneneesennnes 30
Table 6. Summary of Multiplier Module Nexys2 Resource Utilizationcccueeeieiiiiiiiiiiiic e 31
Figure 43. FILTER.vhd Behavioral Simulation — NORMAL.vhd 1/O for 6 Samplesccccueevveeeeeeceeeeieecreecre e 32
Table 7. NORMAL.vhd Excel Created Output Results for First 6 SAmMPIeseeeeviiiiiiiiiiiiie e e 32
Figure 44. FILTER.vhd Behavioral Simulation — CASCADE.vhd 1/O for 4 Samplesccccuvevveerieenieecieesreecveesaeennnns 33

Table 8. CASCADE.vhd Excel Created Output Results for 2 Filter Stages.......cciveeviiieieciir e creeeesree e e 33

Table 9. Summary of Nexys2 Resource Utilization for Complete System — NORMAL.vhd & Serial Calculations 34

Table 10. Summary of Nexys2 Resource Utilization for Complete System — NORMAL.vhd & Parallel Calculations ..34

Table 11. Filter Specifications for NORMAL.VAA TeSt CaS@ L....ccuueiiuiiiiiiiiiieiiieeiet ettt sttt 35
Figure 45. NORMAL.vhd Test Case 1 Frequency Response Plot from MATLAB........ccceeiiiiniiiiiienieeeeeeee e 36
Figure 46. NORMAL.vhd Test Case 1 Frequency Response Plot from Experimental Data.........ccoceevvienieinieeniennnnen, 36
Figure 47. NORMAL.vhd Test Case 1 Scope Capture Of FIrSt ZEr0ccucvuiiiicieeeeiiiieeectee e ciee e eriee e eeere e e sre e e e sen e e e eaaes 37
Table 12. Filter Specifications for NORMAL.VAG TEST CASE 2uvveeecuiiieieiieeeciieeeeiieeeseiateeesstreeeesataeesensaaessssseseessssesnnns 37
Figure 48. NORMAL.vhd Test Case 2 Frequency Response Plot from MATLAB.........ccccveeiiiieeeciiie e e 38
Figure 49. NORMAL.vhd Test Case 2 Frequency Response Plot from Experimental Data.....c...cceceeviieniennieenieennnen. 38
Figure 50. NORMAL.vhd Test Case 2 SCOPe CaptUure Of ZEI0ccueiiueiiiiiiiiieieeiet ettt s 39
Table 13. Filter Specifications for CASCADE.VAA TESt CaSE L.....ccuiiiuiiiiiieiiieeiieeesite ettt ettt be e st see e s 39
Figure 51. CASCADE.vhd Test Case 1 Frequency Response Plot from MATLABcccoeeeiiiieeecieee e e e e 40
Figure 52. CASCADE.vhd Test Case 1 Frequency Response Plot from Experimental Dataccccccecveeevciieeeecieee e, 40
Figure 53. CASCADE.vhd Test Case 1 SCOPe Capture OF ZEIO.....ccccuiie e ccieee ettt et are e e st e e e e era e e e eaaes 41
Table 14. Filter Information for CASCADE. VAT TESt CASE 2..cuuuieiuiieiiiieiiieeiitesiee ettt sitessreeesaee e bt sseessneeesaeeesateesaneesneeas 41
Figure 54. CASCADE.vhd Test Case 2 Frequency Response Plot from MATLABccccoiiienieeniienieeneeesreenee e 42
Figure 55. CASCADE.vhd Test Case 2 Scope Capture — Evidence of Overflow Error........cocceeveievienneienieenieeneeenenn 42
Figure 56. ToneGen GUI Configured for 500 HZ OQULPULuiiiiiiiie et e ettt e stre e e e rate e e e e aae e e stveeeeentaeeeeanes 43
Figure 57. Soundcard Scope Displaying Filtered Output from DAC at 500 Hz..........cccovieiiiieeeiiiie e 44
Figure 58. Soundcard Scope Displaying Filter Zero at 5000 Hz..........coviiiiiiiiiiiiiiee et e e saree e e e e e e 44
Figure 59. Estimated Maximum Sampling Rate for NORMAL.vhd Serial Calculation Implementationcc...c....... 45
Figure 60. Estimated Maximum Filter Length for NORMAL.vhd with 44.1 kHz Sampling Frequencyccccccuveeeneee. 46
Figure 61. Estimated Maximum Filter Stages for CASCADE.vhd with 44.1 kHz Sampling Frequency.........ccccecvveeenneee. 47
Table 15. Summary of Arithmetic Component Delay INformationccccociieieiiiie e 48

Table 16. Nexys2 Resource Utilization for All Arithmetic COMPONENTScccuviiieiiiie et 49

Introduction

Many branches of the electrical engineering industry involve applications that use digital signal
processing. Almost any type of signal that comes in analog form, such as sound, video, and radio or
microwaves, must use digital signal processing for implementation in electrical devices. Digital signal
processors (DSPs) are devices designed specifically for use in these kinds of applications and provide fast
and efficient calculations needed for digital signal processing.

DSPs possess many important characteristics that make them ideal for digital signal processing, which
involves rapid, repetitive calculations, making speed one of the most essential of these characteristics.
DSPs come in a wide variety of speeds for a multitude of applications. The binary arithmetic
architectures DSPs employ to multiply and add during calculations play a large role in determining the
speeds at which they operate because faster binary arithmetic calculations leads to faster DSP
operation. Like many instances of hardware engineering, balancing arithmetic component speed
demands a tradeoff between component size and power consumption. Making a multiplier or adder
faster requires more hardware, requiring more power and more physical space.

Students at Cal Poly have almost no resources that investigate the relationship between binary
arithmetic component architectures and DSP performance. The DSP Starter Kit (DSK) development
platform from Texas Instruments, one of the few hardware outlets on campus to examine this
relationship, grants a very limited glimpse of this correlation. Testing the extremities of this device
shows how reaching limits, such as maximum filter length, can adversely affect a desired output signal.
However, the DSK does not allow for the analysis of its arithmetic architecture, nor does it
accommodate viewing and changing arithmetic components for performance comparisons. Other
resources include Xilinx ISE Design Suite and MathWorks MATLAB. However, these software tools only
simulate hardware performance and students would benefit from a hands-on hardware example.

Project Goals

This project aims to provide a resource for Cal Poly students to explore the relationship between binary
arithmetic component architecture and DSP performance. This report outlines the design of a modular
DSP system, created with VHDL and implemented on the Digilent Nexys2 development board as a digital
filter. The DSP system has many modifiable capabilities, including options to change the sampling rate,
to change multiplier and adder combinations, to select multiple filter realization structures in either
serial or parallel implementation, and to use scaled integer coefficients for filter calculations. Students
may use the system to compare the hardware and filter performance limitations imposed by different
types of binary adder and multiplier architectures while operating in real time on the Nexys2.

This report also intends to provide a comparison of the binary arithmetic architectures used to create
the DSP building block. Component comparisons include speed, size, and power consumption, as well as
observations of limitations on filter length and sampling rate. Component analysis includes detailed
block diagrams, functional descriptions, and timing and power simulation analysis.

All hardware used throughout the project is easily and cheaply attainable by any Cal Poly EE student. EE
students acquire most of the hardware components used for the design though Cal Poly’s CPE/EE 129,
229, and 329 series of classes. Appendix A contains project planning information including budget, Gantt
chart, and sustainability analysis of the project.

Design Requirements

This section of the report contains necessary requirements for the final design. Functional requirements
describe observable processes the design must exhibit. Performance specifications include various
specifications that must be met in the final design.

Functional Requirements

It is important the DSP system under design is easily modifiable, facilitated through a VHDL package of
constants that can be changed for desired results. The constants contained in the package allow
changing filter structure, serial or parallel calculation implementations, the number of bits used for
integer scaling, adder type, multiplier type, and filter coefficients.

All binary arithmetic components must handle a necessary bit size for data calculations. All adders must
accommodate 32-bit integers and each multiplier must handle up to 16-bit integers. The arithmetic
components of the filter include four adder architectures and two multiplier architectures, in addition to
the dedicated Spartan 3E MULT18X18 multiplier, to handle DSP calculations. Data communication
between the Digilent ADCPModAD1 analog to digital converter (ADC) and the Digilent DACPModDA2
digital to analog converter (DAC) and the Nexys2 requires the design of a serial peripheral interface (SPI)
control module. All sampling takes place in real time, requiring the design of a sampling rate control
module and shift register to handle sample timing and sample delay during filter operation.

FIR and IIR filter realization will take place in two modules, one for normal direct form |, and another for
multi-stage cascade direct form II, both capable of serial and parallel calculation implementations. Once
implemented in the Nexys2, the filter will accept either an electrical or audio signal and deliver the
appropriate output signal, expressing results on either an oscilloscope for electrical inputs, or a stereo
speaker for audio inputs.

Performance Specifications

Verifying operation requires the construction of some obligatory infinite-impulse response (lIR) and
finite-impulse response (FIR) filters. Specifically, filter realization includes normal direct form | for FIR
and small order IIR filters, and cascade direct form Il for more complex multi-stage IIRs, each in both
serial calculation and parallel calculation implementations.

Testing arithmetic components will involve using simulation results and real time filter operation to
verify maximum sustainable sampling rates for a length 4 moving average filter and maximum filter
lengths achievable for a sampling rate of 44.1 kHz. Binary arithmetic components handle filter
calculations only. Nexys2 dedicated hardware will perform all other calculations, including any
incrementation or counting, indexing, or summation of partial products.

Design Specifications

Using a structural VHDL description for the system design promotes code organization and readability. It
also allows for easier functional verification of each module before integration with the larger system.
Prior to coding, module design planning included preparation of numerous schematics and diagrams
used for reference, including flowcharts, block diagrams, logic circuit diagrams, state transition
diagrams, and circuit schematics. This section presents design specifications for each module, explains
their purpose and operation, and provides simulation and timing results.

System Design

This section contains design specifications for major system modules used throughout the project. This
includes an arithmetic component generation module, the SPI control interface module, the sampling
rate control module, and two modules used for filter realization structures.

Figure 1 shows a blackbox diagram of the DSP system under design. Inputs to the Nexys2 consist of
either the signal generator (SG) or an audio signal provided by a stereo sound source from a computer,
iPod, or cell phone. Monitoring the filtered output signal will incorporate an oscilloscope or a stereo
speaker connected with the Digilent PmodCON4 RCA audio jack, for the SG and Audio inputs
respectively. Programming the Nexys2 will require a USB connected PC and Digilent’s Adept Software.
Appendix B summarizes all hardware and software information used for design, testing, and
implementation of the system.

PC

5G

Scope

Speaker

Figure 1. System Blackbox Diagram

Operation

Figure 2 shows a block diagram of the system design. As seen in the figure, the sampling rate control
module regulates the SPI control module, taking samples from the ADC at the desired sampling
frequency and passing filtered signals to the DAC for output. Two shift registers store and delay inputs
and outputs, passing their values to the filter realization module for processing. Adders and multipliers
generated by the arithmetic component generator module perform the necessary DSP calculations, and
the filtered output is stored in the output shift register for the DAC.

For audio input, a level shifter applies a DC offset to the incoming audio signal to correct it for valid ADC
input voltage levels. A DC blocking capacitor removes the offset, bringing the output signal to
appropriate voltage levels for the stereo speaker.

PC
|

5G

s ADC

v

Nexys2

Sampling Rate Control

Audio >

Level

Shifter

SPI Control | > DAC

)

i

DC

Input Shift Output Shift L i
B . < Blocking

Register Register)
Capacitor

= Scope

v

v

Filter Realization Structure

4

h

Multipliers

Adders

Arithmetic Component Generator

Figure 2. System Block Diagram

The behavior of the system relies heavily on the user defined constants contained in the
CTRL_CONSTANTS.vhd package. Setting these constants allows for changing the filter realization
structure, choosing serial calculation or parallel calculation configurations, choosing the sampling rate,
selecting which multipliers and adders to use for DSP calculations, selecting bit sizes for scaled filter
coefficients, and defining digital filters for implementation. Table 1 lists all the constants contained in
the CTRL_CONSTANTS.vhd package and a short description of their function.

Table 1. CTRL_CONSTANTS.vhd Description of Constants

> Speaker

Constant Function
Chooses normal direct form | or cascade direct
STRUCTURE form Il filter realization structure
S Chooses serial calculation or parallel calculation
orP . -
General conflgurat|on_
SAMP_DIV | Selects sampling rate
SCALE Chooses bit size for scaling filter coefficients
MULTIPLIER | Selects desired multiplier architecture
ADDER Selects desired adder architecture
F LENGTH Length of filter specified filter
Normal N Number of Ak terms
Direct Form | Filters M N””.‘ber of Bk'tgrms
Ak Ak filter coefficients
Bk Bk filter coefficients
F STAGES Number of filter stages
Cascade A!(i Ak filter coeff.ic.ients ‘ '
Direct Form Il Filters Bki_S Bk filter cogf_ﬂuents for serial calculations
C Input coefficient
Bki_P Bk filter coefficients for parallel calculations

DSP_BB.vhd, Arithmetic Component Generator Design

The arithmetic component generator module generates and organizes the binary arithmetic
components used for filter calculations. All filter calculations take place using the hardware it
generates. Based on the values contained in the CTRL_CONSTANTS.vhd package, DSP_BB.vhd performs
the following functions:

e Generate user specified adders and multipliers used for filter calculations

e Configure arithmetic components for either serial or parallel calculation implementation

e Configure arithmetic components for direct form | or cascade direct form Il filter realization
e Convert integer filter coefficients to signed vector equivalents

e Provide products and sums for desired values

Operation

During Xilinx compilation, DSP_BB.vhd generates and organizes the desired binary arithmetic
components depending on the constants contained in the CTRL_CONSTANTS.vhd package. During filter
operation all adder and multiplier inputs pass to this module for calculation, returning their respective
sums and products. It also takes the specified integer filter coefficients and converts them to 16-bit
vectors for use with arithmetic components.

CONVERTER_CTRL.vhd, SPI Control Design

Both the ADC and DAC require an SPI for data communication with the Nexys2. The SPI control module
CONVERTER_CTRL.vhd, fulfills this role. Data communication with each converter requires a different
clock frequency, provided by the clock divider module, CLK_DIV.vhd. Two of these modules produce a 25
MHz signal for DAC timing and a 12.5 MHz signal for ADC timing from the 50 MHz Nexys2 system clock
signal.

The SPI control module contains two separate finite state machines (FSMs). The first controls data
transfer from the ADC, state transition diagram shown in Figure 3, and the second controls data sent to
the DAC, state transition diagram shown in Figure 4.

Operation

For each desired sample, the assertion of RD_EN causes the FSM to change to the SET_ADC state,
beginning ADC data transfer sequence by setting the ADC chip select signal, CS, high. On the next rising
edge of the ADC clock the RUN_ADC state brings CS low, beginning serial data transfer from the ADC and
asserting RD_CNT_EN to begin timing the data transfer. Each ADC clock period increments RD_CNT until
it reaches a value of 15. This signals the completion of ADC data transfer and the state changes to
SET_SAMP, where the assertion of the GOT_SAMP flag notifying that ADC data transfer is complete. The
FSM then returns to the ADC_IDLE state to await the next sample.

DAC operation executes similarly. After the first sample, the assertion of WRT_EN sends the FSM to the
SET_DAC state, where the assertion of the DAC chip select signal, SYNC, begins the DAC data transfer
sequence. After bringing SYNC back low in the RUN_DAC state during the next rising edge of the DAC
clock, serial data transfer to the DAC starts. When the counter WRT_CNT reaches 15, DAC data transfer
concludes and the state changes back to SET_DAC to immediately begin another DAC output sequence.

RD_EN

RD_EN

IDLE_ADC

] cs

RsT RD_CNT_EN RD_CNT_EN

GOT_SAMP GOT_SAMP
SET_Xn SET_Xn

/SAMP_DONE

SET_SAMP RUN_ADC

=3 =3

RD_CNT_EN

RD_CNT_EN

GOT_SAMP GOT_sAaMP

SET_Xn

SET_Xn

RD_CNT = 15/m RD_CNT < 15

Figure 3. CONVERTER_CTRL.vhd ADC
State Transition Diagram

SYNC SYNC

RST

LOAD_Yn LOAD_Yn

WRT_CNT_EN WRT_CNT_EN

SYNC
LOAD_¥n
WRT_CNT_EN

WRT_CNT < 15

Figure 4. CONVERTER_CTRL.vhd ADC
State Transition Diagram

SAMPLE_CTRL.vhd, Sampling Timing Control Design

The sampling timing control module controls timing for ADC input and begins DAC output of filtered
signals. It also handles storing and delaying input samples and filtered output signals through the single-
in parallel-out (SIPO) shift register module SIPO_SHR.vhd. The module contains one small FSM, shown in
Figure 5, which determines timing for the RD_EN and WRT_EN signals that determine ADC and DAC

operation.

EN

GET_SAMP

SAM P_STAR

CNT_EN

RD

CNT_EN
RST —
RD

WRT WRT

SET_FIRST SET_FIRST

GET_SAMP n NEW_SAMP

WRT

SEI'_FIR ST

NEW_SAMP
v
(NEW_SAMP A GET_SAMP)

SET_FIR 5

SAMP_DONE_INT

SAMP_DONE_INT

Figure 5. SAMPLE_CTRL.vhd State Transition Diagram

Operation

The internal clock signal SAMP_CLK, again
generated by the CLK_DIV.vhd module,
determines the sampling rate of the system. First,
assertion of the system enable, EN, causes a state
change to the SAMP_START state, where the FSM
waits for the appropriate time to take the first
sample. A separate, small process triggers the
assertion of the GET_SAMP flag for each required
sample period, causing the FSM to change to the
SAMPLE state, where the assertion of RD_EN
starts the ADC data transfer sequence. The
assertion of SAMP_DONE_INT signals the
completion of sample acquisition and causes
another state change. Once in the HOLD state,
the assertion of WRT_EN begins output through
the DAC and the FSM returns to the SAMPLE

state to wait for the next sample interval.

Filter Structure Design

Testing the operation of the entire system led to the design of two filter realization structures,
NORMAL.vhd to implement normal direct form |, and CASCADE.vhd to implement cascade direct form Il
This section contains specifications and diagrams used for their design and VHDL implementation.

NORMAL.vhd, Normal Direct Form I Filter Realization

The NORMAL.vhd module performs required operations to execute DSP calculations using direct form |
filter realization. Figure 6 displays a diagram showing direct form | realization and Eq. 1 shows the
difference equation used for its VHDL implementation.

y[n]
Eq. 1. Direct Form I Difference Equation

y[n] = Byx[n] + Byx[n — 1] + Byx[n — 2] + --- + Byx[n — M]

—Ayy[n—1] — Azy[n—2] — - — Ayy[n — N]

A4

o>
v

A

Figure 6. Normal Direct Form I Filter Realization

Operation

Figure 7 shows a state transition diagram for the FSM that composes the NORMAL.vhd module. It
determines appropriate signals to send to the arithmetic components to perform necessary DSP
calculations. State changes for both serial and parallel calculation implementations are shown in the
figure. Dummy states are used to create delays so filter operations may complete before moving on to
the next state.

Beginning in the IDLE state, the FSM waits for the EN system enable signal, causing a state change to the
WAIT4Xn state to wait for the next input sample. Assertion of the SAMP_DONE flag in the converter
control module signals the acquisition of a new sample, where the state changes to MULT to begin filter
calculations. The module’s following behavior is determined by calculation implementation type.

EN

EN

IDLE

WAIT4Xn

SAMP_DONE

MULT

CLR_REGS

LOAD_MULT
RST

LOAD_P
LOAD_ADD

LOAD_S

GOT_OUTPUT

CLR_REGS
“LoAD_MULT

LOAD_P
LOAD_ADD
“LoaD_s
“GoT_ouTtPuT

CLR_REGS

LOAD_MULT

LOAD_P

LOAD_ADD

LOAD_S

GOT_OUTPUT

GET_P

SAMP_DONE

ACCUM

/D UTPUT_DONE

SET_OQUTPUT

CLR_REGS

LOAD_MULT

LOAD_P
“Loap_ano.
‘LoAp_s
GOT_OUTPUT

Figure 7. NORMAL.vhd

Serial Calculation Implementation

Figure 8 shows a block diagram for the
NORMAL.vhd module configured for serial
calculation implementation. First, multiplier inputs
are loaded in the MULT state with values to
calculate one filter term. Next, in the GET_P state,
the multiplier’s output gets stored into the
product register for accumulation. In the ACCUM
state, adder inputs are loaded with the current
filter term from the product register and the
current value of accumulated filter terms, stored
in the sum register

“CLR_REGS
“LoAD_MULT
LOAD_P
LOAD_ADD
“LoaD_s
“GoT_ouTtPuT

“CLR_REGS
“LoAD_MULT
LoAD_P

LOAD_ADD

LOAD_S
GOT_OUTPUT

CNT_TERMS < F_LENGTH

GET_S

CLR_REGS

LOAD_MULT

> y[n]

LOAD_P
LOAD_ADD
GOT_OUTPUT
CNT_TERMS > F_LENGTH
State Transition Diagram
old
sum yF
A—>
Multiplier [Product] adder
New
B—>
sum

Figure 8. NORMAL.vhd Serial Calculation
Implementation Block Diagram

In the GET_S state, the FSM checks if filter calculations are complete for the current sample. If not, the
FSM returns to the MULT state, where a new filter term is multiplied and then accumulated as before. If
complete, GET_S assigns the output, the state changes to SET_OUTPUT causing the assertion of the
GOT_OUTPUT flag. The FSM then returns to the WAIT4Xn state to wait for the next input sample.

—_ Parallel Calculation Implementation
A Multiplier Produci p

Figure 9 shows a diagram for the using NORMAL.vhd
configured for parallel calculation implementation.

In the MULT state values are assigned to the inputs
A= Multiplier [Product of each multiplier. The product of each multiplier is
B—> Accumulator Jin] loaded into the product r.eglster in the GET_P st.ate
and corresponds to one filter term. After changing
to state ACCUM, the accumulator inputs are loaded
with the products of each multiplier from the
product register. The output value is assigned next
A=> Multiplier |Product in the GET_S. Finally, state SET_OUTPUT asserts
GOT_OUTPUT before returning to the WAIT4Xn
state to wait for the next sample.

B—>

B—>

Figure 9. Parallel Calculation Implementation

CASCADE.vhd, Cascade Direct Form II Realization

The CASCADE.vhd module performs necessary operations for DSP calculations using a cascaded, multi-
stage filter approach with direct form Il realization. The diagram in Figure 10 contains a filter realization
of 2 filter stages arranged for serial calculations and Eq. 2 shows the difference equations describing
each stage of the filter used for VHDL design and implementation.

[
A 4
[
k4

y

HA(Z) Hpg(z)

Figure 10. Cascade Direct Form II Filter Realization for Serial Calculations

10

Eq. 2. Direct Form II Difference Equations for Each 2nd

Order Filter Stage for Serial Calculations As shown by the difference equations in Eq. 2,

calculating the output y; requires the preceding
w; = x;[n] — Aywiln — 1] — Aywi[n — 2] calculation of w; for each stage of the filter. The

output of each stage passes to the next as its
Yi = Boiwi[n] + Byywi[n — 1] + Bzwi[n — 2] input. The two stages cascaded in Figure 10 form

x;[n] = y;_1[n] & x,[n] = x[n] a fourth order IIR filter.

Calculation parallelization for cascaded filter

stages improves with a slightly different

realization, shown in Figure 11. As with serial
calculations, the calculation for w; precedes the
calculation for y;. However, this realization allows

for the simultaneous accumulation of outputs x[n]
from each 2" order filter stage, a characteristic

not possible with the serial realization structure.

Eq. 3. Direct Form II Difference Equations for Each 2nd
Order Filter Stage for Parallel Calculations

w; = xi[n] — Aywiln — 1] — Aywi[n — 2]

Yi = Boiw;[n] + Byjwi[n — 1]

y[n] = Cx[n] + ys[n] + yp(n]

Figure 11. Cascade Direct Form II Filter Realization for
Parallel Calculations

Operation

Figure 12 contains the FSM that
CASCADE.vhd uses to perform DSP
operations. Table 2 gives further
details about state changes in the
figure. Because of the differences in
structure between serial and parallel
implementations, this module’s FSM
becomes more complex than the one
used for NORMAL.vhd.

Once again, the FSM starts in the IDLE
state. After assertion of the EN signal,
the state changes to WAIT4Xn to wait
for a new input sample. The assertion
of SAMP_DONE signals the
acquisition of a new sample and the
state changes to MULT to begin
multiplication of filter terms.

11

EN EN SAMP_DONE

CLR_REGS

CLR_REGS CLR_REGS

LOAD_MULT LOAD_MULT

LOAD_MULT

LOAD_P LOAD_P LOAD_P

LOAD_ADD LOAD_ADD

LOAD_ADD

LOAD_S LOAD_S

LOAD_S

GO

GOT_OUTPUT GOT_OUTPUT

SAMP_DONE

/CIUTPUT_DDNE

CLR_REGS
"LOAD_MULT
“LoaD_p
“Loap_abo
LoAD_S
“GOT_ouTPUT.

CLR_REGS CLR_REGS

CLR_REGS

LOAD_MULT LOAD_MULT LOAD_MULT

LOAD_P

LOAD_P LOAD_P

LOAD_ADD LOAD_ADD LOAD_ADD

LOAD_S LOAD_S LOAD_S

GOT_OUTPUT GOT_QUTPUT GOT_OUTPUT

Figure 12. CASCADE.vhd State Transition Diagram

Serial Calculation Implementation

v

Transition Condition
A SorP A (CNT_TERMS # 2) o (CNT_TERMS 2 5] Figure 13 shows a block diagram summarizing
SorP A [(CNT_TERMS = 2) v (CNT_TERMS = 5|] FSM behavior while organized to perform
B v
sorp serial calculations. Multiplier inputs are loaded
SorP A ACCUM_TOG A (CNT_TERMS = 2) with values to multiply the first term of w; in
v . .
c SorF A ACCUMLTOG A (CNT_TERMS =5 state MULT. Next, the product is loaded into

the product register in the GET_P state.

SorPa ACCUM_TOG » ACCUM_OUTPUT

v

v

D SorP & ACCUM_TOG A (CNT_TERMS = 5) A (CNT_STAGE < F_STAGES — 1)

SorP A ACCUM_TOG » ACCUM_OUTPUT

SorP A ACCUM_TOG A (NT_TERMS = 2) Multiplication of the next term of w; occurs

immediately after, loading multiplier inputs in
state MULT and placing the resulting product

E v

SorP & ACCUM_TOG A (CNT_TERMS = 5) A (CNT_STAGE = F_STAGES — 1)

SorP A ACCUM_OUTPUT

in the product register in state GET_P. The two
products get loaded into the adder in state

ACCUM before changing to state GET_S to load

Table 2. CASCADE.vhd State Transition Logic the sum register with the result. The final term

of w;, the current stage input, is accumulated
immediately after in the same manner.

Calculating stage output, y;, occurs similarly.
Serial multiplications take place with the
sequential execution of the MULT and GET_P
states, calculating the 3 terms of y; one by one
and storing results into the product register.
The ACCUM and GET_S states then
accumulate the 3 terms before either starting
another output calculation sequence for the
next filter stage or finalizing filter output and
asserting the OUTPUT_DONE flag in the
SET_OUTPUT state.

Parallel Calculation Implementation

Figure 14 displays a diagram for CASCADE.vhd
while performing parallel calculations. Three
multipliers are generated to handle
multiplications and one adder accumulates
terms for w; and y;. The CSA accumulator takes
care of accumulating the stage outputs, y;.

To first calculate w;, in the MULT state two
multipliers receive inputs to calculate both A;
terms and the third gets the constant C and
the current input to calculate Cx[n] for later
use. These products get loaded into the
product register in state GET_P before passing
them to the adder in state ACCUM. The
adder’s sum is then placed in the sum register
in state GET_S before returning to state
ACCUM to add the current input to produce
w;. The adder output, w;, then gets stored into
the w; register in the GET_S state.

12

i .
¥ Multiplier Py |
wiln-1] =3
e 3 Multiplier Pai o
win-2] 5 Product
Register
Py
>
Py Adder
> |
Adder 3 win]
Ki[n] ——
Ba Multiplier Psi -
>
wiln] ——»
By 3 Multiplier Psi N
wiln-1]——3»
Bz ——> Multiplier Psi o Prolduct
Register
wiln-2]—
P
5
>
Adder
Py
>
Adder > viin]
Psi
>

Figure 13. CASCADE.vhd Serial Calculation Implementation
Block Diagram

13

P3J -
A= Multiplier | P o | Adder
C P‘_‘
win-1] —) >
Ll
Ay 1
31 ! Multiplier Py _ Product I_> Adder wi[n]
> Register [>
W;[N-2] ey |—)
x[n]
C —>
Multiplier Cx[n]‘
X[n] ——3
PEJ
L
Bor—> :]
o Multiplier Psi Adder yfl"]‘ >
>) Cd .
wiln] —> Py o yiRegister |
> .
.
Product 5] Accumulator yln]
Register —>
By ——D , g
1 Multiplier Pai -
>
wiln-1] ——|
Cx[n]
>

Figre 14. CASCADE.vhd Parallel Calculation Implementation Block Diagram

Next, the state returns to MULT to begin calculating filter stage output y; in a similar fashion. Two
multipliers are loaded with input values to calculate the two terms that make up y; and their products
are loaded into the product register in state GET_P. These two products are then loaded into the adder
in state ACCUM and the sum is stored in the y; register in state GET_S. Finally, the state changes back to
ACCUM to load the accumulator with values stored in the y; register to calculate the final output value.
The output y[n] is then set in state GET_S before finally asserting the OUTPUT_DONE flag in the
SET_OUTPUT state.

Audio Interface Design

The Digilent PmodCON4 RCA audio jack and ADC interface audio input signals to the Nexys2. The device
that provides the audio signal, like a computer or stereo system, balances it around 0 V, making it
incompatible with ADC input voltage levels. A level shifter circuit corrects this by adding a DC offset to
the input signal. The level shifter circuit connects between the RCA audio jack and ADC as seen in the
system block diagram in Figure 1. Figure 15 shows a schematic of the level shifter circuit developed in
LTpice.

14

R2
ATk
R1 - 4 va
AN, . Thelevel shifter uses an LM324 OP amp and is designed
L_Vi’{ 1R L, U1 v 4 to have a gain of about 1. An additional DC power
\ +L L1 M324 ° supply provides a DC offset of 1.5 V. This should limit
SINE(0 {v} 2k) '0°K : the input voltage to the ADC to around its 3V
R4& — maximum.
4tk
1)
15

Figure 15. Level Shifter Circuit LTspice Schematic

Figure 16 shows a simulation of the level shifter circuit using LTspice. For this simulation, the input
voltage is swept from 1 V to 5 V. The circuit outputs a replica of the input, close to unity gain, until it
reaches 3 V in amplitude. The output clips at 0 V and 3 V as shown in the results, exercising just below
the maximum range of the ADC.

Figure 16. Level Shifter Circuit LTspice Simulation Results

The offset added by the level shifter must be removed before sending the signal to the speakers for
listening. A DC blocking capacitor on the DAC output resolves this issue. Its capacitance of 10 pF insures
that all range of audible frequencies pass through it without impedance.

Adder Design

The three adders selected for implementation include the Ripple-Carry, Carry-Lookahead, Carry-Select
adder architectures. Each provides a unique example for contrast, varying from the others in terms of
speed, power consumption, and required FPGA logic. The design of a fourth adder using carry-save
architecture, the Carry-Save accumulator, allowed for more efficient accumulation during parallel
calculation implementations. Figure 17 and Figure 18 show blackbox diagrams for the adder and
accumulator modules respectively.

15

A(32:0) co
PART_S(0:19)(32:0)
B(32:0) s(32:0) s(32:0)
Figure 17. Adder Blackbox Diagram Figure 18. Accumulator Blackbox Diagram

An overflow circuit accompanies the adder and accumulator modules. It detects for overflow in the sum
and adjusts it accordingly. Figure 19 below shows a flowchart for the OVERFLOW.vhd module.

MSB of $ = 0 .
°—| Check MSB of S M

A 4 A 4
Check MSB of inputs Any other values Check MSB of inputs
Aand B AandB
MSBofA=1 MSBofA=0
MSBofB=1 MSBofB=0
v k.
Adjust sum to min Do not adjust sum Adjust sum to max
negative value positive value

I
6
Figure 19. OVERFLOW.vhd Flowchart

RC_ADDER_32BIT.vhd, Ripple-Carry Adder Design

Figure 20 shows the Ripple-Carry (RC) adder design schematic used to create the VHDL module. It
calculates the 32-bit sum and 1-bit carry-out, S and CO respectively, based on the 32-bit input signals, A
and B. VHDL implementation included three modules consisting of the full adder, half adder, and
overflow circuit using only concurrent signal assignments.

A(31) B(31) A(30) B(30) A1) B(1) A(0) B(0)

FA31 FA3D FAl HAD

co_INT(31) CO_INT(30)j=| cO_INT(30) CO_iNT(29)|aG====4 CO_INT(1) CO_INT(O} CO_INT(O) ;
: 5_INT{31) 5_INT(30) S_INT[1) 5_INT(D) :
P AR l BI31) l 5_INT|29:2) l l :
R v v
: OVERFLOW ;

Figure 20. 32-Bit Ripple-Carry Adder Schematic

16

Thirty full adders, labeled as FA1 to FA31, and one half adder, labeled as HAO, compose the entire ripple-
carry architecture. Figure 21 and Figure 22 display logic diagrams for the full adder and half adder
modaules, respectively, accompanied by the design equations used for VHDL implementation shown
respectively in Eq. 4 and Eq. 5.

s s
o ? Eq. 4. Full Adder Design Equations
—9 CO=[(A+B)-CIl+(A-B)

FG - S=A®B@CI

5
Figure 21. Full Adder Logic Diagram

A B
|

CO

Eq. 5. Half Adder Design Equations

CO=A-B

Ja

S=A®B

Figure 22. Half Adder Logic Diagram

Operation

The basic design of the ripple-carry adder makes it compact and power efficient but relatively slow at
calculations. Each adder in the RC architecture calculates its 1-bit sum and 1-bit carry-out signals from
respective 1-bit signals from A, B, and a carry-in. Every full adder in the carry chain passes its carry to the
next. This means that each adder must wait for the carry-out bit from the previous adder. The final
calculation of the sum and carry-out results after the carry bit propagates through every full adder in the
carry chain.

Gate Delay Analysis

The ripple-carry adder architecture makes it the slowest adder used in the project but also the most
compact. The 32-bit adder is composed of one half adder and thirty one full adders. From examining
Figure 20, the critical delay path through the RC adder is from carry-in to carry-out. The logic diagram for
the full adder shows that 2 gate delays are introduced by carry propagation. For a rough estimation, if 2
gate delays are introduced per adder then there are about 64 gate delays for the entire RC adder to
calculate a sum.

CLa_ADDER _32BIT.vhd, Carry-Lookahead Adder Design

The Carry-Lookahead (CLA) adder, schematic shown in Figure 23, improves upon the propagation delay
of the RC adder. Like the RC adder, it takes two 32-bit binary numbers, A and B, and produces their 32-

bit sum, S, and carry-out bit, CO.

2-bitClLa

GCI(10)

| AT‘L

1T

PG(9) GG(9) cran GCI(39) PG(8) GG(8) CLag GCI(8)
A A : A A
! i v ! I
GCl(6:4) GG(6:4) PG(6:4) GCl(3:1) GG(3:1) PG(3:1) H
EGCI? GG(7 GG(0) PG(0) GCI{
:) eetn) pe) Cla7 Abad CLao 07l :
T1 l T 1 lT 1 l 1 T l 1 T l 11 lA T l 11 l
= [G(21) (1) cI(31)[G(30) P(30) CI(30)] G (29) P(29) CI(29)] G(28) P(28) CI2 G(2) p(2) cf2)fa(2) e(2) a(fs(1) e(1) (1) fG(o) (o) Cifo)
s(a1) PFA31 (3D}PFA30 (29}PFA29 5(28) PFA28 L 1 5(3) PFA2 s(2) PFA2 s(1) PFAL 5(0) PFAD
H 5(27:4)
A(31:0) ma * * * I . f * * * $} T
B(31:0) mal AGY 1 AZ0) AZ9) 1 Al . Aw}l Al2) 1 AlY) :
. v B(31) v B(30) v B(29) v B(28) V B(3) v B(2) v B(1) v B(0) :
: OVERFLOW

Figure 23. Carry-Lookahead Adder Schematic

Besides the overflow module, VHDL implementation required two modules, the partial full adder and 4-
bit CLA unit, using strictly concurrent signal assignments and combinational logic. A total of thirty two
partial full adders and ten CLA units, labeled respectively as PFAO to PFA31 and CLa0 to CLa9 in Figure
23, completed the adder architecture. Figure 24 shows a logic circuit diagram for the partial full adder
module, accompanied by the design equations used for VHDL implantation shown in Eq. 6.

Ci

Figure 24. Partial Full Adder Logic Diagram

Eq. 6. Partial Full Adder Design

Equations
G=A'B
P=A®B
S=ADBDCI

18

To calculate the total adder sum, the CLA adder uses CLA logic to interpret the generate and propagate

signals produced by the partial full adders to create their carry-in bits. While enabling the adder to

produce a sum faster, CLA logic demands a considerable amount of hardware. The logic circuit diagram
shown in Figure 25 represents the 4-bit CLA logic module.

Figure 25. 4-Bit Carry-Lookahead Logic Diagram

Gy

Py

sz IS S EIEEEEEEEEEEEEEEEEEEE

Ca

For this particular adder design, CLA units were limited to handle a maximum of 4-bits. Designing them

to handle larger bit sizes is possible but requires more hardware. The design equations used for the

VHDL implementation of the 4-bit CLA module are listed below in Eq. 7.

Operation

Eq. 7. 4-Bit CLA Unit Design Equations
Co = CI
C; = (CI-Py) + G,
Co =(CI-Py-P)+(Go-P)+ Gy
C3=(CI-Py-Py-P)+(Go-Pr-Pp)+ (G- Pr) + G,
GG = (Go-Py-Py-P3)+ (G- Py-P3)+(Gy-P3) +Gs

PP=P0'P1'P2'P3

In addition to the 1-bit sum produced by the full adder, the partial full adder produces 1-bit generate (G)
and propagate (P) signals, as seen in Figure 24. The assertion of G indicates that the addition of Aand B

will always create a carry-out bit regardless of the possibility of producing carry-out bits by adding less

significant digits. Similarly, the assertion of P indicates that a carry-in will always propagate through the

adder to the left.

19

Each partial adder accepts 1-bit from signals A and B, and the 1-bit signal Cl, generated by the 4-bit CLA
units. With these inputs, they produce 1-bit signals S, G, and P. As seen in Figure 23, 4-bit CLA units CLa0
to CLa7 create Cl bits for the partial full adders based on the signals G and P, and a carry-in to the unit.
The 4-Bit CLA units CLa8 and CLa9 take group generate (GG) and group propagate (GP) signals, produced
by CLA units CLa0 to CLa7, to create group carry-in (GCl) signals for the other CLA units included in the
architecture. The highest level CLA unit of the adder, shown in Figure 23 as a 2-bit CLA, produces 2 GCl
bits for CLA logic units CLa8 and CLa9, along with the carry-out bit of the adder.

Gate Delay Analysis

The critical delay path for the CLA adder is from carry-in to carry-out. Carries propagate through each 4-
bit CLA unit in at most 2 gate delays and it takes another gate delay for each group of 4 partial full
adders to calculate their 1-bit sum. There are 10 4-bit CLA units the carry must propagate through,
contributing 20 gate delays. Each group of 4 partial full adders adds 1 gate delay and there are 8 of these
groups, contributing 8 more gate delays. This gives the total gate delay of the CLA adder as about 28
gate delays.

CSe_ADDER 32BIT.vhd, Carry-Select Adder Design

Figure 26 shows the design schematic for the carry-select adder. As with the other adder modules, it
produces a 32-bit sum and a carry-out bit, labeled as S and CO respectively, from the 32-bit input signals
A and B.

A(31:28) B(31:28) A(27:24) B(27:24) B(7:4) A[3:0) B(3:0)

coiz) RIL €= 0 coig) "0 o =0 cory R0 €= 0 l l

50(31:28) 50(27:24) 50(7:4) o :
| c(s) | =qCi1) clo) Clj=0 o
H * 51(3:0) E
ampE Rl ol e ROl |t
T 51{31:28) 51(27:24) :
\ wfed L /... ;
S_INT(31:28) S_INT(27:24) S_INT(22:8) s_INT{7:4) s_INT(2:0)
OVERFLOW

Figure 26. Carry-Select Adder Schematic

A total of fifteen 4-bit RC adder modules compose most of the adder architecture. A pair of these 4-bit
adders, and two small 2-to-1 multiplexors, makes up each stage of the adder. Concurrent signal
assignments and combinational logic proved sufficient for VHDL implementation.

For this design, stages of the adder were limited to 4-bits. A more time efficient architecture involves
designing stages based on MUX propagation delay. This works by making stages that calculate the more
significant bits of the sum use larger ripple-carry adders than the preceding stages. Designing each stage
so that its propagation delay equals the total propagation delay of all the previous stages means no
stage waits idly for the carry signal from the previous stage.

20

Operation

At its most basic level, the CSE adder consists of two RC adders working in parallel. One RC adder
calculates a sum based on a carry-in of 0 and the other for a carry-in of 1, labeled respectively as RCO_0
to RC7_0and RC1_1to RC7_1in Figure 26. Each stage calculates four bits of the sum using 4-bit RC
adders. Based on carry signals passed from preceding stages, MUXs select which of these sums to use in
the final value and which carry signal passes to the next adder stage.

Gate Delay Analysis

The critical delay path for each 4-bit RC adder is from carry-in to carry-out, about 8 gate delays for the 4
full adders included per stage. Each stage uses a 2-to-1 MUX to propagate carries to the next stage,
adding 2 gate delays per MUX for a total of 14 gate delays for the 7 MUXs included in the carry chain.
This gives a total of about 22 gate delays to calculate the sum, less than half the delay of the 32-bit RC
adder module.

CSa_ACCUM_32BIT.vhd, Carry-Save Accumulator Design

One final adder, the carry-save (CSA) accumulator shown in Figure 27, is designed to execute faster
accumulation of filter terms while using parallel filter realization structures. This module takes signal
PART_S, a 2-D register of up to twenty 32-bit values, and produces its accumulated total, the 32-bit sum,
ADD _S, and carry-out bit, ADD_CO

PART_S(1)(21) PART_S(0)(31) PART_s(1){30) PART_S(0)(30) PART_S(1)(1) PART_S(0)(1) PART_S(1){0) PART_S{0){0}

As{0)(31) Bs{0}(21) As(0)(30) Bs(0)(30) As{0)(1) Bs{0)(1} As(0){0) Bs(0)(0}

. HAD_31 HAD_30 o000 HAO_1 HAD_0
. €o(0}(31) 5(0)(31) co(0}(30) 5(0)(30) co(0){1) S(0)(1} CO(0){0) 5(0)(0) .
= PART_S(2)(31) l l PART_5{2)(30) l l PART_5(2)(1) l l PART_S(2)(0) l l :
As(1)(31) CI{1)(31) Bs(1)(31) As(1)(30) CI{1)(30) Bs(1)(30) As(1)(1) CI{1)(1) Bs(1}(1) As(1)(0) CI{1)(0) Bs(1}(0)
H FA1_31 FA1_30 00 FA1_1 FA1_0 .
H co(1){31) S(1)({31) CO(1){30) S(1){30} co(1){1) s(1){1) Co(1]{0) 5(1){0) H
I PART_S[19)(31) = : PART_S{18)(30) = : PART_S{19)(1) = : PART_S{18){0) = :
T A R A V" v v V" v v
= |ass)(z1) cifas)(z1) es(a8)an)] [as(18)(30) C1{18)(30) Bs{18)(30) As(18)(1) CI{18)(1) Bs{18)(1) As(18)(0) CI{18)(0) Bs(18)(0) .
. FA18_31 FA18_30 o000 FA18_1 FA18_0
= |coispzy 5(18)(31) C0(18)(30) 5(18)(30) co(18)(1) 5(18)(1) co(18)(0) s{18)(0) :
As(19)(31) Bs(19)(31)] [as(19)(30) Bs(19)(30) As(19)(1) Bs(19)(1) As{19)(0) Bs(19)(0) .
ADD_COj FA19 31 FA19 30 FA19 1 FA19 0 .
€——] CO(19)(21) 5(19)(31) C1(19)(31) pamd CO(19)(20} 5{15)(20) CI(19)(20) € nnnnmnnnnns CO(19)(1) 5(19)(1) CI(19)(1) hgd CO(13}{0) S{19)(D) CI{19)(0)gm 0 %
i l 5(19)(29:2) l
v :
OVERFLOW

.. *:q'[;ﬁ_'s'('zi:'o']""'""""'"""'""""""""""""""""

Figure 27. Carry-Save Accumulator Schematic

The CSA accumulator’s architecture resembles closely to the shift-add multiplier. Half adders, labeled as
HAO_0to HAO_31 in Figure 27, compose the highest level of the adder hierarchy, while full adders make
up the all other levels of the adder. For this architecture, VHDL code using entirely concurrent
statements proved sufficient.

21

Operation

Because of their similarities in architecture, the CSA accumulator also operates similarly to the shift-add
multiplier. The sum and carry bits from each adder stage are saved and passed to the next lower level in
the adder hierarchy. The carry bit is finally propagated through, in ripple-carry fashion, on the last
hierarchical stage to calculate the final value of the sum. This architecture allows for faster accumulation
of multiple terms because carries from each summation stage do not propagate through the adder until
the last stage.

Gate Delay Analysis

The critical path of the full adders that make all but the last stage of the accumulator is from input to
sum, or three gate delays per stage. If the maximum number of terms the accumulator may add
together is 20, then about 60 gate delays are introduced for the upper stages of the accumulator. Full
adders in the last stage create the carry chain and have critical delay paths from carry-in to carry-out,
just as in the RC adder. Thirty two full adders compose the carry chain stage, same as the RC adder,
increasing propagation time by another 64 gate delays. This is a total of about 124 gate delays for the
accumulator configured to sum together 20 terms. This is much faster than using any other adder to
accumulate 20 values.

Multiplier Design

Figure 28 shows a blackbox diagram of the multiplier component. The Digilent Nexys2 development
board comes equipped with twenty dedicated MULT18X18 multipliers. In addition, two multiplier
designs, a simple Shift-Add multiplier and a Modified Booth multiplier, fulfilled the other multiplier
components used for the project.

A(16:0)

P(16:0)
B(16:0)

Figure 28.Multiplier Blackbox Diagram

Shift-Add Multiplier

Like the RC adder, the simplistic architecture of the Shift-Add (SA) multiplier makes it compact and easy
to design. It applies one of the most basic approaches used for multiplication, the shift-add algorithm.
The shift-add multiplier module, shown in Figure 29, calculates the 32-bit product P from the two 16-bit
input signals A and B.

22

Similarly to the CSA adder, half adders, labeled as HAO_0 to HAO_14, compose the top stage of the
multiplier hierarchy. All other components used for the multiplier architecture consist of full adders. To
implement this architecture in VHDL required only concurrent signal assignments and combinational
logic.

A[31:0) a[3|1:Dl
¢ PP(1){15) PP(1)(14) PP(D)(15) PP(1){13) PP(0)(14) PP(1)(1) PR(0)(2) PR{1)(0) PR(O)(1) PR(0)(0)
Partial Product l l l
(PP) Losgic “As(0)(14) Bs(0)(15) As(0)(13) Bs(0)(14) As(0)(1) B(0)(2) “25(0)(0) B=(0)(1)
[T]]
EPP(D:15][15:D]> co(0)(14) ~ s(0)(14) co(0){13) - sio)13) | sioiz) coio)1) T s{o)) CO(0)(0) T s(0)0)
PP(2){15) PP(2){14) PP(2)(13) E E [PP(2)(1) I PP{2)(D)
4 [$ A 4 I $ v v $ v $
As(1)(14) Ci1)(14) Bs1){14) As(1)(13) Ci1)(13) Bs{1){13) As(1)(1) CH1)1) Bs{1){1) as(1)io] cif1)o) Bsi1)o)
FA1_ _ [11] _)
= |coitiig) 5(1)(14) | .-cO(1)(13) S(1)(13) =|coitii) S(1)(1) -[coitio) 5(1)(0)
i i stz i
PP(15)(15) H PP{15)(14) ' PR(15)(13) } ' PR(15)(1) ' PP(15)(0)
v $ VW \F v v A4 $ v ¥ wl;
As{14)(14) CI{14)(14) Bs(14)(14), As{14){13) CI(14)(13) Bs[14){13) As(14)(1) Ci{14){1) Bs(14){1) As(14)(0) CI{14){0) Bs(14)(0)
FA14_14 FA14_ [1] FA14_1 FA14_0
col14)(14) 5(14)(14) Co(14)(13) s(14)(13)| s(1s)(2) co(14)(1) 5(14)(1) col14)(0) 5(14)(0)
R . o
[A 4 \[A4 HE " \[A 4 I &
As{15){14) CI{15)(14) Bs[15)(14) As(15)(13) CI{15){13) Bs{15){13), i [asi1s)1) ciasiy) esiisiit) As{15){0) CH15)(0) Bs(15}(0)
FA15_14 FA15_13 H FA15_1 FA15_0
|_CD[15][14] 5(15)(14) Cof15)(13) 5(15)(13) 5(15){12:3) s.JCcO(15)(1) 5(15)i1) Ccof15)(0) 5(15)i0) 8{2:13)(0)
L v ! L v v v ¥ v v
P(31) P(30] P{29) P(28:18) P(17) P16} P(15) P(14:3] P(2) P(1) P(0)

Figure 29. Shift-Add Multiplier Schematic

Operation

The SA multiplier method of multiplication works much like the pencil and paper approach or long
multiplication, sometimes called Standard Algorithm. Each bit in the multiplier is multiplied with the
multiplicand to produce partial products. These are then shifted one place to the left and accumulated
to produce the final product. Figure 30 displays a 6-bit example using the shift-add algorithm.

Partial Product 3
Partial Product 4
Partial Product 5 1
Partial Product 6 + 0 O

Product (1189):] 0 1 O

Multiplicand (41): 1 0 0 1
Multiplier (29): X 1 1 0 1
Partial Product 1 1 0 0 1
Partial Product 2 0O 0 oO
0 1
1

L OOO0OOoj—Oo

RPIO OO R, ORIO -

(@] loNeNT
—rlorr Or
(o] loNeol T NoNe)

0O 0 1 0 1

Figure 30. 6-Bit Multiplication Using the Shift-Add Algorithm

The partial product register, PP, contains the partial products determined from the multiplier and
multiplicand signals A and B. Like the carry-save accumulator, sums and carries are saved and sent to the
next lower tier of adders in the multiplier hierarchy. Finally, as seen in the last tier of the schematic, the
carry propagates through in ripple-carry fashion, producing the finished product.

23

Partial Product Analysis

The SA multiplier is the slowest multiplier used for the project. It is composed primarily of full adders
arranged similarly to the CSA accumulator. Because of the similarities in architecture, timing similarities
in terms of gate delay also exist.

The SA multiplier does not use complicated algorithms or take advantage of additional logic to lower the
number of partial products it uses to calculate its product. Because of this, one partial product is needed
for every bit of the multiplicand or multiplier. This means a total of 16 partial products must be
accumulated to calculate the 32-bit product.

Modified Booth Multiplier

Figure 31 displays a flowchart for the Modified Booth multiplier. It gets its name from its use of a slightly
modified version of Booth’s Multiplication Algorithm to calculate the product. The Booth multiplier

differs from all other binary arithmetic components used for the project in that VHDL implementation is
accomplished using no concurrent statements. One small process, using only combinational logic, makes

up the entirety of the VHDL module.

Place multiplier in
right half of product
register with LSB 0

&
-
4

L L
Add multiplicand to 001 or 010
—{ left half of product |
register

Subtract multiplicand
— from left half of
product register

101 or 110
"

Add two times

011 < lier bite liadsi
L multiplicand to left half |e Test multiplier bits [i+1:i-1]

of product i<k
multiplicand
Subtract two times 100 length
l—{ muiltiplicand from left |
half of product register
|| Do nothing 311 or 000
L
< Shift product register >> 2)

ili i =% multiplicand length

Figure 31. Modified Booth Multiplier Flowchart

Operation

24

Booth’s Multiplication Algorithm improves upon the method of shift-add multiplication by reducing the
number of partial product needed to calculate a product. It takes advantage of the fact that any
sequence of 1’s in a binary number can be broken down into the difference of two binary numbers. For
example, the binary value 0b0111 can be broken down into the difference of 0b1000 — 0b0001. The
three additions needed for the three partial products required for the value 0b0111, break down into
one addition and one subtraction, or two additions. Examining the multiplier 1-bit at a time, plus an
extra helper bit on the right, allows for the generation partial products based on the detection of

sequences of 1’s.

While Booth’s Algorithm reduces partial products
needed to multiply by sequences of 1's, it actually
increases partial products for singleton 1’s, which

Table 3. Generated Partial Products for Modified

when broken down into the difference of two

numbers creates an additional partial product. The

modified version of Booth’s Algorithm circumvents

this issue by looking at the multiplier 2-bits at a

time, plus an extra bit on the right, in order to

Booth Algorithm
3-Bit Sequence | Partial Product
000 or111 None
001 or 010 Multiplicand
101 or 110 -Multiplicand
011 2*Multiplicand
100 -2*Multiplicand

appropriately detect and handle singleton 1’s.

Multiplicand, A_INT(41): 0 0 1 0 1 0 0 1
Multiplier, BLINT(29): 0 0 0 1 1 1 0 1

Add A_INT to left half of
' product register for hits “010”

The multiplier (B_INT) goes into right

L half of product register plus extra bit

A_INT:OQlOlOOle
+lo o o o o o o oJo o o 1 1 1 0 1]o

Check last two bits of B_INT T
plus extra bit on right

=flo o 1 0o 1 o o 1]Jo o o 1 1 1 o0 1]o

Shift product register two

4. places right

2>»>fo o 0o o 1 o 1 oJo 1 o o o 1 1 1]o

Repeat steps 2-4 until entire
B_INT is checked

@

AINT: 1 1 0 1 0 1 1 1
+fo o o 0o 1 o 1 olJo 1 o o o0 1 1 |
=1 1 1 0o o o o 1]Jo 1 o o o 1 1 1]

AINT: 0 1 0 1 0 0 1 0

2>»+1 1 1 1 1 0o o ofJo 1 0o 1 0 0 O |
=lo 1 0o 0o 1 o 1 olJo 1 o 1 o o o 1]

Nome: 0 0 0 O 0O 0 0 0
s>>+«lo o 0o 1 0o o0 1 ofJ1 o o 1 0o 1 0 o]
=lo o o 1 o o 1 o]1 o o 1 o 1 o o

2>» 0 0 0 0 _0 1 0 0 1 0 1 0 0 1 0 1 0

Product(1189):/ 0 1 o0 0 1 0 1 0 0 1 0 1]

Figure 32. 6-Bit Multiplication Using the Modified Booth’s
Multiplication Algorithm

Table 3 shows the partial products
generated for 3-bit sequences. With the
detection of singleton 1’s, now only one
partial product, the addition of the
multiplicand, is generated. The other binary
sequences generate partial products of two
times the multiplicand, the negative of the
multiplicand, or the negative of two times
the multiplicand as seen in the table. Figure
32 provides an example of 6-bit
multiplication using the Modified Booth’s
Multiplication Algorithm.

25

As seen in the example, the multiplier and multiplicand are padded with two 0’s, one to account for the
generation of negative partial products and another to keep their bit sizes even. After checking the
appropriate 2-bits of the multiplier, plus the extra bit on the right, the corresponding partial product is
added to the left portion of the product register. The product register is then shifted two places right
before the multiplier bits are checked again. These steps iterate a number of times equal to half the
length of the two input signals with the addition of the padded 0’s, four times in the above example, to
determine the product.

Partial Product Analysis

The Booth Multiplier takes advantage of the Modified Booth Multiplication Algorithm to reduce the
number of partial products needed to calculate the product. As shown in the example of the algorithms
operation, it takes about half the number of partial products to calculate the product as the shift-add
multiplier. This implies that the Booth multiplier calculates the product in about half the time of the
shift-add multiplier.

MULT18x18 Multiplier Design

The Digilent Nexys2 development board contains hardware with twenty embedded MULT18x18
multipliers and the Xilinx design tools allow for their easy instantiation and use. The Xilinx
documentation for the embedded multiplier comes with instantiation templates, inference examples,
and detailed instructions for their implementation. Using the provided information, a VHDL module
containing one single concurrent statement using the * operator calculates the desired product using
the MULT18x18 multiplier. The MULT18x18 documentation does not give detailed information related
to the architecture or algorithm used by this multiplier.

VHDL Implementation

This section provides information related to the VHDL implementation of all modules. RTL and
Technology schematics generated by the Xilinx tools are discussed for various modules. Behavioral and
post PAR simulations for many modules are also displayed and analyzed. Unless otherwise stated, all
modules were optimized for speed during synthesis and no constraints were set. All VHDL code can be
found in Appendix C and all testbenches used for module verification are contained in Appendix D.

Sample Rate & SPI Control Implementation

Because of their dependence on each other, SAMPLE CTRL.vhd and CONVERTER _CTRL.vhd were
simulated and tested together. Figure 33 shows a behavioral simulation using the testbench found in
Appendix D. These results verify toggling action of the ADC chip select signal CS and the DAC chip select
signal SYNC. As shown in the results, CS is brought high on the rising edge of the sampling clock signal
SAMP_CLK. The SAMP_DONE flag cues the completion of sample acquisition, toggling SYNC to begin
output through the DAC.

|6,000 ns |8,000 nsi

10,000 ns

26

12,000 ns

]-Eg adec_sclk
1& dac_sclk

1 s

S
S

i

- s K,
B

R R By S b b b b bty SE et
S e

Hi

R
R

S
ERE

S
LA B b B

it
i

i

i
s
s

e
i
s

s

o

EOESE
S S

P M A
et e
Sl T

b S by b b e e bbby e b B
L S L e S L e S

1 sync

1 samp_clk

1& get_samp

d o dooddao

1% samp_done

X1: 0.000 ns

Figure 33. SAMPLE_CTRL.vhd Behavioral Simulation - Verification of CS and SYNC

Figure 34 displays a zoomed in version of the same simulation results. This one verifies the amount of
time in between CS and SYNC toggles. For proper ADC and DAC operation, at least 16 falling edges of
their respective clock signals must pass in between CS and SYNC toggles. As verified in the results, there
are many more than 16 ADC_SCLK falling edges in between CS toggles for the ADC and there are exactly

16 DAC_SCLK falling edges between SYNC toggles.

2,230 ns

3,430 ns

3,500 ns

1 clk

1% dac_sclk

& e

1 sync

1% samp_clk

lﬂg get_samp

1 samp_done |-5|:|||:| ns EI:I ns
3,670 ns
3,400 ns 3,600:ns

3,800 ns

|1,|:||:||:| s |1,5|:||:| ns
\ \ P

4,270 ns

ns
|

4,000 ns

4,200
e

|2,|:||:|[| ns
P

4,400 ns

|2,5|:||:| ns
P

4,600 ns

1 dk
1% adc_sclk

1 e

ULy
L1

L]
ML

LU
L L
| FLILILL

LI
N N I B
| FLIL L

[N
LT
| LT

1 sync

1% samp_clk
-LE; get_samp

-200 ns
R R

1% samp_done L

X1:4,270.000 ns X2: 3,670.000 ns

200 ns

L

00 ns 600 ns

NX: 600.000 ns

800 ns

000 ng

|1

Figure 34. SAMPLE_CTRL.vhd Behavioral Simulation - Verification of CS and SYNC Toggling Rates

Adder Implementation

Figure 35 displays a behavioral simulation of the RC adder module. The results display sums from 3
different test cases. Case 1 shows addition of 2 negative numbers, case 3 shows correction by the

27

overflow circuit, and in case 3 most the adders that make up the RC adder architecture generate carries.

The adder gives the correct result for each case. Behavioral simulations performed for each adder

module produced identical results.

1
[

2|0
-

315

Value
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

11171317131331731317131317173137313313313371333133

11113171313317731317131371731373133133137131331310
i

al[31:0] 01010101010100101010101 010101010
bO[31:0] 0010101010101 0101010101010101010
s0[31:0] 01111313131313131313131010101010101010100
cod o

al[31:0] 0111711717317 3131317313171313311133131311311373
b1[31:0] 00000000000000000000000000000001
s1[31:0] 01131331331331333331331333333333331331331
col [s]

999,9991996 ns
Cah Ty

999,9991998 ns

1111

PR
1131313133331331171]

H11313131333133331

1111

1131313133331331171]

H11313131333133331

1111

1111313131313131111]

H111131313111313113110

0101

01010101001010

0101010101010

0014

10101010101010

10101010101010

0111

11111111110101)

01010101010100

0111

1131313133331331171]

H11313131333133331

o00g

0000000000000

0000000000001

0111

1111313131313131111]

H1111313131311313311

Figure 36 shows a behavioral simulation for the CSA accumulator module. This particular test case
accumulates 10 values that have all been set to 1 so the sum can be easily checked by inspection. The

X1: 1,000,000.000 ns

Figure 35. RC ADDER _32BIT.vhd Behavioral Simulation

accumulator calculates the correct sum of 10 as seen in the figure.

Figure 37 below displays a post PAR timing simulation for the RC adder without the overflow circuit
using maximum values for A and B to generate as many carries as possible. Results show that the RC

hd * part_s[0:19] [00000000000000000000000000000001
00000000000000000000000000000001
> * 1] 00000000000000000000000000000001
» * [2] 00000000000000000000000000000001
> * [3] 00000000000000000000000000000001
» * [4] 00000000000000000000000000000001
» * [3] 00000000000000000000000000000001
| 3 * [6] 00000000000000000000000000000001
» * [71 00000000000000000000000000000001
> * [8] 00000000000000000000000000000001
[3 * 2] 00000000000000000000000000000001
> * [10] 00000000000000000000000000000000
» * [11] 00000000000000000000000000000000
» * [13] 00000000000000000000000000000000
»> * [13] 00000000000000000000000000000000
» * [14] 00000000000000000000000000000000
| 3 * [15] 00000000000000000000000000000000
» * [16] 00000000000000000000000000000000
| 3 * [17] 00000000000000000000000000000000
> * [18] 00000000000000000000000000000000
» * [19] 00000000000000000000000000000000
[3 * add_s[31:0] | 00000000000000000000000000001010
1 add_co o

999,999,990 ns

999,999,991 ns

999,995

[00000000000000000000000000000001}0000...

11

11

J1

11

11

J1

11

J1

J1

11

00000000000000000000000000001010

Figure 36. CSA_ACCUM_32BIT.vhd Behavioral Simulation

adder has a propagation delay of 12.292 ns.

28

» B2 a[310] | 1111111111111111111111113113111111 | $00000000000... 131111111313313330313111331131311191 e

» B4 b31:07 § 11111111112112111111111311111111111 | J00000000000... 1111111111111111081311141111111}1 o
1 co 1 [

Ll =6 s[31X I 0000000000000000000000000000000 ¥1111111011111111131111

Figure 38 shows a timing simulation of the RC adder performed with the overflow circuit and the same
values for inputs A and B. The results show an addition in propagation delay of 1.614 ns, yielding a total
propagation delay of 13.906 ns for the adder.

100 ns 114 ns
100 ns 105 ns 110 ns 115 ns 120 ns
[Name |[Value
» B8 a[310] | 1111111212211111111111111111111111 | 00... 111111111117111111111113112111111
» B8 b[310] | 1111111212111111111111111111111111 § 00... 111111111117111111111113112111111
000000000000000000... F11111111111111113111117

X1:113.906 ns X2: 100.000 ns AX: 13.906 ns

Figure 38. RC_ ADDER 32BIT.vhd Timing Simulation - With OVERFLOW.vhd

Similar results came from post PAR simulations of the other adder modules. Table 4 shows propagation
delays for all adder modules with and without the overflow circuit. As expected from gate delay analysis
of its architecture, the CSE adder has the fastest propagation delay, shown as 12.593 ns with the
overflow correction and 12.593 ns without overflow correction. The propagation delay for the overflow
circuit is also the fastest when used with the CSE adder.

Table 4. Summary of Propagation Delays for Adder Modules

Prop delay P:Silil?ﬁloay Prop delay of
Adder with overflow overflow
. overflow . .
correction (ns) . circuit (ns)
correction (ns)
Ripple-Carry 13.906 12.292 1.614
Carry-Lookahead 13.856 11.818 2.038
Carry-Select 12.593 11.447 1.146

A timing simulation for the CSA accumulator could not be performed. Trying to execute the testbench
for the accumulator led to error messages from Xilinx stating the design has too many bonded comps of
type "IBUF" found to fit the target device. The Xilinx tools attempt to take the input and output registers
of the accumulator module and connect them to the Spartan 3E pins. There are only 232 of these pins so
the design is considered overmapped. Implementation of a higher level module, or wrapper, could be
used to circumvent this issue but all attempts to add a wrapper module had no effect.

29

The propagation delays of the adder modules aren’t as different as their architectures would suggest.
From studying the Technology schematics generated by the Xilinx tools, the design is heavily optimized
during the synthesis and mapping stages. Propagating signals, like the carry chain formed by the RC
adder architecture, found in the design are optimized to what appears to be carry-lookahead logic.
Changing the synthesis option to optimize by area instead of speed seemed to have no effect on the way

adder modules were optimized. Figure 39 shows an example of one LUT in the carry chain belonging to
the RC adder.

LUT3_96

INIT = 86

Schematic | Equation | TruthTable | Karnough Mop.

-

lo—y—"Te—— T — &

O= e ‘ e %}T L

2=

=L =

| —) ——

e =

0=((!0*1*!2)+(i-b*!1*2)'+(0*1*2)+(0*!1*!2))

Figure 39. LUT from Ripple-Carry Adder Carry Chain

Table 5 summarizes Nexys2 resource utilization information extracted from the Xilinx Project Summary.
Each module is placed in a separate project without overflow correction to produce these statistics. The
results do not seem to give an accurate representation of in use Nexys 2 resources, especially for the
CSA accumulator. This is most likely caused by the same issue that would not allow a post PAR timing
simulation of the accumulator to run properly. The implementation of a “wrapper” module may help
achieve more accurate results.

Table 5. Summary of Adder Module Nexys2 Resource Utilization

Module Slices (%) | LUTs (%)
Ripple-Carry Adder 36 (0%) 63 (0%)
Carry-Lookahead Adder 51 (1%) 92 (0%)
Carry-Select Adder 54 (1%) 100 (1%)

Carry-Save Accumulator 689 (14%) 1199 (12%)

Multiplier Implementation

Figure 40 shows a behavioral simulation for the Booth multiplier. The correct output is calculated for
each test case as seen in the results. Test case 1 shows a product calculated from inputs set to their
maximum values. Case 2 tests all the possible partial products generated using the Modified Booth’s

Algorithm. Case 3 gives a test case for less complicated inputs, where the value of the product may be
verified easily by inspection.

30

100 ns
» B a(150] [1111111111111111 11111113111133333
1(» B4 b[15:0] | 1111111111113311 1111111111131311
» B p310] | 11111111111111100000000000000001 111111111111/11100000000000p00001
» B4 a0[15:0] | 0001101010001111 0001101010001111
2 [» M bo[15:0] | 0001001110110110 0001001110110110
» B4 po[31:0]| 00000010000010110111111010101010 0000001000001011011111101001010
» M a1[15:0] | 0000000001111000 0000000001111000
3 » B4 bi[15.0]| cooooooo00000010 0000000000000010
» B4 p1[31:01| 00000000000000000000000011110000 00000000000000000000000011110000
X1: 100.000 ns

Figure 40. BOOTH_MULT_16BIT.vhd Behavioral Simulation

Figure 41 displays a post PAR simulation for the SA multiplier. Inputs are chosen as maximum for their
bit sizes as shown in the simulation. The results give the propagation delay of the SA multiplier as 29.066
ns.

Name Jvawe | L I LT
[3 * al15:0] § 11111111113113111 00000000... 11111111171111111
> * b[15:0] § 1111111111111111 00000000... 11111111171111111

] 00000000000000000... SESSSNE000C B BN ol X ... 111111111

X1:129.066 ns

Figure 41. SA MULT_16BIT.vhd Timing Simulation

A timing simulation for the Booth multiplier could not be performed on the Lite version of I1Sim software
used for project simulations. Figure 42 shows timing simulation results for the Nexys2 dedicated
MULT18x18 multiplier. According to the results, it is much faster than the SA multiplier with a
propagation delay of only 14.197 ns. This is almost the same speed as the adder modules, making it
considerably faster in comparison to the SA multiplier.

» B4 a150] | 1111111111111111 0000000000... 11111111119411111
» B4 b[150] | 1111111111111111 0000000000... 11111111119411111
Ll “@ L 111 0000000 0000000000

Figure 42. MULT18X18.vhd Timing Simulation

31

The RTL schematic created for the Booth multiplier show the presence of many adder units generated
by Xilinx optimization. These extra adders doubtlessly have an effect on the size of the post PAR model
and the capability of the Lite ISim software to perform the timing simulation. Altering the process that
handles execution of the Modified Booth Algorithm in the multiplier module by replacing the loop with a
series of equivalent sequential statements seemed to have no effect on reducing the redundant adders.
Additionally, changing the Synthesis Properties option of Optimization Goal to optimize by area or speed
also did not help.

Table 6 summarizes device utilization statists retrieved from the Xilinx Project Summary for the
multiplier modules when placed alone in separate Xilinx projects. The redundant adders created in the
Booth multiplier use up a lot of Nexys2 resources as evidenced by the 13% of slices and LUTs utilized as
shown in the table. However, this value is not a good representation of actual resources used as
explained in the following section of this report.

Table 6. Summary of Multiplier Module Nexys2 Resource Utilization

Module Slices (%) | LUTs (%)
Shift-Add Multiplier 254 (5%) 495 (5%)
Booth Multiplier 629 (13%) 1236 (13%)
MULT18x18 Multiplier 0 (0%) 0 (0%)

Table 6 suggests and interesting characteristic about the dedicated MULT18x18 multiplier. Using this
multiplier requires no other additional resources from the Nexys2. This, compiled with the fact that it
has the shortest propagation delay of all the multipliers used in the project, makes it an ideal choice for
implementing digital filters in the Nexys2.

System Implementation

Figure 43 shows a behavioral simulation for FILTER.vhd, the entire DSP system module. ADC input to the
system is created within a process contained in the testbench. Simulations performed in this manner
provided information used to debug the filter realization modules NORMAL.vhd and CASCADE.vhd.
These particular results implement the NORMAL.vhd module while performing parallel calculations.
Because of the complexity of the simulation, only the value for the calculated output is shown with the
current input sample.

------ o=

UUUUUU... EUU&UUUU...XUUUUUUﬂ]U...XUUUUUUUU.. 2X.00000000... X40000000... X00000000... X 00000000...
00000000.... ¥,00000000... X 00000000... ¥00000000... X 00000000... ¥ 00000000... ¥ 00000000... X00000D0...
0000... ¥.40000000... X 00000000..] X00000000... ¥.00000000... ¥.00000000... X 00000000...
UUUUUU...'(UUUUQUUU...XUUUUUUU ... 00000000... ¥.00000000... X00000000... X0000000...

UUUUUL... X 000
00000000... X 00
KUUUUUU... X 000

0000... KOUOOUOQU... X.40000000.. ¥.00000000... X0

0000000)(0009'0000... ¥ uonoong' 0.

00000000...

00000000...

00004000... ¥00000000... ¥00000000... ¥00000000... X.00000000...

0000000...

¥¥ ¥Y¥Y wy ¥¥ ¥y¥Yy ¥y’

UUUUUU... X 000 UUUU...XUUUUUUQU...XUUUUUUUU.. ¥ qo000000... X40000000... X000 UUUU...XUUUUUUQU...
k |
(UUUUUUUU...XUqUUUUUU...XUUUUUIUUU...XUUUUUUU ... £00000000... X00000000... ¥ 00000000... XUUUUUPU...
UUUUUU... ¥ 00000000... ¥.00000000... X 00000000..] ¥ 00000000... ¥.40000000... ¥ 00000000... X 00000000...
00000000... ¥.00000000... X00000000... X.00000004... X00000000... ¥ 00000000... X 00000000... ¥X0000000...

Figure 43. FILTER.vhd Behavioral Simulation - NORMAL.vhd 1/0 for 6 Samples

Table 7, created with Microsoft Excel, shows correct values for the filter implemented for this
simulation. It shows the first 6 samples used as stimuli and the resulting output. The difference equation
used to produce these results is also contained in Table 7. The values match with those shown Figure 43.

Table 7. NORMAL.vhd Excel Created Output Results for First 6 Samples

UUUUUL... X 00000000... ¥00000000... ¥ 00000000..] X 00000000... X40000000... X.J0000000... } 00000000...
00000000.... ¥ 00000000... ¥ 00000000... X00000000... X00000000... ¥ 00000000... ¥00000000... X0000000...

Difference EQ:

y[n] = 1x[n] + 2x[n — 1] + 3x[n — 2] + 4x[n — 3] + 1y[n — 1] + 2y[n — 2]

Signal: x[n] X[n-1] | x[n-2] | x[n-3] | y[n-1] | y[n-2] y[n]
1 0 0 0 0 1
2 1 0 0 1 0 5
3 2 1 0 5 1 17
4 3 2 1 17 5 47
5 4 3 2 47 17 111
6 5 4 3 111 47 245

Another behavioral simulation, results shown in Figure 44, displays results using the CASCADE.vhd
module with 2 filter stages performing serial calculations. This time various negative coefficients were
specified to test calculations with negative values. Table 8 contains the difference equations for each
filter stage used for this particular simulation. Figure 44 shows the current sample xn, w; from stage A of
the filter, y; for stage A of the filter, and the resulting output for the first 4 samples used as stimuli.

33

UUUUUU... X 00000000... ¥ 00000000... ¥00000000..] X 00000000... X.00000000... X.00000000... X...

([0000000...X){[000000... ¥XT000000... ¥¥T000000. X¥T000000... ¥¥T000000... ¥YTI11111... %X
([0000000... }(}T000000... X)[000000... XX [000000L. X)X [000000... (X [000000... X)[000000...)

KO00000000... ¥ 0p000000... X 00000000... X00000000... ¥ 00000000...[8 00000000...XOD000000...ﬁ

UUUUUU... ¥ 00000000... ¥0§0000(0... ¥00000000..] ¥00000000... X10000000... ¥00000000... ¥e..
{[0000000... XX T0P0000... Xq[000000... XX T000000.]. ¥XT000000... XK [000000... ¥} TIIi1L... %}
{To000000... XXThooooo... ¥} Tooopoo... XX Tooooool.. XX T000000...)(XT000000... XX 000000,)i

K000000000... X 00000000... 00000000... X00000000... X.00000000...) UUUUUUUU...XUJUUUUUU...}@:

0000... ¥ 00000000, ¥ 00000000..] ¥ 00000000, ¥(0000000... ¥00040000... ¥...
D0000... ¥¥T000000... ¥[000000.]. ¥)}T000000. .. Y T000000... }T1ri111... XX
00000... ¥¥T000p00.... ¥} T000000L.. ¥¥T000000... }XT000000... ¥XT000000.,. Y

PUUUUUU... %0000D000... ¥{00000000... ¥00000000...[%00000000... ¥ 00000000... ¥

¥UUUUUU... ¥ 00000000.... ¥00000000... X 00000000..] X 0§000000... ¥40000000... ¥ 00000000... X...
{[0000000... X)T000000... ¥XT0000j00... ¥} T000000.|. X} 000000... ¥¥[000000... W¥TIM1111... %
{T0000000.... ¥XTH00000... ¥¥[000000... Y¥T000000L.. ¥} [000000... XX T000000... ¥ T000000...)

K000000000.... ¥ 00000000... ¥00000000... ¥ 00000000... ¥ 00000000...,%00000000... X 0D000000... §

VFYVYY F¥Y7YY ¥Y¥Y¥Y¥%Y ¥Y¥YY7Y°V%

Figure 44. FILTER.vhd Behavioral Simulation - CASCADE.vhd 1/0 for 4 Samples

Table 8 contains values calculated at each filter stage to verify behavioral simulation results. Input x[n],
intermediary signal w;, delayed w; signals, and the output y; is shown for each filter stage. Behavioral
simulation results match with tabulated values showing that values are calculated correctly at every

stage of the filter.

Table 8. CASCADE.vhd Excel Created Output Results for 2 Filter Stages

Difference EQ: y[n] = 1x[n] + 2x[n — 1] + 3x[n — 2] + 4x[n — 3] — 1y[n — 1] — 2y[n — 2]
Stage A: x[n] wa[n-1] | wa[n-1] | wa[n-2] ya[n]

1 1 0 0 1
2 1 1 0 3
3 0 1 1 5
4 2 0 1 5

Stage B: | xg[n] wg[n] wg[n-1] | wg[n-2] y[n]

G115, 11 SIS
O |N|-
(N[O
NIR OO
00| H|-

Table 9 summarizes Nexys2 resource utilization when implemented using NORMAL.vhd configured for
serial calculations. From the table results, the choice of which adder module to use has little effect on
the amount of Nexys2 resources required for implementation. The data contained in Table 9 shows
inconsistencies with results gathered in Table 5, which shows that more slices and LUTs are required to
implement the CLA adder than the RC adder, as expected.

34

Table 9 shows that when implemented in the system the RC adder and SA multiplier use 1242 slices and
2084 LUTs respectively, and the CLA adder and SA multiplier use 1239 slices and 2070 LUTs respectively.
By this data the RC adder uses more Nexys2 resources than the CLA adder, conflicting with results in
Table 5. However, as expected the least amount of device resources are required to implement the
dedicated MULT18x18 multiplier.

Table 9. Summary of Nexys2 Resource Utilization for Complete System - NORMAL.vhd & Serial Calculations

Adder Multiplier | Slices (%) | LUTs (%)

SA 1242 (26%) 2084 (22%)

RC Booth 1505 (32%) 2615 (28%)
MULT18x18 | 991 (21%) 1529 (16%)

SA 1239 (26%) 2070 (22%)

CLA Booth 1514 (32%) 2638 (28%)
MULT18x18 | 1017 (21%) | 1566 (16%)

SA 1244 (26%) | 2080 (22%)

CSE Booth 1522 (32%) | 2649 (28%)
MULT18x18 1007 (21%) 1542 (16%)

Table 10 provides system information when implemented using the NORMAL.vhd module configured for
parallel calculations. When configured for this implementation, a length 9 filter generates 10 multipliers
and a length 19 filter generates 20 multipliers and the CSA accumulator is the only adder module used
for accumulation.

The amount of device resources used per multiplier when implemented in the entire system may be
calculated from the difference in resources between the two filter lengths. For example, the Booth
multiplier uses (2410 —1370) / 10 = 104 slices and (3869 — 2215)/10 = 165.4 LUTs, much less than
suggested by the data contained in Table 6 of 629 slices and 1236 LUTs. Similar inconsistencies exist with
the other multiplier modules. A similar analysis is not possible for the adder modules without significant
modifications to many of the system modules.

Table 10. Summary of Nexys2 Resource Utilization for Complete System - NORMAL.vhd & Parallel Calculations

Length 9 Filter Length 19 Filter
Multiplier | Slices (%) | LUTs (%) | Slices (%) | LUTs (%)
Shift-Add 916 (19%) 1468 (15%) | 1057 (22%) | 1780 (19%)
Booth 1370 (29%) | 2215 (23%) | 2410 (51%) | 3869 (41%)
MULT18x18 935 (20%) 1473 (15%) | 1065 (22%) | 1767 (18%)

Another inconsistency is apparent from the Table 10 data. In most cases, Nexys2 resource utilization is
actually greater when using the MULT18x18 dedicated multiplier than it is for the SA multiplier. Only the
LUTs used for a length 19 filter are less for the MULT18x18 than for the SA multiplier.

35

Nexys2 Implementation

This section of the report provides information about the implementation of the DSP system in the
Nexys2. Several test cases analyze the behavior of the system under different conditions. The maximum
allowable filter length for any test filter is 19. A filter of this size could feasibly incorporate every
MULT18x18 multiplier in the Nexys2 when configured for normal direct form | filter realization and
parallel calculations, 1 for each term of the filter. Because of the limited number of MULT18x18
multipliers in the Nexys2, the maximum number of multipliers allowed for any given filter is 20.

To verify timing data for binary arithmetic components gathered from post PAR simulation results
required a simple test. This is accomplished with a small process that gave the adder or multiplier under
examination inputs on the rising edge of the 50 Mhz system clock and made the attempt to display the
respective sum or product on the Nexys2 LEDs at the beginning of the next clock cycle. This test shows
that all arithmetic components, except the CSA accumulator, can calculate their respective sums and
products in one clock period of the 50 MHz system clock. Conducting the same test on the accumulator
showed that 2 clock periods were sufficient for it to accumulate the maximum allowable number of 20
filter terms.

Normal Direct Form I Implementation

Testing the implementation of NORMAL.vhd employed 2 test cases. These were selected to check
proper operation for length 19 filters and to verify proper calculations while using negative filter
coefficients, both while executing serial and parallel calculations. Frequency responses for each case
created with MATLAB gave results for comparison against oscilloscope plots created from Nexys2
implementation. Filter coefficients for all test cases were determined with a magnitude of 1 for zeros
and a magnitude of .95 for poles and all test filters have unity gain.

Test Case 1

Test case 1 implements a length 19 weighted moving average filter. Table 11 shows all relevant
information regarding test case 1.

Table 11. Filter Specifications for NORMAL.vhd Test Case 1

Realization Normal Direct Form |
Structure
Adder Ripple-Carry
Multiplier Shift-Add
Scaling 16-Bit
Filter Length 19
Sampling Freq 44.1 kHz
Freq of First Zero 4.009 kHz
Ak [0, ..., 0]
Bk [297, 595, 893, 1191, 1489, 1787, 2085, 2383, 2680, 2978,
2978, 2680, 2383, 2085, 1787, 1489, 1191, 893, 595, 297]

The frequency response of this filter created with MATLAB, displayed in Figure 45, shows that the first
zero of the weighted moving average filter occurs at a digital frequency of about .1 cycles per sample.
For a 44.1 kHz sampling rate, this is an analog frequency of about 4 kHz.

36

Digital Frequency Response

o T T T T
3 :
o T =1 I O T S _
=
(=N
wy
L T T . —
o
a
T I U S _|
= .
S gl He 009091 oo bl fiiiiil. 4
= Y: 2 252e-006 ; :

-J_,—'-"'_ | L 1

0.1 0.2 03 0.4 0.5

Digital Frequency, F (cycles/sample)

Analog Freguency Response

-100

-200

-300

400 : : : :
0 05 1 1.5 2 25
Analog Freguency, fa (cycles/second) x 104

Magnitude Respense in dB

Figure 45. NORMAL.vhd Test Case 1 Frequency Response Plot from MATLAB

Figure 46 contains the frequency response plot created from the oscilloscope data. It matches closely
with the one generated by MATLAB, with the first zero appearing at around 4 kHz. Identical results were
achieved for both serial and parallel calculation implementations.

Digital Frequency Response

1.2
= 1.0
5
g o= \
= 0.6
5 N\
g0 o
=02 N ———

0.0

o0 a7 oz o=z O.g o5
Digital Frequency, F (Cycles/Sample)
Analog Frequency Response
0.00

s -s.0o0 AN
2 _10.00 \
=3
2 -1s5.00 \
E -20.00 \
"E -25.00 W i ¥
§ -ooo o~

-25.00 r r r r r

o 4410 8820 13230 17640 22500
Analog Frequency, fa (Cycles/Second)

Figure 46. NORMAL.vhd Test Case 1 Frequency Response Plot from Experimental Data

Figure 47 displays a scope capture of the first zero. Displayed in the figure, the input to the system is
displayed on channel 2 with amplitude of 2.05 V and a frequency of 4.006 kHz. Channel 1 shows the
resulting output with amplitude of only 60 mV.

%%~ Agilent Technologies MonMay 14 1001-35 2012

oo0%s 2 bO0ws 0.0s 172,08/ Auto E 1.04Y

DAL A AT A A | A
L T T e
R RTENRIE-
ARVERVERVIRVEIVIEVE

: heasurements
Ph-Pk{2)

>

2.05Y
| FreqlZ):
4 .006kHz
Pk-Pk(1)
&0mY
Freg(1):
Low signal
Save to file =|@irls
+3 Spell Enter Delete Increment Press to
d [——] Character (m] Save

Figure 47. NORMAL.vhd Test Case 1 Scope Capture of First Zero

Test Case 2

37

This case is designed to test calculations using negative numbers. Specifications for the 2" order IIR test

filter are shown in Table 12.

Table 12. Filter Specifications for NORMAL.vhd Test Case 2

Realization Normal Direct Form |
Structure
Adder Carry-Select
Multiplier Booth
Scaling 9-Bit
Filter Length 4
Sampling Freq 44.1 kHz
Freq of Zeros 15 kHz
Ak [-260, -231, 0, ..., 0]
Bk [243, 261, 243, 0, ..., 0]

Figure 48 shows a frequency response plot created with MATLAB for the filter specified in Table 12. This

plot shows the zero for the filter at digital frequency of about .3401. This corresponds to an analog

frequency of about 15 kHz, as desired.

38

Digital Frequency Response

g 1P ! ! ! !
=
(=]
2 1
o
ax
o H H H H
2 05 - e ERRREEEEE O TLCCCCEEE EEEEEPPRPRRE e .
[— H . .
n
L]
=

0 1 1 m 1

0 0.1 0.2 0.3 0.4 0.5
Digital Freguency, F (cycles/sample)

o Analog Frequency Response
= 20 T T T T
= H
[=] .
= :
oy .
w H
i .
@ H
- '
= :
= :
o 80 i i 1 i
= 0.5 1 15 2 25

Analog Frequency, fa (cycles/second)

Figure 48. NORMAL.vhd Test Case 2 Frequency Response Plot from MATLAB

Figure 49 contains a frequency response plot generated with experimental data from the oscilloscope. It
is very similar to the MATLAB generated plot for this test case. The parallel calculation implementation
for this test case gave identical results.

Digital Frequency Response
1.2
o 1
g N
go” \/
E o.6
- 1|
= 0.4
2 \
= 0.2 !
o
(=] o1 0.2 .3 0.4 o.s
Digital Frequency, F ([Cycles/Sample)
Analog Frequency Response
o
g \/
=
\/
&
&2 15
@
= 20
.‘é
&= -25
=
20
o 4410 8820 13239 17640 22500
Analog Frequency Response, fa (Cycles/Second)

Figure 49. NORMAL.vhd Test Case 2 Frequency Response Plot from Experimental Data

Figure 50 shows a scope capture of the first zero, occurring at about 15 kHz. Channel 2 contains the
input signal, seen with amplitude of 2.09 V and a frequency of 15 kHz. The output on channel 1 shows
amplitude of 120 mV, a value very close to O V.

39

Agilent Technologies

14y
<& Agilent

VAN AN ANV ANV AN ANRNANRNA oo —

0oy ooy

F ad

[1.006Sals
!

VV V V VV ——

[Measurements |
Pk-Pi(2) |
209y
Fragl2]
15.013kHz
P-PK[1)
120mV
by Brg - F5[1)
1.4558Y
Save to fils =|formlSk1
2 Spell Enter Delate Increment Prass to
n —r—— Character Save

Figure 50. NORMAL.vhd Test Case 2 Scope Capture of Zero

Cascade Direct Form Il Implementation

Complications arose during the Nexys2 implementation of CASCADE.vhd. The parallel calculation
implementation would not produce an output and only a single stage filter would produce output during
serial calculation implementation. More details about these problems are contained in this section of
the report. Any filters used in test cases for this module were designed with unity gain and filter
coefficients created from zero magnitudes of 1 and pole magnitudes of .95.

Test Case 1

Table 13 shows all relevant filter information regarding test case 1 for Nexys2 implementation of
CASCADE.vhd. This case is designed to test basic operation of the module. The filter is composed of only
one 2" order filter stage with a zero at 10 kHz as specified in the table.

Table 13. Filter Specifications for CASCADE.vhd Test Case 1

Realization Cascade Direct Form |l
Structure
Adder Carry-Save
Multiplier MULT18x18
Scaling 13-Bit
Filter Order 2
Sampling Freq 44.1 kHz
Freq of Zero 10 kHz
AKi [1132,-3695, 0, ..., 0]
BKi_S [3894, -1133, 3894, 0, ..., 0]

Figure 51 shows a frequency response plot created with MATLAB for the filter used for test case 1. This
plot shows the zero for the small filter at digital frequency of about .2268. This corresponds to an analog
frequency of about 10 kHz.

Digital Freguency Response

o 1.5 T ! T

w :

[

o

&

Lok}
o

Lub]
=]
=
o X 0.2268
=2 Y- 0.0002224
0 1 1 m 1
0 0.1 0.2 0.3 0.4 0.5
Digital Freguency, F (cycles/sample)

m Analog Frequency Response

= 20 T T T

£ !

- :

u

[

o

O

o

[i5]

o

@

=

£ B0 Xode+004 I 7]
b 80 i | Y -62.04 i

= 0.5 1 15 2 25

Analog Frequency, fa (cycles/second) i 104

Figure 51. CASCADE.vhd Test Case 1 Frequency Response Plot from MATLAB

40

The frequency response plot shown in Figure 52 is produced from experimental data gathered form the
oscilloscope. It closely resembles the plot created using MATLAB, with the location of the zero shown at

around 10 kHz.

Digital Frequency Response
1.2

@ 1
=
% 0.8 \\\ f/f—
4]
= 0.6
= \J
= 0.4
&
= o2 ¥

o

[=e] o.1 o.z 0.3 0. o.5
Digital Frequency, F (Cycles/Sample)
Analog Frequency Response

o
= N/
= >
2 \/
2 -10
o=
= 15
=
& 20
=

25 . : : . :
o 4910 8820 13230 17640 22500
Analog Frequency, fa (Cycles/Second)

Figure 52. CASCADE.vhd Test Case 1 Frequency Response Plot from Experimental Data

Figure 53 displays a scope capture of the zero of the filter used for this test case. The input signal on
channel 2 has amplitude of 2.09 V with a frequency of about 10 kHz. The output, shown on channel 1
has amplitude of 80 mV.

41

- Agilent Technologies
1100V, 2 1.00 37008 200.0%/ huto £ 2 174V
% Agilent
AA A A A A A A A A A A A AN AN A A A S ESTORIE

MNormal

vou oy oy oy oy oy yy oy oy oy oy | Channels A
v W V v V v v v v v v v v Vv vV v v v Vv o 1001

2 Dc 1.00:1

|# Measurements |
Pk-Pk(2];
2.09V

Freq(2)
10.018kH=

PE-PK(1]

i 20mY

v &g - F5[1)

1.4688Y

Measurement Menu
Source 2 Type Add Settings Clear Meas Statistics
1 Avg - F3 Measurement ~- - -

Figure 53. CASCADE.vhd Test Case 1 Scope Capture of Zero

Test Case 2

Test case 2 is designed to test multi-stage filter implementation for this module. Table 14 shows
specifications for the filter, which contains 3 filter stages with zeros at 2 kHz, 9 kHz, and 19 kHz.

Table 14. Filter Information for CASCADE.vhd Test Case 2

Realization Normal Direct Form |
Structure
Adder Booth
Multiplier Carry-Select
Scaling 13-Bit
Filter Order 6
Sampling Freq 44.1 kHz
Freq of Zeros 2 kHz, 9 kHz, 19 kHz
AKi [7466, -3695, 2213, -3695, -7057, -3695, 0, ..., 0]
BKi_S [3893, -7471, 3893, 3894, -2215, 3894, 3893, 7062, 3893, 0, ..., 0]

Figure 54 shows a digital frequency response plot created with MATLAB for the 3 stage filter specified in
Table 14. Zeros occur at digital frequencies of .04536, .2041, and .4308, corresponding to analog
frequencies of 2 kHz, 9 kHz, and 19 kHz respectively.

Digital Frequency Response

@
oD
L T = 1 I L . SO O N T S, SR S
O
o
o
L 1 T T 1 s,) —
i
a
E=1 107 A O R S
S 02f----- X 004536 eeoooo.. I 02041 Lo X pazos Moo i
£ - 0.0004976 " v- 00008876 | - 00006657

] [' | ' —

0] 0.1 0.2 0.3 0.4 0.5

Digital Frequency, F (cycles/sample)

Analog Frequency Response

Magnitude Response in dB

80 | | | |
0 05 1 15 2 25
Analog Frequency, fa (cycles/second)

Figure 54. CASCADE.vhd Test Case 2 Frequency Response Plot from MATLAB

When implemented in the Nexys2, the filter specified for this case produces a white noise output.
During the investigation to resolve this issue the scope capture shown Figure 55 was created from a
single stage filter designed to have a zero at 2 kHz.

Agilent Technologies

1 1.00¥/ 2 1.00V/ 370.0% 200.0%/ Auto E 1.74Y

Agilent
i Acquisition 5|
Normal
250MSa/s
[z Channels &
oC 1.00:1
) 1.001
[i Measurements =/
Pk-Pk(2)
2.09V
|| Freq(2)
2.0005kHz

Measurement Menu
Source O Type Add Settings Clear Meas Statistics
2 Freq Measurement =1 - -

Figure 55. CASCADE.vhd Test Case 2 Scope Capture - Evidence of Overflow Error

43

The figure shows the input signal on channel 2 with amplitude of 2.09 V at a frequency of 2 kHz. This
frequency is the location of the zero specified by the filter design. It can be determined from the scope
capture that with this filter specification some samples are saturated to the upper and lower boundaries
of the DAC output voltage range, leading to the conclusion that there is an over flow error in the
CASCADE.vhd module VHDL code. While this error is not present for test case 1, this same error must be
the cause of the white noise generated for the 3 stage filter specified for test case 2.

The calculations for the direct form |l filter realization are much more complex that those used for direct
form |. Because of its structure, the intermediary signal w; must be descaled and checked for overflow,
and the same must occur when calculating the intermediary stage output signal y;. For the 3 stage filter
specified for test case 2, this means that descaling occurs 6 times and overflow is checked and corrected
another 6 times before producing the final output. This leaves a lot of room for error.

As an attempt to simplify calculations and have a working VHDL module that could easily implement
multi-stage 2" order IR filters, a third module using a direct form | realization was experimented with.
The CASC_DFl.vhd module uses a slightly modified version of the NORMAL.vhd VHDL code. The
oscilloscope and signal generator were not available to test this module so testing was performed with a
digital multimeter and output provided from a computer using a freeware program called ToneGen.
With these tools, one filter stage was determined functional but all attempts to implement a multi-stage
filter failed. Because of time constraints, neither the CASCADE.vhd nor CASC_DFl.vhd modules could be
fully completed.

Audio Implementation

Two free programs helped facilitate testing of the audio interfaces used for the project. A program
called ToneGen generates a simple sign wave output at frequencies ranging from 100 Hz to 15 kHz
through the computer’s soundcard. Another program called Soundcard Scope monitors the computer
microphone input and displays the signal like an oscilloscope. Figure 56 shows the ToneGen GUI
configured to output a 500 Hz signal.

]

A Tone Generator 100-15kHz

Output

Audio Frequency Hz Level

Audio Output
Speakers (Creative SB X-Fi) Select

|

w
~ s - =

2
5
8

9

0 CE
Enter Info Exit

Figure 56. ToneGen GUI Configured for 500 Hz Output

44

Figure 57 shows the Soundcard Scope GUI while monitoring the computer microphone jack. A 10 uF
capacitor couples DAC output to the microphone jack to remove the DC offset from the signal. As seen

in the figure, the signal is not very smooth and is oddly shaped. This imperfection is heard when listening
to the microphone jack as a moderate amount of noise although the filtered tone can still be heard.

P T —— 1
| B soundcard Oszilloscol .:- (=i
Oscilloscope ‘ X-Y Graph | Frequency \ Signalgenerator | Extras \ Settings \

Channel 1 (left) ¥/ 250m per === Channel 2 “11250m per
Amplitude CH1 Amplitude CH2
I
10m [WDW o
im ', 100m 3, o 100m
100u 1 5ynd00u 1
g 250m v J250m
Offset
% 0.000 B
Time [sec] Trigger @
100m
10m " 1 Auto <
N =aue. 4
):’ Channel —
im 10 Edge
'rjggm rising vl
Threshold
Run/Stop 'rj 0.01
o 2.5m 5m 7.5m 10m 125m 15m 17.5m __ 20m
. id Y w—
Channel Mode Measure Timaa feadt o

log to file

single V] Hz and v{ Frequency . Voltage
Figure 57. Soundcard Scope Displaying Filtered Output from DAC at 500 Hz

Figure 58 shows the Soundcard Scope GUI displaying the zero of the test filter used to create the audio
interface experiment. It occurs at 5 kHz. When listening to the microphone port the tone is barely

audible but there is still a considerable amount of noise.

e e

Oscilloscope | XY Graph | Frequency | Signalgenerator | Extras | Settings |
=== Channel 2 ¥/ 1250m per

P Soundcard Oszilloscope

Amplitude CH1
1om [WOW - o
e, 100m 3, ', 100m

Channel 1 (left)” 250m per

Amplitude CH2

im

100u 1 gynd00u 1
Lj 250m Fi o 250m
Offset

% 0.000 B

Time [sec] Trigger @

100m
iy Auto T

- 7 ~\ &
)\.’ Channel —
im 10 Edge
rising < I
Threshold

.,M.W‘M\«ﬂ—.‘wm*um,‘,,-mlpv'“ﬂrv‘v#-!‘\1‘;~,\,\1|,5;;w,a“;,f...-, et s et

Run/Stop 'rj 0.01

i
0 2.5m 5m 7.5m 10m 125m 15m 17.5m 20m
l Grid |/ w—

Channel Mode Measure Timan fonnl
log to file I
. J

single V] Hz and rl Frequency Voltage
Figure 58. Soundcard Scope Displaying Filter Zero at 5000 Hz

45

The roughness and odd shape of the signal that reaches the microphone jack might be introduced by the
AC coupling capacitor. A different device, like another level shifter, might provide a more stable signal to
the speaker or microphone jack. Because of time constraints, other methods to remove the DC offset
from the output signal could not be tested.

DSP Performance Analysis

This section provides an analysis of the maximum achievable sampling rate for a unity gain length 4
moving average filter and the maximum filter length for a sampling rate of 44.1 kHz. A behavioral
simulation for each case allows for the estimating of these limitations.

Figure 59 shows a behavioral simulation for the estimation of maximum sampling rate of the complete
system using the NORMAL.vhd module and serial calculations. As seen in the figure, sample acquisition
begins on the rising edge of SAMP_CLK and filter calculations begin short after, after the assertion of
SAMP_DONE. The way the NORMAL.vhd FSM is constructed, once filter calculations begin they do no
stop until complete, even if the ADC begins a new sample.

830 ns 2,510 ns|

| Name | AT ML s DO L IO O T s DO vy

& s 0 I

1 sync 0 | | Il I |
» M mult_b tst[0:19] | [0001100110011001,000000000000000:|+[0000000000000000,0000000000000 [0000000000000... [00D0000000000....
» M4 mult_a tst{o:19] | [0000011101010011,000000000000000:|< [0000000000000000,0000000000000 [0000000000000.... [00p0000000000...
» B4 p_tst[0:19] [00000000101110110111101110011011 [0000000000p0000000000000G00000 [0000000000000. ... [00p0000000000...
» B product tst[0:19]| [00000000000000000000000000000000 [000000000000000000000000(0000000,0(00000000000000000000, [000000000000000000....] 1 ...
» B part s tst[0:19] | [00000000000000000000000000000000 | {[UUUUUUUUUPUIUUDUUUUUUYUUUUU...;| [000{i0000000000000000q00000000000,00000000000000000
» M add_atst[0:19] | [00000000000000000000000000000000 [00000000000000000000000000000000,0400000C000000000000000(... % % 4 [000000000000000.]. & 5%
» B4 add b tst0:19] | [0000000000000000000000000000C000 [0000000000§000000000000040000000,00000000000000000000000. #[00000000p00000000000.... §{ ...
» B s tst0:19] [00000000000000000000000000000000 |{[0000000000§000000000000000000000,UUUUNUJUUUUUUUUUUPU.J 4 ¥ 4 ¢ [0p00000000000. . { ¥ ¢
» B d_sum_tst[31:0] | 00000000000000000000000000000000 0000000000000000000000p000000000 11111... {[000000000000-.. _#0-..
» B xnmm[0:19] [0000000000000000, 000000000000000<[0000000000§00000,00000000p0000000,0p00000000000000,000 [0000000001111111,000... *[P000...
» B ynmn[0:19] [0000000000000000, 000000000000004] {[0000000000P00000,00000000p0000000,0P000I [0000011101010§11,000... ¥ [pO000101111101p1,0...

1% samp_done a 1 nl I il

1 stg_done_tst 0

1 output_done 0 : | 1

1% samp_clk_tst 1 : |] |

N T
X1:2,510.000 ns X2: 830.000 ns AX: 1,680.000 ns

Figure 59. Estimated Maximum Sampling Rate for NORMAL.vhd Serial Calculation Implementation

The information contained in Figure 59 suggests that with this realization the maximum sampling rate is
not limited by filter length by instead by the time it takes the A DC to take a sample. If the rising edge of
SAMP_CLK happens to come before the assertion of the SAMP_DONE flag then the ADC will wait until
the next SAMP_CLK rising edge to take the next sample. Essentially, this is equivalent to slowing the
sampling rate, changing where the zeros appear in the frequency response. From the simulation results
shown in Figure 59 in cursor interval 1, a maximum sampling rate of about 525 kHz still allows for
correct output results.

46

Figure 59 leads to another important conclusion. Because of sampling rate dependence on ADC sample
acquisition time, the filter length can be increased beyond 4 for the maximum sampling rate of 525 kHz.
The gap between multiplication sequences, shown in cursor interval 2, provides evidence of this. Using a
parallel calculation implementation would take even less time to calculate an output. This implies that
this sampling rate is the maximum for any implementation designed for this project.

The results gathered from Figure 59 are impossible to verify in the Nexys2 with the ToneGen application.
For the proposed maximum sampling rate of 525 kHz, the first zero for the length 4 moving average
filter appears somewhere around 119 kHz. The ToneGen application is limited by the computer sound
card and can achieve a maximum frequency of only 15 kHz.

12,870 nsf,310 ns|
m _ |e0oong (f5000ns 2000005 25000ns (30.000ns |F000ns
1 cs o ;
1 sync 0
» M8 mult b tstion1g) | [0ocooooooooocooo, ooooooooooooooo | [00000000000... I[nnrmnn'wmnnnnrmn 0000000000000000,040000000000000¢,0000... |
» B mult_a tst0:19] [0000000000000000, D00000000000000 | [00000000000.. ! I[nnnnnn‘mnnnnnnnn 0000000000000000,0 uuuum.....mm......_mnnnn }
: 00000000000000000000000000000000 |[00000000000... 4[00000000000000000000000000000000,UUJUULULUUUUULUUIUUUL...
: : E;E,S(tj[ﬁc:j;]st[g;lgj EQQQQQQQQQQQQQQ000000000000000000 [00000000000... §;[00000p00000000000000000000C00000,0000000000000000000000000000 Ilg{[[][][m ..
» * part_s_tst[0:19] [00000000000000000000000000000000 [UUUUUUUUU... ¥T00000p00000000000000000000000000,00000000000000000000000000000(
» B add_a tst[0:19] [00000000000000000000000000000000 § [00000000000... i I['"””""I 10000000000000000000000000,0000000000000000000000
» ™ add b tst[0:19] [00000000000000000000000000000000 | [00000000000... ;{['""””‘:"""”HH"""HH"""HHH"""H 00000,0000000000000000000000000000 [0000..
» B s tst[0:19] [00000000000000000000000000000000 | [00000000000... [00000000000000000000000000000000,ULUUUUUUUULUUUIUUUL...
» B d_sum_tst[31:0] 00000000000010100000111110001100 §000000000000... ¢ 000... 00000000000000000000000000000000 £ 000... ,C
» B xnmm0:19] [0000111111111111, 000000000000000 § [0000000000... {[0000131111111111,0000000000000000,0000000000000000,00000000000 [00000).
» B ynmn[0:19] [0000011101100111, D00000000000000 | [0000000000000400,0... §T000001/1101100111,0000000000000000,0000000000000004,000000p0000 K-
1 samp_done 1]
1 stg_done_tst 0
].E; output_done 1
1B samp_clk_tst 1 1 |
2,440 ns 22,583 ns
X1: 15,310,000 ns X2: 12,870.000 ns AX: 2,440.000 ns

Figure 60. Estimated Maximum Filter Length for NORMAL.vhd with 44.1 kHz Sampling Frequency

Figure 60 shows a behavioral simulation for NORMAL.vhd using serial calculations for a length 19
weighted moving average filter. The results display that it takes about 2,440 ns to finish the calculation
sequence. The time in between calculation sequences is shown as 35,453 ns — 12,870 ns = 22,583 ns.
This implies that a filter length of about 22,583 / 2,440 * 19 = 175 could be achieved for this filter
realization. These results could not be verified in the Nexys2 without numerous modifications to the
VHDL code to change register sizes, indexing, and loop iterations throughout project modules.

47

12,870 ns 17,610 ns|

m _ i [s000ms 20000ns 25,000ms [0.000ns FO00ms A

W cs 0 : :

1 sync] FAR N S R O S A ; P : P
» B mult_b_tst[0:19] [0000000000000000, 000000000000000 [0000000000000000,0000000000000000,00000000000000 I SRR ORCECH
» M mult_a tstjo:19] | [0000000000000000, 000000000000000(| [0000... {} ¥ [000000000[N00000,0000000000000000,0000000000000000,00000000 gg%([oououuog_,_
[3 % ijt[O:lg] [00000000000000000000000000000000, [[][][][I_,_ [IIIHIIIIIIIIIHIIIIH 10000000000000000000,UUUUUUL IlIlIlILIL\l\lIlIlIlIU—LEUUUU_,_ [[|[][][|[][|[][][|_._
» B product tst[0:19] | [00000000000000000000000000000000, [0000... [00000000040000000000000040000000,00000000000000000000000000... 4 [0000000...
» B part s_tst[0:19] [00000000000000000000000000000000 | [UUUU... §{[00000000000¢p0000000000000(00000,000000000000000000000040000000430,0000000000
» M add_a_tst[0:19] [00000000000000000000000000000000 [0000... i ¢/ [000000000§H0000000000000(0000000,00000000000000000000¢00000 ! [00(00000...
» B2 add_b_tst[0:19] [00000000000000000000000000000000, [ggggg_,i [000000000§0000000000000000000000,00000000000000000000000000 ! [00000000...
» B s tst0:19] [00000000000000000000000000000000 | [0000... #4[0000000000)000000000000040000000, UUUUUIUUUUUUUUUUUUPUULL [00000000....
» B sum tst0:19] [00000000000000000000000000000000 | [00000..4 4 [000000000[j00000000000000P0000000,00000000000000000000)00000 4[00p00000....
» B xnmm[0:19] [0000111111111111, 000000000000000([0000... £[000011111111}1l111,0000000000000000,0000000000000000,00000000000 [0000000000...
» B ynmn[0:19] [0000000000000000, 000000000000000(| [000000§000000000,00 [000001110101p011,0000000000000000,00000004000000040,00000000000

1 samp_done 0

& stg_done tst o

1 output_done 1]

1 samp_elk_tst 1] [J

X1:17,610.000 ns X2: 12,870.000 ns AX: 4,740.000 ns

Figure 61. Estimated Maximum Filter Stages for CASCADE.vhd with 44.1 kHz Sampling Frequency

Figure 61 shows a behavioral simulation for CASCADE.vhd using a serial calculation implementation and
9 filter stages. The time it takes to complete the calculation sequence is 4,740 ns and the time in
between calculation sequences is 22,600 ns as displayed in the results. With this information the
number of filter stages is estimated as about (22,600 / 4,720) * 9 = 43 stages. These results were not
verified in the Nexys2 because of the numerous modifications to VHDL modules required to implement
a filter of this size.

Arithmetic Component Analysis

This section of the report summarizes information regarding the analysis of arithmetic components
designed for the project. It contains comparisons for delay and device resource utilization, and a brief
explanation of power analysis.

Timing Analysis

Table 15 contains a summary of analysis performed on arithmetic component architecture. It contains
gate delay estimations acquired from the adders’ schematics and partial product analysis acquired from
multiplier algorithms. It also summarizes propagation delay times gathered from timing simulations.

Table 15. Summary of Arithmetic Component Delay Information

48

Partial Products

Prop Delay (ns)

Prop Delay (ns)

Component Gate Delay (16-Bit Inputs) (No Overflow (Overflow
Correction) Correction)
Ripple-Carry ~
Adder 64 12.292 13.906
Carry-Lookahead _
Adder 28 11.818 13.856
Carry-Select _
Adder 22 11.447 12.593
Shift-Add
Multiplier B 16 29.066 -
Modified Booth 3 9 B -
Multiplier
MULT18x18
Multiplier a - 14.197 -

As expected from gate delay analysis, the RC adder has the slowest architecture, with a propagation
delay of 12.292 ns without overflow correction according to post PAR simulation results. From gate
delay analysis, the CSE gate delay estimation is the lowest with only 22 gate delays to calculate the sum.
Post PAR simulation results give the propagation delay without overflow correction as 11.447 ns, the
fastest time of the adders, coinciding with the gate delay analysis result.

Unfortunately, a post PAR simulation for the Booth Multiplier could not be performed as explained in
the Design Specifications section of this report. From looking at partial product analysis results, it should
have a propagation delay of about half the SA multiplier’s propagation delay of 29.066 ns. As expected,
the MULT18x18 dedicated multiplier has the fastest propagation of the multipliers simulated, listed as

14.197 ns.

Comments

According to post PAR results, all components except for the SA multiplier have a propagation delay that
is less than 1 clock period of the 50 MHz system clock. This implies that they can calculate their
respective sums and products in only one clock cycle. The SA multiplier would take 2 clock cycles
according to these results although the hardware test performed in the Nexys2 Implementation section

verifies that its product is calculated in only one clock cycle.

This means that the propagation delay of arithmetic components designed for this project has no effect
on filter performance characteristics like maximum sampling rate and maximum filter length. All will
impose the same limitations on filter specifications. This helps to simplify the choice of which arithmetic
components to use for a given filter realization. Because arithmetic component speed is not a factor,
only component size needs consideration.

Resource Analysis

Table 16 gives a summary of resource usage statistics for the project’s arithmetic components. It
consolidates information contained in the Design Specification section of this report, showing the
numbers of slices and LUTs used for implementation.

49

Table 16. Nexys2 Resource Utilization for All Arithmetic Components

Component Slices (%) LUTs (%)
Ripple-Carry Adder 36 (0%) 63 (0%)
Carry-Lookahead Adder 51 (1%) 92 (0%)
Carry-Select Adder 54 (1%) 100 (1%)

Carry-Save Accumulator 689 (14%) 1199 (12%)
Shift-Add Multiplier 254 (5%) 495 (5%)

Modified Booth Multiplier 629 (13%) 1236 (13%)
MULT18x18 Multiplier 0 (0%) 0 (0%)

These Nexys2 resource statistics are expected based on arithmetic architecture analysis. The simpler
architectures, like the RC adder and the SA multiplier, use less Nexys2 resources than their more
complicated counterparts. The faster components, like the CSE adder and the Booth multiplier, use the
most system resources.

Comments

To acquire this data, each component was placed in a Xilinx project by itself. The slices and LUTs given
for the adder modules seem to be the most accurate. For example, gate delay for the RC adder is about
64. If 1 LUT is needed for each gate, then it would take about 64 LUTS, or 32 slices, to implement the RC
adder in the Nexys2. These values are very close to the ones given in Table 16.

The slices and LUTs shown for the CSA accumulator and the Booth multiplier seem less accurate. It is
possible to implement 20 Booth multipliers in a filter realization for use in parallel calculations as shown
in Table 10. When implemented with the entire DSP system, the total slices used, including the 20 Booth
multipliers is only 2410. This is much less than the utilized slices suggested by the data in Table 16. The
CSA accumulator appears to share this same problem when considering the same logic.

A “wrapper” module was designed and implemented as an attempt to remedy this issue. The wrapper
module concept is supposed to hide unconnected signals and registers coming from the test module so
they are not mapped to Nexys2 resources during the Xilinx tools mapping process. Every attempt to
design a wrapper module that would accomplish this task proved unsuccessful.

Power Analysis

The attempt to perform power analysis on the system using Xilinx XPower Analyzer yielded little
information. Power estimations are performed with the software using 3 different files as explained in
the Xilinx ISE help file in the XPower Analyzer Files section. These files include the following:

e Physical Constraints File (PCF) — Contains physical constraints created by the Xilinx MAP process and
physical constraints translated from the User Constraint File (UCF) by the MAP program.

e Settings File — A file in XML format that contains current settings like default toggling rates, voltages,
and ambient temperature. It may be generated form an XPower Estimator spreadsheet.

50

e Simulation Activity File (SAIF or VCD) — Simulation tools, like ISim, may generate SAIF of VCD files
from post PAR simulations. SAIF and VCD files contain the following information:
o VCD (Value Change Dump) — Contains a series of time-ordered value changes for the signals
in the simulation model.
o SAIF (Switching Activity Interchange Format) — A smaller version of the VCD file created by
omitting timing information. Only contains signal switching information.

Both the PCF and either the SAIF or VCD files were used in attempts to perform power analysis on the
binary arithmetic components without conclusive results. Each attempt yielded identical information,
where the XPower software did not appear to receive any signal switching information from the files.
Project time constraints did not allow for further investigation to resolve the issues.

Conclusions

Binary arithmetic components have expected characteristics, with the larger, more complex
components using more system resources and having faster propagation times. However, architecture
has little effect on DSP performance when used in the filter realization structures created for Nexys2
implementation. This is despite the fact that each has a different architecture and a different
propagation delay. This is because each can calculate its respective output in less than 20 ns, the period
of the 50 Mhz Nexys2 system clock. If a system with a faster clock is used for implementation,
component architecture would have more drastic effects on performance.

Not all filter realization structures used in the final design functioned properly. The cascade direct form
I module, CASCADE.vhd, would produce no output for parallel calculation implementation or for multi-
stage filters using serial calculation implementation. This is most likely due to an overflow error in the
VHDL code for this module. The normal direct form || module, NORMAL.vhd, seemed to work excellently
in all cases.

The audio conversion interface used for the Nexys2 could also use some improvements. The level shifter
circuit placed on the input did a good job of providing a clean input signal with an offset of 1.5 V. The
output capacitor was able to remove this offset before the signal is sent to the listening device, but
introduces a small amount of noise. A better solution may be another level shifter to drop the voltage
back to balance around 0 V.

Estimations for DSP performance limitations show the Nexys2 has capabilities to implement complex
digital filters. The maximum filter length for serial calculation implementations of 175, the maximum
number of filter stages of 43, and the maximum sampling rate of 525 kHz could be improved by some
minor optimizations to the filter realization modules’ VHDL code. These modifications could not be
accomplished due to project time constraints.

51

The Xilinx software optimizes any module selected for implementation, in some undetermined way, to
be more efficient. This is evidenced by the similarities in propagation delay between adder modules
despite their considerable contrasts in architecture. This simplifies decisions regarding arithmetic
component selection for a particular filter design. The carry-chains included in simpler architectures, like
the RC adder, are replaced by Xilinx optimization with more complex logic, making them more desirable
for implementation due to the ease of their design.

Overall, the Nexys2 provides an excellent hardware resource for students to examine many aspects of
digital filter realization. The complete system shows an overview of how all parts of a DSP system work
together to accomplish filtering operations. Using this project, students may study a large amount of
information regarding how binary arithmetic components are organized and used in digital filters, as
well as how their architecture influences their performance, design, and hardware implementation.

52

53

References

Using Embedded Multipliers in Spartan-3 FPGAs. (2003, May 13). Retrieved February 22, 2012, from
Xilinx Support: http://www.xilinx.com/support/documentation/application_notes/xapp467.pdf

Non-Inverting Op-Amp Level Shifter. (2004). Retrieved April 19, 2012, from Daycounter, Inc:
http://www.daycounter.com/Circuits/OpAmp-Level-Shifter/OpAmp-Level-Shifter.phtml

VHDL Code: Booth Multiplier. (2010, December 18). Retrieved February 5, 2010, from Codz Home:
http://codzhome.blogspot.com/2010/12/vhdl-code-booth-multiplier.html

Carry Save Adder Implementation. (2011, December 11). Retrieved September 20, 2011, from ECEN
6263 Advanced VLS| Design: http://Igjohn.okstate.edu/5263/lectures/csa.pdf

Carry-Select Adder. (2011, October 31). Retrieved January 17, 2012, from Wikipedia:
http://en.wikipedia.org/wiki/Carry-select_adder

Historical DSP Applications. (2011). Retrieved May 2, 2012, from Signalogic:
http://www.signalogic.com/index.pl?page=dsp_app

Serial Peripheral Interface Bus. (2011, December 10). Retrieved January 20, 2012, from Wikipedia:
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

Adder (Electronics). (2012, April 4). Retrieved April 10, 2012, from Wikipedia:
http://en.wikipedia.org/wiki/Adder_(electronics)

Booth's Multiplication Algorithm. (2012, May 10). Retrieved May 28, 2012, from Wikipedia:
http://en.wikipedia.org/wiki/Booth's_multiplication_algorithm

Carry-Lookahead Adder. (2012, April 25). Retrieved May 29, 2012, from Wikipedia:
http://en.wikipedia.org/wiki/Carry-lookahead_adder

Carry-Save Adder. (2012, May 13). Retrieved May 28, 2012, from Wikipedia:
http://en.wikipedia.org/wiki/Carry-save_adder

Kogge-Stone Adder. (2012, January 27). Retrieved January 7, 2012, from Wikipedia:
http://en.wikipedia.org/wiki/Kogge%E2%80%93Stone_adder

Multiplication Algorithm. (2012, May 25). Retrieved May 28, 2012, from Wikipedia:
http://en.wikipedia.org/wiki/Multiplication_algorithm

Andraka Consulting Group, I. (2007, March 16). Multiplication in FPGAs. Retrieved April 7, 2012, from
Andraka Consulting Group, Inc: http://www.andraka.com/multipli.htm

Compton, K. (n.d.). Carry Lookahead Adders. Retrieved January 13, 2012, from University of Wisconsin
Madison Computer Science Home Page:
http://pages.cs.wisc.edu/~jsong/CS352/Readings/CLAs.pdf

54

Da Huang, N. A. (n.d.). Modified Booth Encoding Radix-4 8-Bit Multiplier. Retrieved February 6, 2012,
from Duke University Electrical & Computer Engineering:
http://people.ee.duke.edu/~jmorizio/ece261/F08/projects/MULT.pdf

Daniel Mlynek, Y. L. (1998, November 10). Design of VLSI Systems. Retrieved September 5, 2012, from
Micro Electronic Systems Laboratory: http://Ismwww.epfl.ch/Education/former/2002-
2003/VLSIDesign/ch06/ch06_print.html

Hardware Algorithms for Arithmetic Modules. (n.d.). Retrieved January 9, 2012, from Tohoku University
Computer Structures Laboratory:
http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html#ppa_wlic

Knagge, G. (2010, July 27). ASIC Design for Signal Processing. Retrieved February 5, 2012, from
GeaffKnagge.com: http://www.geoffknagge.com/fyp/booth.shtml

Loh, P. (2005, February 2). Carry-Save Addition. Retrieved January 13, 2012, from Engineering Texas A &
M University: http://www.ece.tamu.edu/~sshakkot/courses/ecen248/csa-notes.pdf

Morgan, M. (2003, Fall). ECE 8053 Introduction to Computer Arithmetic. Retrieved September 5, 2011,
from Mississippi State University Department of Electrical and Computer Engineering:
http://www.ece.msstate.edu/courses/ece8053/presentations/07f03-carryskip.ppt

Morris Mano, C. R. (2008). Carry-Lookahead Adders. Retrieved January 14, 2011, from Logic & Computer
Design Fundamentals: http://writphotec.com/mano4/Supplements/Carrylookahead_supp4.pdf

Parallel Adders. (n.d.). Retrieved September 13, 2012, from
http://users.encs.concordia.ca/~asim/COEN_6501/Lecture_Notes/Lecture_2_Slides.pdf

Serial Peripheral Interface (SPI) for FPGA. (n.d.). Retrieved January 20, 2012, from Electronics Bus:
http://electronicsbus.com/serial-peripheral-interface-spi-design-fpga-vhdl-verilog/

Shift-and-Add Multiplication. (n.d.). Retrieved April 3, 2012, from Structure of Computer Systems:
http://users.utcluj.ro/~baruch/book_ssce/SSCE-Shift-Mult.pdf

Sorin, D. J. (2009). Booth's Algorithm. Retrieved February 7, 2012, from ECE 152 Computer Architecture:
http://people.ee.duke.edu/~sorin/prior-courses/ece152-spring2009/lectures/3.3-arith.pdf

55

Appendix A: Project Planning

This appendix contains the proposed project budget, Gantt chart, and senior project analysis.

Project Gantt Chart

| | | | | | | | | | | | | | | | | |
Bek 3 Weekd WeskS Week6 Week7 Week® Week® Week10 week11 Week12 Week 13 ‘Week14 ek 15 Week1B Week17 Wesk15 Week19 Week20 Week 21

LI Begindate | Endcale |y iz tpmta oMz aMpz MR 2peM GAMZ MU e 3PN ANA ABMZ MY ATIMD a2 e SMNGR S
@ Project Proposal 11612 116M2 ll
@ Compose Preliminary Project Specification 111712 1M7H2 -1
@ Preliminary Project Specification 111812 118H2 -l
@ Background Technology Research 11912 1123112 -—
@ |nvestigate Solution Alternatives 11912 1123112 -—
@ Partition System Info 11912 1123112 _—
@ System Verification TestPlan 11912 1126112 ——
@ Draft Introduction Section of Report 112412 1126112 -—
© Select Design Approaches 112412 1126112 -'I
@ Develop Subsystem Specifications 112412 1126112 -i
& Verify Solution Alternative Selections 11272 113112 -—
@ Draft Specifications Section of Report 112712 113112
o Concept Design & Subsystem Verification 21112 2HM2 |1
@ Preliminary Design Review 21212 2212 -l
© Select Binary Arithmetic Components 21312 2MBH2 —
@ Qrder PMod Units 2312 21312 _—
@ Subsystem Design Verification Test 21312 21612 -
@ Define YHOL Modules 211712 22112 | E—
@ Verfy PMod Functionality 21412 211612 H
@ Design Verification 212812 3512
@ Critical Design Review 3612 iz .l
@ Develop VHDL Adder Modules 3iaNlz 212 —'I
@ Develop VHOL Multiplier Modules 3igHz2 yAn2 —-|
@ Develop VHOL 5Pl Interface Module 3i8N2 3NeH2 _— l
& Verify Adder Operation 32212 272 _'I
o Verify Multiplier Operation N2 ATH2 —
@ Verify 5Pl Interface Module 311912 32212 -—l
@ Arithmetic Component Analysis 3i28M12 41212 _1
© Draft Component Analysis Section of Report 41312 4412 i]
@ Develop VHDL Filter Realization Modules 3i28M12 41212 _
& Verify Filter Realization Modules 411312 41812 —1
@ Draft Design Section of Report 419142 4/25M12 —
© System Implementation, Debug, & Revision 4(1912 Bl212 _
@ System Demonstration 5ian2 5412 -—1
@ Draft Remaining Report Sections 5iTHz2 515M2 _—
@ Complete "Analysis of Senior Project Design® 5712 52 -—
& Submit Complete Report Draft 511612 516M2 |1
@ Draft Report Review 51712 BI23n2 -
@ Final Project Submission 5i24M2 bl2412 -

56

Proposed Project Budget

Item Quantity | Cost/Item ($) Combined Item Cost ($)
Digilent Nexys2 FPGA 1 99.00 99.00
PmodDA2 1 29.99 29.99
PmodAD1 1 34.99 34.99
PmodCON4 2 9.99 19.98
LM324 OP AMP 1 1.05 1.05
10 pF Capacitor 1 0.70 1.40
100 kQ Resistor 2 0.09 0.18
47 kQ Resistor 2 0.15 0.30

Total 186.88

Students should already have a Dlgilent Nexys2 FPGA board, as well as both the ADC and DAC Pmod
units, from the digital design series of Cal Poly classes. In this case, the only needed items to complete
the project are the PmodCON4 RCA jacks, capacitor, and the resistors for a total of $22.91.

Senior Project Analysis

This appendix provides a project analysis for several project characteristics.

Summary of Functional Requirements

This project implements a modifiable digital filter in the Nexys2 Development Board. This is
accomplished using numerous VHDL modules including filter realization structures, ADC and DAC SPI
interfaces, a sampling timing interface, and several binary arithmetic components to handle filter
calculations. It can filter signals provided with the signal generator or from an audio source, filtering in
real time at a variable sampling rate.

Primary Constraints

One of the main difficulties associated with implementing the project is VHDL. A lot of time has passed
since taking the digital design series of classes at Cal Poly and remembering how to code in VHDL proved
very challenging. After overcoming this hurdle, the next issues arose from the different filter realization
modules, which are extremely complex and hard to debug. This is mainly because providing stimuli to
the test bench that would simulate the ADC register and an incoming sine wave was extremely difficult
and tedious and, ultimately, was not accomplished. Debugging the filter realization modules was done
with simpler stimuli that provided various samples, not representing a sine wave, which simulated ADC
input to the Nexys2.

57

Economic

The project budget did not change much from start to finish. The only additional components added
were the capacitor, the 4 resistors, and the OP AMP for an additional total of $2.93 above the original
estimation. These components were used to create the level shifter circuit for the audio interface.

The time for project completion was underestimated during initial project planning stages. Originally,
about 10 weeks were proposed to complete the project. It took almost twice as long to complete, as
shown in the Gantt chart in Appendix A.

Environmental

There is not much environmental impact associated with the project. The purpose was not to create
something to be manufactured so there is no waste or pollution added from manufacturing. Most of the
components used for the project should already be owned by Cal Poly EE/CPE students so there is not
any additional waste introduced to the environment from components at the end of their life span. The
electricity used to power and operate the Nexys2, computer, and test equipment is one of the few ways
the project impacts the environment.

Manufacturability

The project was not designed to be manufactured. If manufacturing the design is desired, the circuit
created by the Xilinx tools can be sent to various manufacturers for packaging.

Sustainability

The project was not designed to be sustainable. Sustainable resources are not used to power the
Nexys2, computer, or various test equipment used to verify its operation. A power analysis of the
system was attempted but no results could be extracted. Power usage could be improved upon,
however. This could be accomplished by making more efficient VHDL modules that would perform DSP
operations in fewer clock cycles or perform filter calculations using less logic.

Development

During the project | learned about many different things concerning VHDL implementation and the Xilinx
ISE tools. The most prominent thing | learned was about the creation of what Xilinx defines as a gated
clock. This is a flip-flop that receives its enable input form a gate rather than a clock. A gated clock
creates a delay for the enable input, which in turn delays flip flop output, causing many timing problems
during Nexys2 implementation.

| also learned about some of the hazards of using 2 process state machines. Careful consideration must
be applied when assigning signals using 2 process state machines. If a signal needs be synchronous and
it is assigned in the combinatorial process of the state machine then it most likely will generate a gated
clock as described above. Gated clock are dangerous because they do not produce logic errors and may
not be noticed errors occur during hardware implementation.

58

59

Appendix B: Project Hardware & Software Information

This appendix contains information for all hardware and software used to create and test the project.

Table of Hardware Used for Project Development & Testing

Device Name Purpose
Digilent Nexys2 Spartan-3E Development board use(ief;)trir\]/gHDL implementation and
Digilent Pmod-DA2 Digital to analog converter module
Digilent Pmod-AD1 Analog to digital converter
Digilent Pmod-CON4 RCA audio jacks module
Agilent InfiniiVision MSO-X 3012A Oscilloscope
Agilent E3630A Triple output DC power supply

Table of Software Used for Project Development & Testing

Program Name Purpose
Microsoft Windows XSPPI;rofessmnaI ver. 2000 Cal Poly computer operating system
Microsoft Windows 7 Ultimate SP1 Home computer operating system
Microsoft Word 2010 Report development
Microsoft Excel 2010 Frequency response plot development

VHDL system used for module design and

Xilinx ISE 13.2 ver. 0.61xd Nexys2 implementation

Used to create filter frequency response plots

MATLAB R2011 ver. 7.13.0.564 and generate filter coefficients

Digilent Adept ver. 2.9.4 Facilitates programming the Nexys2 FPGA board
ToneGen Audio Frequency Generator Creates test mgnals}fg;qtsstmg the project at

Used to verify audio implementation via pc
microphone jack

Soundcard Scope ver. 1.40

60

Appendix C: VHDL Module Code

This appendix contains VHDL code for all modules used for the project.

FILTER.vhd

-- Company: Cal Poly

-- Engineer: Joseph Waddell

-- Design Name: Filter

-- Module Name: FILTER - behavioral

-- Project Name: senior project

-- Description: FILTER implements the entire DSP system.

library ieee;

use ieee.numeric std.all;

use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;

library work;
use work.DEFINITIONS.all;
use work.CTRL CONSTANTS.all;

entity FILTER is

port (CLK : in std logic;
RST : in std logic;
EN : in std logic;
MISO : in std logic;
ADC_SCLK : out std logic;
DAC_SCLK : out std logic;
CS : out std logic;
SYNC : out std logic;
MOSI : out std logic);

end FILTER;

architecture behavioral of FILTER is
-- registers for Ak and Bk coefficients

signal Bs : vect 16x30 := (others => (others =>'0"));
signal As : vect 16x20 := (others => (others =>'0"));

-- multiplier inputs

signal MULT B : vect 16x20 := (others => (others => '0'));
signal MULT A : vect 16x20 := (others => (others => '0'"));
-- multiplier products

signal P : vect 32x20 := (others => (others => '0'));

-- product register
signal PRODUCT : vect 32x20
-- accumulator input

(others => (others => '0"'));

signal PART S : vect 32x20 := (others => (others => '0'"));

-- adder inputs

signal ADD A : vect 32x20 := (others => (others => '0'"));
signal ADD B : vect 32x20 := (others => (others => '0'"));

-- adder sums

signal S : vect 32x20 := (others => (others => '0'));

-- current input sample

signal Xn : std logic vector (1l downto 0) := (others => '0');
—-—- current output

signal ¥Yn : std logic vector (1l downto 0) := (others => '0'");
-- clock signal for debounce circuit

signal DBC_CLK : std logic := '0';

-- debounced reset button

signal RST DB : std logic := '0';

-- debounced enable button
signal EN DB : std logic := '0'";

-- registers used for debouncing buttons
signal RST_DB_REG std logic vector (7 downto
signal EN_DB_REG std logic vector (7 downto
-- register for time delay signals
signal XnmM vect 16x20 (others =>
signal YnmN vect 16x20 (others =>
-- signals sample acquisition

(others
(others

signal SAMP_DONE std logic := '0';
-- notifies output is calculated
signal OUTPUT_ DONE std logic := '0';

coefficient used for cascade filters
signal C_VECT std logic vector (15 downto 0

begin
-- normal direct form I filter realization
norm if STRUCTURE 0 generate
n_filter NORMAL port map(CLK, RST_DB,
Bs, C_VECT,
PART S, Yn, O

end generate norm;

cascade direct form II filter realizatio

casc if STRUCTURE = 1 generate
c filter CASCADE port map(CLK, RST DB
Bs, C_VECT,
PART S, Yn,

end generate casc;

cascade direct form I filter realization

if STRUCTURE 2 generate

CASC_DFI port map(CLK, RS
As, Bs,

casc_dir
nc_filter

ADD A, ADD B,

end generate casc_dir;

-- binary arithmetic component generation
bb DSP_BB port map(MULT A, MULT B,
Bs, C_VECT);

-- sampling rate control
sample
ADC_SCLK,
Xn, XnmM,

-- debounce circuit clock
debounce clk CLK DIV port map(1000, C

-- debounce process for button inputs

debounce proc process (CLK, DBC CLK) is
begin
if rising edge (DBC_CLK) then

RST DB REG(7 downto 1)
RST DB _REG(0) <= RST;

<= RST DB REG

EN DB REG(7 downto 1) <= EN DB REG(

EN DB REG (0) <= EN;
end if;
if rising edge (CLK) then
if EN DB REG = "11111111" then
EN DB <= 'l';
elsif EN DB REG = "00000000" then

EN DB <= '0';
end if;

SAMPLE_CTRL port map(CLK, RST DB, EN_DB, MISO, Yn,

62

0) := (others => '0'");

0) := (others => '0'");

=> '0"));

=> '0"));

) := (others => '0'");

EN DB, SAMP DONE, XnmM, YnmN, As,
P, S, MULT B, MULT A, ADD A, ADD B,

UTPUT_DONE) ;

n

, EN DB, SAMP DONE, XnmM, YnmN, As,
P, S, MULT B, MULT A, ADD A, ADD B,
OUTPUT DONE) ;

T DB, EN DB, SAMP DONE, XnmM, YnmN,
C_VECT, P, S, MULT B, MULT A,
PART S, Yn, OUTPUT DONE) ;

ADD A, ADD B, PART S, P, S, As,

OUTPUT_DONE,

DAC_SCLK, CS, SYNC, MOSI,

YnmN, SAMP DONE);

1K,

DBC CLK);

(6 downto 0);

6 downto 0);

if RST DB REG = "11111111" then
RST DB <= 'l';
elsif RST DB REG = "00000000" then
RST DB <= '0';
end if;
end 1if;
end process debounce proc;
end behavioral;

NORMAL.vhd

-- Company: Cal Poly

-- Engineer: Joseph Waddell

-- Design Name: Normal Direct Form I FIlter Realization

-- Module Name: NORMAL - behavioral

-- Project Name: senior project

-- Description: Normal Direct Form I FIlter Realization implements a

-= digital filter using this filter realization.
library ieee;

use ieee.numeric std.all;

use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;

library work;
use work.DEFINITIONS.all;
use work.CTRL CONSTANTS.all;

entity NORMAL is

port (CLK : in std logic;
RST : in std logic;
EN : in std logic;
SAMP DONE : in std logic;
XnmM : in vect 16x20;
YnmN : in vect 16x20;
As : in vect 16x20;
Bs : in vect 16x30;
C_VECT : in std logic_vector (15 downto 0);
P : in vect 32x20;
S : in vect 32x20;
MULT B : out vect 16x20;
MULT A : out vect 16x20;

ADD A : out vect 32x20;
ADD B : out vect 32x20;
PART S : out vect 32x20;
Yn : out std logic vector (1l downto 0);
OUTPUT DONE : out std logic);
end NORMAL;

architecture behavioral of NORMAL is

-- FSM state declarations

type state type is (IDLE, WAIT4Xn, MULT, MULT DUM, GET P, P _DUM, ACCUM,
A_DUM, GET_S, OUT_DUMl, OUT_DUMZ, SET_OUTPUT);

signal PS, NS : state type;

-- signals to keep track of multiplying and accumulating filter terms
signal CNT_TERMS : integer range 0 to 20 := 0;

signal MULT A TERMS : integer range 0 to 20 := 0;

signal MULT B TERMS : integer range 0 to 20 := 0;

-- flag asserted when accumulation is complete

signal ACCUM_ DONE : std logic := '0';
-- product register

signal PRODUCT : vect 32x20 := (others => (others => '0'));

-- two signals to add during serial accumulation

signal ADD_A BUF : vect 32x20 := (others => (others => '0'));
signal ADD_B BUF : vect 32x20 := (others => (others => '0'));
-- sum register

signal SUM : std logic vector (31 downto 0) := (others => '0');
-- register to temporarily hold ¥Yn output

signal Yn BUF : std logic vector(ll downto 0) := (others => '0'");
-- flag to clear registers

signal CLR REGS : std logic := '1"';

-- flag to set multiplier inputs

signal LOAD MULT : std logic := '0';

-- flag to load product register

signal LOAD P : std logic := '0';

-- flag to set adder inputs

signal LOAD ADD : std logic := '0';

-- flag to load sum register

signal LOAD_S : std logic := '0';

-- flag set when output has been calculated

signal GOT_OUTPUT : std logic := '0';

-- applies offset of about 1.5 V

constant OFFSET : std logic vector (31 downto 0)

:= "00000000000000000000011101010011";
-—- offset for scaled integers
signal SCALED OFFSET : std logic vector (31 downto 0) := (others => '0'");

begin
-- set scaled offset
SCALED_OFFSET(ll + SCALE-1 downto SCALE-1)
<= OFFSET (11 downto 0) when SCALE > 1;

SCALED OFFSET (SCALE - 2 downto 0) <= (others => '0') when SCALE > 1;
-- assign output Yn to temporary Yn register
Yn <= Yn BUF;

-- set adder inputs
ADD A <= ADD A BUF;
ADD B <= ADD B BUF;

-- This process is part of the FSM that controls DSP operation. It synchronizes
-- all outputs from the FSM including the loading of registers and inputs to
-- the various components used.

sync_regs : process(CLK) is
variable TMP OUT : std logic vector (31 downto 0) := (others => '0"');
begin

if rising edge (CLK) then

-- initialize signals and registers

if CLR_REGS = 'l'" then
MULT_A <= (others => (others => '0")
MULT B <= (others => (others => '0'")
PRODUCT <= (others => (others => '0")
ADD A BUF <= (others => (others => "'
ADD B BUF <= (others => (others => "'
SUM <= (others => '0");
Yn BUF <= (others => '0"');
CNT TERMS <= 0;
OUTPUT_DONE <= '0';

end if;

-- load multiplier inputs
if LOAD MULT = 'l' then

if

for serial operation

SorP = 0 then

-- give Bk terms to multiplier inputs
if MULT B TERMS < M then

-- adjust multiplier inputs to only receive positive values
if XnmM (MULT B TERMS) > OFFSET then

MULT_A(0) <= XnmM(MULT B TERMS) - OFFSET (15 downto 0);
elsif XnmM (MULT B TERMS) <= OFFSET then

MULTiA(O) <= OFFSET (15 downto 0) - XnmM (MULT B TERMS) ;
end 1if;
if Bs(MULT B TERMS) (15) = '0' then

MULT B(0) <= Bs(MULT B TERMS);
elsif Bs(MULT B TERMS) (15) = '1' then

MULT B(0) <= not(Bs(MULT B TERMS)) + 1;
end if;

-- increment Bk term counter
MULT B TERMS <= MULT B TERMS + 1;

-- give Ak terms to multiplier inputs
elsif MULT A TERMS < N then

-- adjust multiplier inputs to only receive positive values
if YnmN(MULT A TERMS) > OFFSET then

MULT_A(O) <= YnmN(MULT_A_TERMS) - OFFSET (15 downto 0);
elsif YnmN (MULT A TERMS) <= OFFSET then

MULTiA(O) <= OFFSET (15 downto 0) - YnmN (MULT A TERMS) ;
end 1if;
if As(MULT A TERMS) (15) = '0' then

MULT B(0) <= As(MULT A TERMS);
elsif As(MULT A TERMS) (15) = 'l' then

MULT B(0) <= not(As(MULT A TERMS)) + 1;
end if;

-- increment Ak term counter
MULT A TERMS <= MULT A TERMS + 1;

end if;

increment filter term counter

CNT TERMS <= CNT TERMS + 1;

-- for parallel calculations
elsif SorP = 1 then

-- assign all multiplier inputs
for 1 in 0 to F_LENGTH loop

-- assign the Bk terms to multipliers

if i < M then
-- adjust multiplier inputs to only positive values
-- and remove offset from input sample
if XnmM (i) > OFFSET then

MULT_A(i) <= XnmM (i) - OFFSET (15 downto 0);
elsif XnmM (i) <= OFFSET then

MULT A (i) <= OFFSET (15 downto 0) - XnmM(i);
end if;
if Bs(i) (15) = '0' then

MULT B(i) <= Bs(i);
elsif Bs (i) (15) = '1' then

MULT B (i) <= not(Bs(i)) + 1;
end if;

-- assign the Bk terms to multipliers

elsif i >= M then
-- adjust multiplier inputs to only positive values
-- and remove offset from output signal
if YnmN (i - M) > OFFSET then

MULT_A(i) <= YnmN(i - M) - OFFSET (15 downto 0);
elsif YnmN (i - M) <= OFFSET then

MULTiA(i) <= OFFSET (15 downto 0) - YnmN(i - M);
end if;
if As(i - M) (15) = '0' then

MULT B (i) <= As(i - M);

65

66

elsif As(i - M) (15) = '1' then
MULT B (i) <= not(As(i - M)) + 1;
end if;
end 1if;
end loop;
end if;
end 1if;

-- load product register after multiplication is complete
if LOAD P = 'l' then
-- reset multiplier inputs
MULT A <= (others => (others => '0"));
MULT_ B <= (others => (others => '0"));
-- for serial operation
if SorP = 0 then
-- adjust product to reflect multiplication with negative Bk
if CNT TERMS <= M then
if XnmM(MULT B TERMS - 1) = "0000000000000000" then
PRODUCT (0) <= (others => '0"');
elsif XnmM(MULT B TERMS - 1) > OFFSET then

if Bs(MULT_B TERMS - 1) (15) = '0' then
PRODUCT (0) <= P(0);
elsif BS(MULT B TERMS - 1) (15) = 'l' then
PRODUCT (0) <= not (P(0)) + 1;
end if;
elsif XnmM(MULT B TERMS - 1) <= OFFSET then
if Bs(MULT_B TERMS - 1) (15) = '0' then
PRODUCT (0) <= not(P(0)) + 1;
elsif BS(MULT B TERMS - 1) (15) = 'l' then
PRODUCT (0) <= P(0);
end if;
end if;

-- adjust product to reflect multiplication with negative Ak
elsif CNT TERMS > M then
if YnmN(MULT A TERMS - 1) = "0000000000000000" then
PRODUCT (0) <= (others => '0'");
elsif YnmN (MULT A TERMS - 1) > OFFSET then

if As(MULT A TERMS - 1) (15) = '0' then
PRODUCT (0) <= P(0);
elsif As(MULT A TERMS - 1) (15) = '1' then
PRODUCT (0) <= not (P(0)) + 1;
end if;
elsif YnmN(MULT A TERMS - 1) <= OFFSET then
if As(MULT A TERMS - 1) (15) = '0' then
PRODUCT (0) <= not(P(0)) + 1;
elsif As(MULT A TERMS - 1) (15) = '1' then
PRODUCT (0) <= P(0);
end if;
end if;
end if;

-- for parallel operation
elsif SorP = 1 then
for 1 in 0 to F_LENGTH loop
-- adjust product to reflect multiplication with negative Bk
if i < M then
if XnmM (i) = "0000000000000000" then
PRODUCT (1) <= (others => '0'");
elsif XnmM (i) > OFFSET then

if Bs(i) (15) = '0' then
PRODUCT (i) <= P(i);
elsif BS(i) (15) = '1' then

PRODUCT (1) <= not(P(i)) + 1;
end 1if;

elsif XnmM (i) <= OFFSET then

if Bs(i) (15) = '0' then
PRODUCT (i) <= not(P(i)) + 1;
elsif BS(i) (15) = '1' then
PRODUCT (1) <= P(i);
end if;
end if;

-- adjust product to reflect multiplication with negative Ak
elsif i >= M then
if YnmN(i - M) = "0000000000000000" then
PRODUCT (i) <= (others => '0'");
elsif YnmN(i - M) > OFFSET then

if As(i - M) (15) = '0' then
PRODUCT (1) <= P(i);
elsif As(i - M) (15) = '1' then
PRODUCT (1) <= not(P(i)) + 1;
end if;
elsif YnmN(i - M) <= OFFSET then
if As(i - M) (15) = '0' then
PRODUCT (i) <= not(P(i)) + 1;
elsif As(i - M) (15) = '1' then
PRODUCT (1) <= P(1);
end if;
end if;
end 1if;
end loop;
end if;
end 1if;

-- load adder inputs
if LOAD ADD = '1' then
-- for serial operation
if SorP = 0 then
-- load current value of accumulated sum

ADD A BUF(0) <= SUM;
-- load current term to accululate
ADD B BUF(0) <= PRODUCT(0);

-- for parallel operation
elsif SorP = 1 then
-- load accumulation register with all appropriate terms
PART_S(O to F_LENGTH) <= PRODUCT (0 to F_LENGTH) ;
end 1if;
end if;

-- load sum register
if LOAD_S = '1' then
-- reset adder inputs
ADD_A BUF <= (others => (others => '0'));
ADD_B_BUF <= (others => (others => '0'));
PART S <= (others => (others => '0'));
-- for serial operation
if SorP = 0 then
-- continue accumulation if not done
if CNT_TERMS <= F_LENGTH then
SUM <= S(0);
-- account for upper and lower bound saturation of output
-- when all terms have been accumulated
elsif CNT_TERMS > F LENGTH then
-- reset Ak and Bk term counters
MULT_B_TERMS <= 0;
MULT A TERMS <= 0;
-- assign output for scaled coefficients

if SCALE > 1 then
-- add 1.5 V scaled offset to output
TMP_ OUT 1= S(0) + SCALED OFFSET;
if TMP_OUT(31) = '0O' then
if TMP_OUT = TMP_OUT (11 + SCALE - 1 downto 0) then
Yn BUF <= TMPioUT(ll + SCALE - 1 downto SCALE - 1);
elsif TMP_OUT > TMP OUT (11 + SCALE - 1 downto 0) then
Yn BUF <= (others => '1");
end if;
elsif TMP_OUT(31) = 'l' then
Yn_BUF <= (others => '0");
end if;
-- assign output for unscaled coefficients
elsif SCALE = 1 then
-- add 1.5 V offset to output
TMP_OUT := S(0) + OFFSET;
if TMP_OUT(31) = 'O' then
if TMP_OUT = TMP_OUT (11 downto 0) then
Yn_ BUF <= TMP OUT (11 downto 0);
elsif TMP OUT > TMPioUT(ll downto 0) then
Yn BUF <= (others => '1");

end 1if;
elsif TMP_OUT(31) = 'l' then
Yn_ BUF <= (others => '0");
end 1if;
end if;

end if;
-- for parallel operation
elsif SorP = 1 then
-- assign output for scaled coefficients
if SCALE > 1 then
-- add 1.5 V scaled offset to output
TMP OUT := S(0) + SCALED OFFSET;
if TMP_OUT(31) = '0O' then
if TMP_OUT = TMP OUT (11 + SCALE - 1 downto 0) then
Yn_ BUF <= TMP_OUT (11 + SCALE - 1 downto SCALE - 1);
elsif TMP OUT > TMP OUT (11l + SCALE - 1 downto 0) then
Yn_BUF <= (others => '1");
end if;
elsif TMP_OUT(31) = 'l' then
Yn_ BUF <= (others => '0");
end if;
-- assign output for unscaled coefficients
elsif SCALE = 1 then
-- add 1.5 V offset to output
TMP_OUT := S(0) + OFFSET;
if TMP_OUT (31) = '0' then
if TMP_OUT = TMP_OUT (11 downto 0) then
Yn BUF <= TMP OUT (11 downto 0);
elsif TMP_OUT > TMP_ OUT (11 downto 0) then
Yn_BUF <= (others => '1");

end if;
elsif TMP_OUT(31) = 'l' then
Yn BUF <= (others => '0"');
end 1if;
end if;
end if;
end 1if;

-- set flag to signal output has been calculated
if GOT_OUTPUT = 'l'" then

OUTPUT_DONE <= 'Yy
end if;

68

end 1if;
end process sync_regs;

This process synchronizes state changes for the FSM.

sync_proc : process(NS, CLK, RST) is
begin
-- asynchronous reset
if RST = '1' then
PS <= IDLE;
elsif rising edge (CLK) then
PS <= NS;
end if;
end process sync proc;

This process contains the combinatorial logic used for state changes of the
FSM and the various other operations carried out during DSP calculations.

comb_proc : process(PS, EN, SAMP DONE, CNT_TERMS) is
begin
case PS is
-- state, idle/initialization
when IDLE =>
-- set flag to initialize registers and signals
CLR_REGS <= '1';
-- initialize FSM flags
LOAD MULT <= '0";
LOAD P <= '0';
LOAD _ADD <= '0';
LOAD S <= '0';
GOT _OUTPUT <= '0';
-- change state to wait for a sample when system enable is received

if EN = '1l' then
NS <= WAIT4Xn;
elsif EN = '1' then
NS <= IDLE;
end if;

-- state, wait for sample from ADC
when WAIT4Xn =>
-- clear registers and signals
CLR REGS <= '1';
-- assign remaining flags of FSM
LOAD MULT <= '0";
LOAD P <= '0';
LOAD_ADD <= '0';
LOAD S <= '0';
GOT OUTPUT <= '0';
-- cange to the multiply state after sample acquisition

if SAMP_DONE = '0' then
NS <= WAIT4Xn;

elsif SAMP DONE = '1' then
NS <= MULT;

end if;

-- state, multiply filter terms
when MULT =>
-- set flag to load multiplier inputs
LOAD MULT <= '1"';
-- assign remaining flags of FSM
CLR REGS <= '0';
LOAD P <= '0';

LOAD ADD <= '0';
LOAD S <= '0';
GOT OUTPUT <= '0';

-- go to state

NS <= MULT DUM;

-- state, dummy for MULT state
when MULT DUM =>

LOAD MULT <= '0';
CLR _REGS <= '0';
LOAD P <= '0';
LOAD ADD <= '0';
LOAD S <= '0';
GOT OUTPUT <= '0';

NS <= GET P;

-- state, load

when GET P =>
-- set flag
LOAD P <=

product register

to load product register
v

-- assign remaining flags of FSM

CLR REGS <= '0';
LOAD MULT <= '0';
LOAD ADD <= '0';
LOAD § <= '0';
GOT OUTPUT <= '0';

-- go to state that accumulates filter

that loads product register

terms

70

NS <= P DUM;

-- state, dummy for GET P
when P_DUM =>
-- set flag to load product register
LOAD P <= '0';
-- assign remaining flags of FSM
CLR_REGS <= '0';
LOAD_MULT <= '0";
LOAD _ADD <= '0';
LOAD_ S <= '0';
GOT_OUTPUT <= '0';
-- go to state that accumulates filter terms
NS <= ACCUM;

-- state, accumulate filter terms
when ACCUM =>
-- set flag to load adder inputs
LOAD ADD <= '1';
-- assign remaining flags of FSM
CLR REGS <= '0';
LOAD MULT <= '0";
LOAD P <= '0';
LOAD S <= '0';
GOT_OUTPUT <= '0';
-- for serial operation go to the state that loads the
-- accumulation register
if SorP = 0 then
NS <= GET_S;
-- for parallel operation go to the dummy state needed for
-- calculations made with the 32-bit Carry-Save accumulator
elsif SorP 1 then
NS <= A DUM;
else
NS <= ACCUM;
end if;

-- state, dummy state needed to complete calculations
-- accomplished by the 32-bit Carry-Save accumulator
when A DUM =>

-- set flag to load adder inputs

LOAD ADD <= '0';

-- assign remaining flags of FSM

CLR_REGS <= '0';

LOAD MULT <= '0";

LOAD P <= '0';

LOAD S <= '0";

GOT _OUTPUT <= '0';

-- go to the state that loads the accumulation register

NS <= GET_S;

-- state, loads accumulation register
when GET S =>
-- set flag that loads the accumulation register
LOAD S <= 'l1';
-- assign remaining flags of FSM
CLR_REGS <= '0';
LOAD MULT <= '0";
LOAD P <= '0';
LOAD ADD <= '0';
GOT _OUTPUT <= '0';
-- for serial operation
if SorP = 0 then
-- verfy all terms have been accumulated
if CNT TERMS <= F_LENGTH then

-- go to state to multiply next term if terms remain

NS <= MULT;
elsif CNT_TERMS > F LENGTH then

-- go to state that signals output has been calculated

NS <= OUT_DUML;
end 1if;
-- for parallel operation
elsif SorP = 1 then

-- go to state that signals output has been calculated

NS <= OUT_DUML;
end if;

-- state, first dummy for output
when OUT_DUM1 =>

LOAD ADD <= '0';

CLR_REGS <= '0';

LOAD_MULT <= '0";

LOAD P <= '0';

LOAD S <= '0';

GOT_OUTPUT <= '0';

NS <= OUT_DUM2;

-- state, second dummy for output
when OUT DUM2 =>

LOAD_ADD <= '0';

CLR REGS <= '0';

LOAD MULT <= '0";

LOAD P <= '0';

LOAD_ S <= '0';

GOT_OUTPUT <= '0';

NS <= SET_OUTPUT;

-- state, signals that the final output value has been
when SET_OUTPUT =>
-- flag to sync completion flag, OUTPUT_DONE
GOT_OUTPUT <= 'l1';

set

71

-- assign remaining flags of FSM

CLR REGS <= '0';

LOAD MULT <= '0";

LOAD P <= '0';

LOAD ADD <= '0';

LOAD S <= '0';

-- go to state to wait for next sample from ADC
NS <= WAIT4Xn;

when others =>
NS <= IDLE;

end case;
end process comb proc;
end behavioral;

CASCADE.vhd

-- Company: Cal Poly

-- Engineer: Joseph Waddell

-- Design Name: Cascade Direct Form II FIlter Realization

-- Module Name: CASCADE - behavioral

-- Project Name: senior project

-- Description: Cascade Direct Form II FIlter Realization implements a

-= digital filter using this filter realization.
library ieee;

use ieee.numeric std.all;

use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;

library work;
use work.DEFINITIONS.all;
use work.CTRL_CONSTANTS.all;

entity CASCADE is

port (CLK : in std logic;
RST : in std logic;
EN : in std logic;
SAMP_DONE : in std logic;
XnmM : in vect 16x20;
YnmN : in vect 16x20;
As : in vect 16x20;
Bs : in vect 16x30;
C_VECT : in std logic vector (15 downto 0);
P : in vect 32x20;
S : in vect 32x20;
MULT B : out vect 16x20;
MULT_A : out vect 16x20;

ADD A : out vect 32x20;
ADD B : out vect 32x20;
PART_S : out vect 32x20;
Yn : out std logic vector (1l downto 0);
OUTPUT DONE : out std logic);
end CASCADE;

architecture behavioral of CASCADE is

type state type is (IDLE, WAIT4Xn, MULT, MULT DUM, GET P, P_DUM, ACCUN,
A DUM, GET S, OUT_DUM1, OUT DUM2, SET OUTPUT);

signal PS, NS : state type;

-- signals to keep track of multiplying and accumulating filter terms

to
to

signal CNT_TERMS : integer range
signal MULT_A TERMS : integer range
signal MULT B TERMS : integer range to
signal NUM A TERMS : integer range to
signal NUM B TERMS : integer range 0 to
-- signal to keep track of filter stages
signal CNT_STAGE : integer range 0 to 3 := 0;
-- flag asserted when accumulation is complete
signal ACCUM DONE : std logic := '0';
-- signals that hold multipliers and multiplicands
signal MULT_A BUF : vect 16x20 := (others => (others => '0'));
signal MULT_B BUF : vect 16x20 := (others => (others => '0'));
-- product register
signal PRODUCT : vect 32x20 := (others => (others => '0'));
-- buffers for adder inputs
signal ADD A BUF : vect 32x20 := (others => (others => '0'));
signal ADD_B_BUF : vect 32x20 (others => (others => '0'));
-- sum register
signal SUM : vect 32x20 := (others => (others => '0'));
-- register to temporarily hold Yn output
signal Yn BUF : std logic vector(ll downto 0) := (others => '0'");
-- current intermediary signal for cascading filter stages
signal Wn : vect 16x20 := (others => (others => '0'));
signal Yi : vect 16x20 := (others => (others => '0'"));
-- flag to signal Wn has been calculated
signal Wn_DONE : std logic := '0';
-- array to hold shifted intermediary signals for cascading filter
signal Wi : vect 16x30 := (others => (others => '0'));
-- flag to clear registers
signal CLR REGS : std logic := '1"';
-- flag to set multiplier inputs
signal LOAD MULT : std logic := '0';
-- flag to load product register
signal LOAD P : std logic := '0';
-- flag to set adder inputs
signal LOAD ADD : std logic := '0';
-- flag to load sum register
signal LOAD_S : std logic := '0';
-- flag set when output has been calculated
signal GOT OUTPUT : std logic := '0';
signal AB TOG : std logic := '0';
-- used to accumulate terms for parallel operation
signal ACCUM TOG : std logic := '0';
-- flag to accumulate output terms for parallel operation
signal ACCUM OUTPUT : std logic := '0';
-- applies offset of about 1.5 V
constant OFFSET : std logic vector (31 downto 0)
:= "00000000000000000000011101010011";
-- offset for scaled integers
signal SCALED OFFSET : std logic_vector (31 downto 0) := (others =>

o O O O
w N w N o
Il
o

o O
|

begin
-- set scaled offset
SCALED_OFFSET(ll + SCALE-1 downto SCALE-1)
<= OFFSET (11 downto 0) when SCALE > 1;

stages

lol),.

SCALED OFFSET (SCALE - 2 downto 0) <= (others => '0') when SCALE > 1;

-- assign adder and multiplier inputs from buffers
MULT A <= MULT A BUF;

MULT B <= MULT B BUF;

ADD A <= ADD A BUF;

ADD B <= ADD B BUF;

-- assign output ¥Yn to from buffer

73

Yn <= Yn_ BUF;

-- determine number of Ak and Bk terms from filter stages
NUM A TERMS <= F_STAGES * 2;
NUM B TERMS <= F _STAGES * 3;

-- This process is a SIPO shift register for Wn.

shift w : process(Wn DONE) is
begin
if rising edge (Wn DONE) then
if SorP = 0 then
if CNT_STAGE = 0 then
Wi(l to 2) <= Wi(0 to 1);
Wi(0) <= Wn(0);
elsif CNT_STAGE = 1 then
Wi(4 to 5) <= Wi(3 to 4);
Wi(3) <= Wn(0);
elsif CNT_STAGE = 2 then
Wi(7 to 8) <= Wi(6 to 7);
Wi(6) <= Wn(0);
elsif CNT STAGE = 3 then
Wi(l0 to 11) <= Wi(9 to 10);
Wi(9) <= Wn(0);
elsif CNT_STAGE = 4 then

Wi(l3 to 14) <= Wi(l2 to 13);
Wi(1l2) <= Wn(0);

elsif CNT STAGE = 5 then
Wi(le to 17) <= Wi (l5 to 16);
Wi(15) <= Wn(0);

elsif CNT STAGE = 6 then
Wi(l9 to 20) <= Wi(18 to 19);
Wi(18) <= Wn(0);

elsif CNT_STAGE = 7 then
Wi (22 to 23) <= Wi (21 to 22);
Wi(21) <= Wn(0);

elsif CNT_STAGE = 8 then
Wi (25 to 26) <= Wi (24 to 25);
Wi(24) <= Wn(0) ;

end if;

elsif SorP = 1 the
for i in 0 to F
wWi(i * 3 + 1
wWi(i * 3)
end loop;
end if;
end if;
end process shift w;

n
' STAGES - 1 loop

to i * 3+ 2) <=Wi(i * 3 to i * 3 + 1);
<= Wn(i);

-- This process is part of the FSM that controls DSP operation. It synchronizes
-- all outputs from the FSM including the loading of registers and inputs to
-- the various components used.

sync_regs process(CLK) is
variable TMP_OUT : std logic vector (31 downto 0) := (others => '0");
begin

if rising edge (CLK) then

-- initialize sign

if CLR REGS = '1'
MULT A BUF <=
MULT B BUF <=
PRODUCT <= (ot

als and registers

then

(others => (others => '0"));
(others => (others => '0'"));
hers => (others => '0"'));

ADD A BUF <= (others => (others => '0"));

ADD_B_BUF <= (others => (others => '0"));

SUM <= (others => (others => '0'));

Yn_ BUF <= (others => '0'");

Yi <= (others => (others => '0'));

Wn <= (others => (others => '0'));

AB TOG <= '0';

ACCUM_TOG <= '0';

ACCUM OUTPUT <= '0';

CNT_TERMS <= 0;

OUTPUT DONE <= '0';

Wn DONE <= '0';

CNT_STAGE <= 0;

MULT A TERMS <

MULT B TERMS <=
end 1if;

7

0
0

-- load multiplier inputs
if LOAD MULT = 'l' then
-- for serial operation
if SorP = 0 then
-- check if multiplying Ak or Bk terms
if AB_TOG = '0' then
-- give Bk terms to multiplier inputs
if MULT A TERMS < NUM A TERMS then
-- adjust multiplier inputs to only receive positive values

if Wi (MULT A TERMS + CNT STAGE) (15) = 'l' then
MULTiAiBUF(O) <= not(Wi(MULTiAiTERMS + CNT STAGE)) + 1;

elsif Wi(MULTiAiTERMS + CNT_STAGE) (15) = '0' then
MULT A BUF(0) <= Wi(MULT A TERMS + CNT_ STAGE);

end if;

if As(MULT A TERMS) (15) = 'l' then
MULT B BUF (0) <= not(As(MULT A TERMS)) + 1;

elsif Bs(MULT A TERMS) (15) = '0' then

MULT B BUF (0) <= As (MULT A TERMS) ;
end 1if;
-- increment Bk term counter
MULT_A_TERMS <= MULT_A TERMS + 1;
end 1if;
elsif AB TOG = 'l' then
-- give Ak terms to multiplier inputs
if MULT B TERMS < NUM B TERMS then
-- adjust multiplier inputs to only receive positive values

if Wi(MULT B_TERMS) (15) = 'l' then
MULT A BUF(0) <= not (Wi (MULT B TERMS)) + 1;

elsif Wi (MULT B TERMS) (15) = '0' then
MULT_A_BUF(O) <= Wi(MULT_B_TERMS);

end if;

if Bs(MULT B_TERMS) (15) = 'l' then
MULT_B_BUF(O) <= not(Bs(MULT_B_TERMS)) + 1;

elsif Bs (MULT B TERMS) (15) = '0' then
MULT_B_BUF(O) <= BS(MULT_B_TERMS);

end if;

-- increment Ak term counter
MULT B _TERMS <= MULT B TERMS + 1;
end if;
end 1if;
-- increment filter term counter
CNT_TERMS <= CNT_TERMS + 1;
-- for parallel implementation
elsif SorP = 1 then
-- assign multiplier input for all filter stages
for i in 0 to F STAGES - 1 loop

for j in 0 to 1 loop
-- check to see if assigning Ak or Bk coefficients

if AB_TOG = '0' then
-- adjust multiplier inputs to only positive values
if Wi(3 + 3 * 1) (15) = '1' then
MULT A BUF(j + 2 * i) <= not(Wi(j + 3 * i)) + 1;
elsif Wi(j + 3 * i) (15) = '0' then
MULT A BUF(j + 2 * i) <= Wi(j + 3 * i);
end if;
if As(j + 2 * i) (15) = '1' then
MULT B BUF(j + 2 * i) <= not(As(j + 2 * i)) + 1;
elsif As(j + 2 * 1) (15) = '0' then
MULT B BUF(j + 2 * i) <= As(j + 2 * i);
end if;
elsif AB TOG = 'l1' then
-- adjust multiplier inputs to only positive values
if Wi(3 + 3 * 1) (15) = '1' then
MULT A BUF(j + 2 * i) <= not(Wi(j + 3 * i)) + 1;
elsif Wi(j + 3 * i) (15) = '0' then
MULT A BUF(j + 2 * i) <= Wi(j + 3 * i);
end if;
if Bs(j + 2 * i) (15) = '1' then
MULT B BUF(j + 2 * i) <= not(Bs(j + 2 * i)) + 1;
elsif Bs(j + 2 * i) (15) = '0' then
MULT B BUF(j + 2 * i) <= Bs(j + 2 * i);
end if;

-- assign multiplier inputs to calculate Cx[n]
if (1 = F_STAGES - 1) and (j = 1) then
if XnmM(0) > OFFSET then
MULT A BUF(+ 2 * i + 1)
<= XnmM (0) - OFFSET (15 downto 0);
elsif XnmM(0) <= OFFSET then
MULT A BUF(+ 2 * i + 1)

<= OFFSET (15 downto 0) - XnmM(O) ;
end if;
if C_VECT(15) = 'l1' then
MULT B BUF(j + 2 * i + 1) <= not(C_VECT) + 1;
elsif C _VECT(15) = '0O' then
MULT B BUF(j + 2 * i + 1) <= C_VECT;
end 1if;
end if;
end if;
end loop;
end loop;
end if;
end if;

-- load product register after multiplication is complete
if LOAD P = 'l' then
-- reset multiplier inputs
MULT A BUF <= (others => (others => '0'"));
MULT B BUF <= (others => (others => '0'));
-- for serial operation
if SorP = 0 then
-- calculating Wi
if CNT_TERMS < 3 then
-- Adjust product to be positive or negative depending on
-- multiplier input
if (As(MULT A TERMS - 1) (15) xor
Wi (MULT A TERMS + CNT STAGE - 1) (15)) = 'l' then
PRODUCT (CNT_TERMS - 1) <= not (P(0)) + 1;
elsif ((As(MULT_A TERMS - 1) (15) and
Wi (MULT A TERMS + CNT STAGE - 1) (15)) xor

(As (MULT_A TERMS - 1) (15) nor
Wi (MULT A TERMS + CNT STAGE - 1) (15))) = 'l' then
PRODUCT (CNT_TERMS - 1) <= P(0);
end if;
-- calculating Yi
elsif CNT_TERMS >= 3 then
-- Adjust product to be positive or negative depending on
-- multiplier input
if (Bs(MULT B TERMS - 1) (15) xor
Wi (MULT B TERMS - 1) (15)) = '1' then
PRODUCT (CNT _TERMS - 1) <= not(P(0)) + 1;
elsif ((Bs(MULT B TERMS - 1) (15) and
Wi (MULT B TERMS - 1) (15)) xor
(Bs (MULT B TERMS - 1) (15) nor
Wi (MULT B TERMS - 1) (15))) = 'l' then
PRODUCT (CNT_TERMS - 1) <= P(0);
end if;
end if;
-- for parallel operation
elsif SorP = 1 then
-- load
for 1 in 0 to F STAGES - 1 loop
for j in 0 to 1 loop
-- adjust product for the calculation of Wi

if AB_TOG = '0' then
if (As(j + 2 * i) (15) xor Wi(j + 3 * i + 1) (15))
= '1l'" then
PRODUCT (j + 2 * 1) <= not(P(j + 2 * 1)) + 1;

elsif ((As(j + 2 * i) (15) and Wi(j + 3* i + 1) (15)) xor
(As(j + 2 * 1) (15) nor Wi(j + 3 * 1 + 1) (15)))

= '1l'" then
PRODUCT (j + 2 * 1) <= P(j + 2 * i);
end if;
-- adjust product for the calculation of Yi
elsif AB TOG = 'l' then
if (Bs(j + 2 * 1) (15) xor Wi(j + 3 * i) (15)) = '1' then
PRODUCT (j + 2 * 1) <= not(P(j + 2 * 1)) + 1;
elsif ((Bs(j + 2 * 1) (15) and Wi(j + 3 * i) (15)) =xor
(Bs(j + 2 * i) (15) nor Wi(j + 3 * i) (15))) = '1' then
PRODUCT (j + 2 * 1) <= P(j + 2 * i);

end if;

-- adjust product for calculating Cx[n]

if (i = F STAGES - 1) and (j = 1) then
if XnmM(0) > OFFSET then

if MULT B BUF(j + 2 * i + 1) (15) = '0' then
PRODUCT (j + 2 * 1 + 1) <= P(jJ + 2 * 1 + 1);
elsif MULT B BUF(j + 2 * i + 1) (15) = '1' then
PRODUCT (j + 2 * i + 1) <= not(P(j + 2 * i + 1)) + 1;
end 1if;
elsif XnmM(0) <= OFFSET then
if MULT B BUF(j + 2 * i + 1) (15) = '0' then
PRODUCT (j + 2 * 1 + 1) <= not(P(jJ + 2 * i + 1)) + 1;
elsif MULT B BUF(j + 2 * i + 1) (15) = '1' then
PRODUCT(j + 2 * 1 + 1) <= P(J + 2 * i + 1);
end 1if;
end if;
end if;
end 1if;
end loop;
end loop;

end if;
end if;

78

-- load adder inputs
if LOAD ADD = 'l' then
-- for serial operation
if SorP = 0 then
-- acumulate terms for Wi
if CNT _TERMS = 2 then

if ACCUM TOG = 'O' then
ADD A BUF(0) <= PRODUCT (0);
ADD B BUF(0) <= PRODUCT (1) ;

elsif ACCUM TOG = 'l' then

if CNT_STAGE = 0 then
-- remove offset from input sample
ADD_A BUF (0)
<= ("0000000000000000™ & XnmM(0)) - OFFSET;
elsif CNT STAGE > 0 then
ADD A BUF(0) (15 downto 0) <= Yi(0);
if Yi(0) (15) = '0' then
ADD_A BUF(0) (31 downto 16) <= (others => '0');
elsif Yi(0) (15) '1' then
ADD A BUF (0) (31 downto 16) <= (others => '1");
end if;
end 1if;
ADD B _BUF (0) <= SUM(0) ;
end if;
-- accumulate terms for Yi
elsif CNT TERMS > 2 then

if ACCUM TOG = 'O' then
ADD A BUF(0) <= PRODUCT(2);
ADD B BUF(0) <= PRODUCT(3);

elsif ACCUM TOG = 'l' then
ADD A BUF(0) <= PRODUCT (4);
ADD B _BUF (0) <= SUM(0) ;

end if;

end 1if;

-- for parallel operation
elsif SorP = 1 then
for i in 0 to F STAGES - 1 loop
-- accumulate terms for Wi

if ACCUM _OUTPUT = '0O' then
if AB TOG = '0' then
if ACCUM _TOG = 'O' then
ADD_A BUF (i) <= PRODUCT (i + 1i);
ADD B BUF (i) <= PRODUCT(i + i + 1);
elsif ACCUM TOG = '1' then

-- remove offset from input sample
ADD A BUF (1) (15 downto 0)

<= ("0000000000000000™ & XnmM(0)) - OFFSET;
ADD B BUF (i) <= SUM(i);
end 1if;
-- accumulate terms
elsif AB TOG = 'l' then
ADD A BUF(i) <= PRODUCT (i + i);
ADD_B_BUF(i) <= PRODUCT (1 + i + 1);
end if;
elsif ACCUM_OUTPUT = 'l' then

PART S (i) (15 downto 0) <= Yi(i);
PART S (F_STAGES) <= PRODUCT (F_STAGES * 2);
end 1if;
end loop;

end if;

end if;

-- load sum register

if LOAD S =
-- reset

'l' then
adder inputs

ADD_A BUF <= (others => (others => '0"));
ADD_ B BUF <= (others => (others => '0"));

PART S

-- for se

if SorP =
-- acc
if CNT

if

<= (others => (others => '0'));
rial operation
0 then
umulating Wi terms
_TERMS = 2 then
accumulating Ak terms of Wi
ACCUM TOG = 'O' then
-- change to add stage input to Wi
ACCUM_TOG <= '1l"';
-- for integer scaling
if SCALE > 1 then
-- check if current acumulated value for Wi is positive
if S(0) (31) = '0' then
-- descale sum before placing in register
if S(0) = S(0) (14 + SCALE downto 0) then
SUM(0) (15 downto 0)
<= S5(0) (15 + SCALE - 1 downto SCALE - 1);
SUM(0) (15) <= '0"';
-- adjust sum for upper saturation
elsif S(0) > S(0) (14 + SCALE downto 0) then
SUM(0) (14 downto 0) <= (others => '1");
SUM(0) (31 downto 15) <= (others => '0'");

end if;
-- check if current acumulated value for Wi is negative
elsif S(0) (31) = '1l' then

-- descale sum before placing in register

if to_integer (unsigned(S(0) (31 downto 15 + SCALE) + 1))

= 0 then
SUM(0) (15 downto 0)
<= S(0) (15 + SCALE - 1 downto SCALE - 1);
SUM (0) (31 downto 15 + SCALE) <= (others => '1"');
-- adjust sum for lover saturation
elsif to_integer (unsigned(S(0) (31 downto 15 + SCALE)
/= 0 then
SUM(0) (14 downto 0) <= (others => '0'");
SUM(0) (31 downto 15) <= (others => '1");
end if;
end if;
-- for no integer scaling
elsif SCALE = 1 then
-- check if current sum is positive

if S(0) (31) = '0' then
-- store sum in register if good value
if S(0) = S(0) (14 downto 0) then

SUM(0) (15 downto 0) <= S(0) (15 downto 0);
-- adjust sum for upper saturation
elsif S(0) > S(0) (14 downto 0) then
SUM(0) (14 downto 0) <= (others => '1");
SUM(0) (31 downto 15) <= (others => '0");

end if;
-- check if current sum is negative
elsif S(0) (31) = '1l' then

-- store sum in register if good value
if to_integer (unsigned(S(0) (31 downto 15) + 1))
= 0 then
SUM(0) (15 downto 0) <= S(0) (15 downto 0);
-- adjust sum for lower saturation
elsif to_integer (unsigned(S(0) (31 downto 15) + 1))
/= 0 then
SUM(0) (14 downto 0) <= (others => '0'");

+

1))

79

els

SUM(0) (31 downto 15) <= (others => '1");
end if;
end if;
end 1if;
done calculating Wi
if ACCUM TOG = 'l' then
-- toggle acumulation toggle signals for next accumulation
ACCUM_TOG <= '0';
AB TOG <= '1';
-- set Wn DONE flag to notify conpletion of Wi calculation
Wn DONE <= '1';
-- check if current sum is positive
if S(0) (15) = '0' then
-- set Wn if good sum value
if ((ADD_A BUF(0) (15) nor ADD B BUF(0) (15)) xor
(ADD_A BUF (0) (15) xor ADD B BUF(0) (15))) = 'l1' then
Wn(0) <= S(0) (15 downto 0);
-- adjust Wn for upper saturation

elsif (ADD_A BUF(0) (15) and ADD B BUF(0) (15)) = 'l1' then
Wn (0) (14 downto 0) <= (others => '0");
Wn (0) (15) <= "'1"';
end if;
-- check if current sum is negative
elsif S(0) (15) = '1' then

-- set Wn for good sum value
if ((ADD_A BUF(0) (15) and ADD B BUF(0) (15)) xor
(ADD A BUF (0) (15) xor ADD B BUF(0) (15))) = '1' then
Wn (0) <= S(0) (15 downto 0);
-- adjust Wn for lower saturation

elsif (ADD A BUF(0) (15) nor ADD B BUF(0) (15)) = '1' then
Wn (0) (14 downto 0) <= (others => '1");
Wn (0) (15) <= '0";
end if;
end 1if;
end if;
-- calculating Yi
elsif CNT TERMS = 5 then

if

els

still calculating Yi
ACCUM_TOG = '0' then
-- toggle accumulation signal for next term
ACCUM_TOG <= '1"';
-- place sum in register
SUM (0) <= S(0);
done calculating Yi
if ACCUM_TOG = '1' then
-- toggle accumulation signals for next term
ACCUM_TOG <= '0";
AB TOG <= '0';
-- reset Wn DONE flag for next stage
Wn DONE <= '0';
CNT_TERMS <= 0;
-- increment stage counter
CNT_STAGE <= CNT_STAGE + 1;
-- check if there are more stages to calculate
if CNT_STAGE < F_STAGES - 1 then

-- for scaled integers

if SCALE > 1 then

-- check if current sum is positive

if S(0) (31) = '0' then
-- set Yi if sum is good
if S(0) = S(0) (14 + SCALE downto 0) then
Yi(0) <= S(0) (15 + SCALE - 1 downto SCALE - 1);
Yi(0) (15) <= '0"';

-- adjust Yi to upper saturation

80

81

elsif S(0) > S(0) (14 + SCALE downto 0) then

Yi(0) (14 downto O) <= (others => '1");
Yi(0) (15) <= '0"';
end 1if;
-- check if current sum is negative

elsif S(0) (31) = '1l' then
-- set Yi if sum is good
if to_integer (unsigned(S(0) (31 downto 15 + SCALE) + 1))

= 0 then
Yi(0) <= S(0) (15 + SCALE - 1 downto SCALE - 1);
Yi(0) (15) <= '1"';

-- adjust Yi to lower saturation
elsif to_integer (unsigned(S(0) (31 downto 15 + SCALE) + 1))

/= 0 then
Yi(0) (14 downto O0) <= (others => '0"');
Yi(0) (15) <= '1';
end if;
end if;

-- for no scaling
elsif SCALE = 1 then
-- check if current sum is positive

if S(0) (31) = '0' then
-- set Yi if sum is good
if S(0) = S(0) (14 downto 0) then
Yi(0) <= S(0) (15 downto 0);
Yi(0) (15) <= '0"';

-- adjust Yi to upper saturation
elsif S(0) > S(0) (14 downto 0) then

Yi(0) (14 downto 0) <= (others => '1");
Yi(0) (15) <= '0";
end if;
-- check if current sum is negative

elsif S(0) (31) = '1l' then
-- set Yi if sum is good
if to_integer (unsigned(S(0) (31 downto 15) + 1))

= 0 then
Yi(0) <= S(0) (15 downto 0);
Yi(0) (15) <= '1l"';

-- adjust Yi to lower saturation
elsif to integer (unsigned(S(0) (31 downto 15) + 1))

/= 0 then
Yi(0) (14 downto 0) <= (others => '0"');
Yi(0) (15) <= '1';
end if;
end if;

end 1if;
-- all filter stages are calculated
elsif CNT_STAGE = F _STAGES - 1 then
-- for integer scaling
if SCALE > 1 then
-- add scaling to temp output for comparison
TMP_OUT := S(0) + SCALED OFFSET;
-- set output for good value
if TMP_OUT = TMP_OUT (11 + SCALE - 1 downto 0) then
Yn BUF <= TMP OUT (11 + SCALE - 1 downto SCALE - 1);
elsif TMP_OUT > TMP OUT (11 + SCALE - 1 downto 0) then
-- adjust output for upper saturation
if TMP OUT(31) = '0' then
Yn_BUF <= (others => '1");
-- adjust output for lower saturation

elsif TMP_OUT(31) = 'l' then
Yn BUF <= (others => '0");
end if;

end 1if;

elsif SCALE = 1 then
-- add scaling to temp output for comparison
TMP_ OUT := S(0) + OFFSET;
-- set output for good value
if TMP_OUT = TMP_OUT (11 downto 0) then

Yn |

elsif
if

BUF <= TMPioUT(ll downto 0);
TMP_OUT > TMP OUT (11 downto 0) then
TMP OUT(31) = 'O' then

-- adjust output for upper saturation
Yn_ BUF <= (others => '1");

elsif TMP OUT(31) = 'l' then

-- adjust output for lower saturation
Yn_ BUF <= (others => '0'");

end if;
end if;

end 1if;
end if;
end if;
end 1if;

-- for parallel operation

elsif SorP = 1 then

-- still calculating Wi

if ACCUM OUTPUT =

'0' then

-- accumulating Ak terms

if AB_TOG = '0' then
if ACCUM TOG = 'O' then
-- reset accumulation toggle for next term

ACCUM_TOG

for i in

<= '1"';
0 to F_STAGES - 1 loop

-- for scaled integers
if SCALE > 1 then

check if current sum is positive

if S(i) (31) = '0' then
-- place sum in register if good value
if S(i) = S(i) (14 + SCALE downto 0) then
SUM (1) (15 downto 0)
<= S(i) (15 + SCALE - 1 downto SCALE - 1);
SUM (1) (15) <= '0";
-- adjust sum for upper saturation
elsif S(i) > S(i) (14 + SCALE downto 0) then
SUM (i) (14 downto 0) <= (others => '1");
SUM (i) (31 downto 15) <= (others => '0');
end 1if;
elsif S(i) (31) = '1' then
-- place descaled sum in register if good value
if to_integer (unsigned(S(i) (31 downto 15 + SCALE) + 1))
= 0 then
SUM(1i) (15 downto 0)
<= S(i) (15 + SCALE - 1 downto SCALE - 1);
SUM (i) (31 downto 15 + SCALE) <= (others => '1");
-- adjust sum for lower saturation
elsif to_integer (unsigned(S(i) (31 downto 15 + SCALE) + 1))
/= 0 then
SUM (i) (14 downto 0) <= (others => '0");
SUM (i) (31 downto 15) <= (others => '1");
end if;
end 1if;
-- no integer scaling
elsif SCALE = 1 then
-- check if current sum is positive
if S(i) (31) = '0' then

-- place sum in register if good value
if S(i) = S(i) (14 downto 0) then

SUM (i) (15 downto 0) <= S (i) (15 downto 0);
SUM (i) (15) <= '0";

-- adjust sum for upper saturation

elsif S(i) > S(i) (14 downto 0) then
SUM (i) (14 downto 0) <= (others => '1"'");
SUM (i) (31 downto 15) <= (others => '0');

end 1if;
-- check if current sum is negative
elsif S(i) (31) = '1' then
if to_integer (unsigned(S(i) (31 downto 15) + 1)) = 0 then

SUM(1i) (15 downto 0) <= S(i) (15 downto 0);
SUM(1i) (31 downto 15) <= (others => '1");
-- adjust sum for llower saturation
elsif to integer (unsigned(S(i) (31 downto 15) + 1)) /= 0 then
SUM(1i) (14 downto 0) <= (others => '0'");
SUM (i) (31 downto 15) <= (others => '1");
end if;
end if;
end if;
end loop;
-- done calculating Wn
elsif ACCUM TOG = 'l' then
-- reset toggle signals for next accumulation
ACCUM _TOG <= '0';
AB TOG <= 'l';
-- set Wn DONE flag to show Wi calculation is complete
Wn DONE <= '1';
-- store Wi for each stage in register
for 1 in 0 to F_STAGES - 1 loop
-- check if sum is positive
if S(i) (15) = '0' then
-- good Wi value
if ((ADD_A BUF (i) (15) nor ADD B BUF (i) (15)) xor
(ADD_A BUF (i) (15) xor ADD B BUF (i) (15))) = 'l' then
Wn (i) <= S(i) (15 downto 0);
-- adjust Wi for upper saturation

elsif (ADD A BUF (i) (15) and ADD B BUF (i) (15)) = '1' then
Wn (i) (14 downto 0) <= (others => '0");
Wn (i) (15) <= '1l';
end 1if;
-- check if sum is negative
elsif S(i) (15) = '"1' then

-- good Wi value
if ((ADD_A BUF (i) (15) and ADD B BUF (i) (15)) xor
(ADD_A BUF (i) (15) xor ADD B BUF (i) (15))) = 'l1' then
Wn (i) <= S(i) (15 downto 0);
-- adjust Wi for lower saturation

elsif (ADD A BUF (i) (15) nor ADD B BUF (i) (15)) = '1' then
Wn (i) (14 downto 0) <= (others => '1");
Wn (i) (15) <= '0";
end if;
end 1if;
end loop;
end if;
-- calculating Yi
elsif AB TOG = 'l' then

-- reset toggle signals for next accumulation
AB TOG <= '0';
ACCUM_OUTPUT <= '1"';
-- reset Wn_DONE flag for next calculation sequence
Wn DONE <= '0';
-- store Yi in register
for 1 in 0 to F _STAGES - 1 loop
-- for integer scaling

83

if SCALE > 1 then
-- if current sum is positive

if s(i) (31) = '0' then
-- place Yi in register for good value
if S(i) = S(i) (14 + SCALE downto 0) then
Yi(i) <= S(i) (15 + SCALE - 1 downto SCALE - 1);
Yi(i) (15) <= '0';

-- adjust Yi for upper saturation
elsif S(i) > S(i) (14 + SCALE downto 0) then

Yi(i) (14 downto 0) <= (others => "'1");
Yi(i) (15) <= '0"';
end if;
-- check if current sum is negative
elsif S(i) (31) = '"1' then

-- place Yi in register if good value
if to_integer (unsigned(S(i) (31 downto 15 + SCALE) + 1))

= 0 then
Yi(i) <= S(i) (15 + SCALE - 1 downto SCALE - 1);
Yi(i) (15) <= '1';

-- adjust sum for lower saturation
elsif to integer (unsigned(S(i) (31 downto 15 + SCALE) + 1))

/= 0 then
Yi(i) (14 downto O0) <= (others => '0"');
Yi(i) (15) <= '1';
end 1if;
end if;

-- for no integer scaling
elsif SCALE = 1 then
-- check if current sum value is positive

if S(i) (31) = '0' then
-- place Yi in register if good value
if S(i) = S(i) (14 downto 0) then
Yi(i) <= S(i) (15 downto 0);
Yi(i) (15) <= '0"';

-- adjust Yi for upper saturation
elsif S(i) > S(i) (14 downto 0) then

Yi(i) (14 downto 0) <= (others => '1");
Yi(i) (15) <= '0";
end if;
—-- check if current sum value is positive
elsif S(i) (31) = '"1' then
-- place Yi in register if good value
if to_integer (unsigned(S(i) (31 downto 15) + 1)) = 0 then
Yi(i) <= S(i) (15 downto O0);
Yi(i) (15) <= '1"';

-- adjust Yi for lower saturation
elsif to integer(unsigned(S(i) (31 downto 15) + 1)) /= 0 then

Yi(i) (14 downto 0) <= (others => '0"');
Yi(i) (15) <= '1l';
end if;
end if;
end 1if;
end loop;
end if;
-- done calculating output
elsif ACCUM_OUTPUT = 'l'" then

ACCUM _OUTPUT <= '0';
-- for integer scaling
if SCALE > 1 then
-- apply offset to temp output for comparison
TMP_OUT := S(9) + SCALED OFFSET;
-- set output if good value
if TMP_OUT = TMP OUT (11 + SCALE - 1 downto 0) then
Yn BUF <= TMP OUT (11 + SCALE - 1 downto SCALE - 1);

elsif TMP_OUT > TMP OUT (11 + SCALE - 1 downto 0) then
-- adjust Yi for upper saturation
if TMP_OUT(31) = '0' then
Yn_ BUF <= (others => '1");
-- adjust Yi for lower saturation

elsif TMP_OUT(31) = 'l' then
Yn_ BUF <= (others => '0'");
end if;
end if;

-- for no integer scaling
elsif SCALE = 1 then
-- apply offset to temp output for comparison
TMP_ OUT := S(9) + OFFSET;
-- set output if good value
if TMP_OUT = TMP_ OUT (11 downto 0) then
Yn BUF <= TMP OUT (11l downto 0);
elsif TMP OUT > TMP OUT (1l downto 0) then
-- adjust Yi for upper saturation

if TMP OUT(31) = '0' then
Yn BUF <= (others => '1");
elsif TMP_OUT(31) = 'l' then

-- adjust Yi for lower saturation
Yn BUF <= (others => '0"'");
end 1if;
end if;
end if;
end 1if;
end if;
end if;

-- set flag to signal output has been calculated

if GOT_OUTPUT = 'l'" then
OUTPUT DONE <= 'l
end if;
end if;

end process sync_regs;

This process synchronizes state changes for the FSM.

sync_proc : process(NS, CLK, RST) is
begin
-- asynchronous reset
if RST = '1l' then
PS <= IDLE;
elsif rising edge (CLK) then
PS <= NS;
end if;

end process sync_proc;

This process contains the combinatorial logic used for state changes of the
FSM and the various other operations carried out during DSP calculations.

comb_proc : process(PS, EN, SAMP DONE, CNT_TERMS) is
begin
case PS is
-- state, idle/initialization
when IDLE =>
-- set flag to initialize registers and signals
CLR REGS <= '1';
-- initialize FSM flags

85

LOAD MULT <= '0';
LOAD P <= '0';
LOAD ADD <= '0';
LOAD S <= '0';
GOT OUTPUT <= '0';

-- change state to wait for a sample when system enable is

if EN = '1' then
NS <= WAIT4Xn;
elsif EN = '1l' then
NS <= IDLE;
end if;

-- state, wait for sample from ADC
when WAIT4Xn =>
-- clear registers and signals
CLR REGS <= '1';
-- assign remaining flags of FSM
LOAD MULT <= '0";
LOAD P <= '0';
LOAD ADD <= '0';
LOAD S <= '0';
GOT_OUTPUT <= '0';
-- cange to the multiply state after sample acquisition

if SAMP DONE = 'O' then
NS <= WAIT4Xn;

elsif SAMP_DONE = '1' then
NS <= MULT;

end if;

-- state, multiply filter terms
when MULT =>
-- set flag to load multiplier inputs
LOAD MULT <= '1l';
-- assign remaining flags of FSM
CLR_REGS <= '0';
LOAD P <= '0';
LOAD ADD <= '0';
LOAD S <= '0';
GOT_OUTPUT <= '0';
-- go to state that loads product register
NS <= MULT_DUM;

-- state, dummy for MULT

when MULT DUM =>
LOAD_ADD <= '0';
CLR_REGS <= '0';
LOAD_ MULT <= '0";
LOAD P <= '0';
LOAD S <= '0';
GOT_OUTPUT <= '0';
NS <= GET_P;

-- state, load product register
when GET P =>

-- set flag to load product register

LOAD P <= 'l';

-- assign remaining flags of FSM

CLR_REGS <= '0';

LOAD_ MULT <= '0";

LOAD ADD <= '0';

LOAD S <= '0';

GOT_OUTPUT <= '0';

if SorP = 0 then

-- continue multiplying terms

received

86

if (CNT_TERMS /= 2) and (CNT TERMS /= 5) then

NS <= MULT;

-- done multiplying terms, begin accumulation

elsif (CNT_TERMS = 2)
NS <= P_DUM;
end if;
elsif SorP = 1 then
NS <= P_DUM;
end if;

-- state, dummy for GET P
when P _DUM =>
LOAD_ADD <= '0';
CLR _REGS <= '0';
LOAD MULT <= '0";
LOAD P <= '0';
LOAD S <= '0';
GOT _OUTPUT <= '0';
NS <= ACCUM;

or (CNT_TERMS = 5) then

-- state, accumulate filter terms

when ACCUM =>

-- set flag to load adder
LOAD ADD <= '1';

-- assign remaining flags
CLR REGS <= '0';

LOAD MULT <= '0";
LOAD P <= '0';

LOAD S <= '0';
GOT_OUTPUT <= '0';

inputs

of FSM

-- for serial operation go to the state that loads the

-- accumulation register
if SorP = 0 then

NS <= A_DUM;
-- for parallel operation
-- calculations made with
elsif SorP = 1 then

NS <= A DUM;
end if;

-- state, dummy for ACCUM
when A DUM =>
-- set flag to load adder
LOAD_ADD <= '0';
-- assign remaining flags
CLR_REGS <= '0';
LOAD_ MULT <= '0";
LOAD P <= '0';
LOAD S <= '0';
GOT OUTPUT <= '0';

go to the dummy state needed for
the 32-bit Carry-Save accumulator

inputs

of FSM

-- go to the state that loads the accumulation register

NS <= GET S;

-- state, loads accumulation
when GET S =>

register

-- set flag that loads the accumulation register

LOAD 5 <= '1';

-- assign remaining flags of FSM

CLR_REGS <= '0';

LOAD MULT <= '0";
LOAD P <= '0';
LOAD_ADD <= '0';
GOT_OUTPUT <= '0';

-- for serial operation

87

if SorP = 0 then
if CNT _TERMS = 2 then
-- still accumulating Wi
if ACCUM TOG = 'O' then
NS <= ACCUM;
-- done accumulating Wi

elsif ACCUM TOG = 'l' then
NS <= MULT;
end if;

elsif CNT_TERMS = 5 then
-- still accumulating Yi
if ACCUM TOG = 'O' then
NS <= ACCUM;
-- done accumulating Yi
elsif ACCUM TOG = 'l' then
-- begin multiplications for next stage
if CNT STAGE < F STAGES - 1 then
NS <= MULT;
-- output done
elsif CNT STAGE = F STAGES - 1 then
NS <= OUT_DUM1;
end if;
end if;
end if;
-- for parallel operation
elsif SorP = 1 then

if ACCUM_OUTPUT = '0' then
if ACCUM TOG = 'O' then
NS <= ACCUM;
elsif ACCUM TOG = 'l' then
NS <= MULT;
end if;
elsif ACCUM _OUTPUT = 'l1' then
NS <= OUT_DUM1;
end if;
end if;

-- state, first dummy for output
when OUT_DUM1 =>

LOAD ADD <= '0';

CLR_REGS <= '0';

LOAD_MULT <= '0";

LOAD P <= '0';

LOAD S <= '0';

GOT_OUTPUT <= '0';

NS <= OUT_DUM2;

-- state, second dummy for output
when OUT DUM2 =>

LOAD_ADD <= '0';

CLR_REGS <= '0';

LOAD MULT <= '0";

LOAD P <= '0';

LOAD_ S <= '0';

GOT_OUTPUT <= '0';

NS <= SET_OUTPUT;

-- state, signals that the final output value has been set

when SET OUTPUT =>
-- flag to sync completion flag, OUTPUT_DONE
GOT OUTPUT <= '1';
-- assign remaining flags of FSM
CLR REGS <= '0';
LOAD MULT <= '0";

88

LOAD P <= '0"';

LOAD ADD <= '0';

LOAD S <= '0';

-- go to state to wait for next sample from ADC
NS <= WAIT4Xn;

when others =>
NS <= IDLE;

end case;
end process comb proc;
end behavioral;

DSP_BB.vhd

—-- Company: Cal Poly

-- Engineer: Joseph Waddell

-- Design Name: DSP Hardware Generator

-— Module Name: DSP_BB - behavioral

-- Project Name: senior project

-- Description: DSP Hardware Generator generates and organizes arithmetic

-= components for filter calculations.
library ieee;

use ieee.numeric std.all;

use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;

library work;
use work.DEFINITIONS.all;
use work.CTRL CONSTANTS.all;

entity DSP BB is
port (MULT_A : in vect 16x20;
MULT B : in vect 16x20;
ADD A : in vect 32x20;
ADD B : in vect 32x20;

PART S : in vect 32x20;

P : out vect 32x20;

S : out vect 32x20;

As : out vect 16x20;

Bs : out vect 16x30;

C_VECT : out std logic_vector (15 downto 0));

end DSP BB;

architecture behavioral of DSP_BB is
-- carry-out bit from adder

signal ADD CO : std logic vector (8 downto 0) := (others => '0'");
signal CO : std logic := '0';
begin

-- generate hardware for NORMAL.vhd module

normal : 1f STRUCTURE = 0 generate

mult gen : for i in 0 to F_LENGTH generate
-- generate multipliers for serial operation
s_mult gen : if SorP = 0 generate
mult0 : if i = 0 generate
SA_choose : if MULTIPLIER = 0 generate
SA s mult : SA MULT 16BIT
port map(MULT A(i), MULT B(i), P(i));
end generate SA choose;

booth_ choose : if MULTIPLIER = 1 generate
booth s mult : BOOTH_MULT 16BIT
port map(MULT A(i), MULT B(i), P(i));
end generate booth choose;

MULT18X18 choose : if MULTIPLIER = 2 generate
MULT18X18 s mult : MULT18X18
port map(MULT A(i), MULT B(i), P(i));
end generate MULT18X18 choose;
end generate multO;
end generate s _mult gen;

-- generate multipliers parallel operation

p mult gen : if SorP = 1 generate
SA choose : if MULTIPLIER = 0 generate
SA p mult : SA MULT 16BIT

port map(MULT A(i), MULT B(i), P(i));
end generate SA choose;

booth choose : if MULTIPLIER = 1 generate
booth p mult : BOOTH_MULT 16BIT
port map(MULT A(i), MULT B(i), P(i));
end generate booth choose;

MULT18X18 choose : if MULTIPLIER = 2 generate
MULT18X18 p mult : MULT18X18
port map(MULT A(i), MULT B(i), P(i));
end generate MULT18X18 choose;
end generate p mult gen;
end generate mult gen;

-- generate adder for serial operation

s_add_gen : if SorP = 0 generate
RC_add gen : if ADDER = 0 generate
RC_add : RC_ADDER_32BIT

port map(ADD A(0), ADD B(0), CO, S(0))
end generate RC_add gen;

CSe _add gen : if ADDER = 1 generate

CSe_add : CSe ADDER 32BIT

port map(ADD_A(0), ADD B(0), CO, S(0));
end generate CSe add gen;

CLa_add gen : if ADDER = 2 generate
CLa_add : CLa ADDER 32BIT
port map(ADD_A(0), ADD B(0), CO, S(0));
end generate CLa_add_gen;
end generate s _add gen;

-- generate accumulator for parallel operation
p_add gen : 1if SorP = 1 generate

CSa_accum : CSa ACCUM 32BIT

port map(PART S, CO, S(0));
end generate p_add gen;

-- change integer filter coefficients to vectors
init _coeffs n : for 1 in 0 to 19 generate
init Bs n : if 1 < M generate
Bs (i) <= std logic vector(to_signed(Bk(i), Bs(i)'length));
end generate init Bs_n;
zero_Bs n : if i >= M generate
Bs (i) <= (others => '0"');
end generate zero Bs n;

init As n : if 1 < N generate
As (i) <= std logic vector(to signed(Ak(i), As(i)'length));
end generate init As n;
zero As n : if 1 >= N generate
As (1) <= (others => '0');
end generate zero_ As _n;
end generate init coeffs n;
end generate normal;

-- generate hardware for CASCADE.vhd module
cascade : if STRUCTURE = 1 generate
-- generate multipliers for serial operation
mult gen : for 1 in 0 to F_STAGES * 2 generate
s_mult gen : if SorP = 0 generate
mult0 : if 1 = 0 generate
SA_choose : if MULTIPLIER = 0 generate
SA s mult : SA MULT 16BIT
port map(MULT A(i), MULT B(i), P(i));
end generate SA choose;

booth choose : if MULTIPLIER = 1 generate
booth s mult : BOOTH MULT 16BIT
port map(MULT A(i), MULT B(i), P(i));
end generate booth choose;

MULT18X18 choose : if MULTIPLIER = 2 generate
MULT18X18 s mult : MULT18X18
port map(MULT A(i), MULT B(i), P(i));
end generate MULT18X18 choose;
end generate multO;
end generate s mult gen;

-- generate multipliers for parallel operation

p_mult gen : if SorP = 1 generate
SA_choose : if MULTIPLIER = 0 generate
SA p mult : SA MULT 16BIT

port map(MULT A(i), MULT B(i), P(i));
end generate SA choose;

booth choose : if MULTIPLIER = 1 generate
booth p mult : BOOTH_MULT 16BIT
port map(MULT A(i), MULT B(i), P(i));
end generate booth choose;

MULT18X18 choose : if MULTIPLIER = 2 generate
MULT18X18 p mult : MULT18X18
port map(MULT A(i), MULT B(i), P(i));
end generate MULT18X18 choose;
end generate p mult gen;
end generate mult gen;

-- instantiations for adders used during serial and parallel operation
add gen : for i in 0 to F STAGES - 1 generate
RC_choose : if ADDER = 0 generate
RC_serial : 1f SorP = 0 generate
RC_add0 : if i = 0 generate
RC s add : RC_ADDER 32BIT
port map(ADD_A(i), ADD B(i), ADD _CO(i), S(i))
end generate RC_addO;
end generate RC_serial;

RC _parallel : if SorP = 1 generate
RC_p_add : RC_ADDER 32BIT

92

port map(ADD _A(i), ADD B(i), ADD _CO(i), S(i))
end generate RC parallel;
end generate RC choose;

CSe choose : if ADDER = 1 generate
CSe serial : if SorP = 0 generate
CSe_add0 : if i = 0 generate
CSe_s_add : CSe ADDER 32BIT
port map(ADD A (i), ADD B(i), ADD CO(i), S(i));
end generate CSe add0;
end generate CSe serial;

CSe _parallel : 1f SorP = 1 generate
CSe_p_add : CSe ADDER 32BIT
port map(ADD A (i), ADD B(i), ADD CO(i), S(i));
end generate CSe parallel;
end generate CSe choose;

CLa _choose : if ADDER = 2 generate
CLa_serial : if SorP = 0 generate
CLa_add0 : if i = 0 generate
CLa_s_add : CLa_ADDER 32BIT
port map(ADD A(i), ADD B(i), ADD CO(i), S(i));
end generate CLa add0;
end generate CLa_serial;

CLa_parallel : if SorP = 1 generate
CLa_p_add : CLa_ADDER 32BIT
port map(ADD A(i), ADD B(i), ADD CO(i), S(i));
end generate CLa parallel;
end generate CLa_choose;
end generate add gen;

-- instantiation for 32-bit Carry-Save accumulator used
-- during parallel operation
p_accum _gen : if SorP = 1 generate
CSa_accum : CSa_ACCUM 32BIT
port map(PART_ S, CO, S(9));
end generate p_accum_gen;

-- convert of Ak and Bk terms from integers to vectors

s_coeffs : if SorP = 0 generate
init s coeffs : for i in 0 to F STAGES * 5 - 1 generate
init Bs_S : if 1 < F_STAGES * 3 generate

Bs (i) <= std logic vector(to_signed(Bki_S(i), Bs (i) 'length));
end generate init Bs_ S;

init As : if 1 >= F STAGES * 3 generate
As(i - F STAGES * 3) <= std logic vector(
to _signed(Aki(i - F_STAGES * 3),
As (i - F_STAGES * 3)'length));
end generate init As;
end generate init s coeffs;
end generate s _coeffs;

p_coeffs : 1if SorP = 1 generate
init p coeffs : for 1 in 0 to F STAGES * 4 - 1 generate
init Bs_P : if 1 < F_STAGES * 2 generate

Bs (i) <= std logic vector(to_signed(Bki_ P(i), Bs(i) 'length));
end generate init Bs P;

init As : if 1 >= F STAGES * 2 generate
As (i - F_STAGES * 2) <= std logic vector(
to signed(Aki(i - F _STAGES * 2),

As(i - F_STAGES * 2)'length));
end generate init As;
end generate init p coeffs;
end generate p_ coeffs;

C _VECT <= std logic vector(to signed(C, C VECT'length));
end generate cascade;

-- hardware generation for CASC DFI.vhd module

-- casc_gen : if STRUCTURE = 2 generate

--= mult gen : for i in 0 to F_LENGTH generate

-- s mult gen : if SorP = 0 generate

- mult0 : if i = 0 generate

- SA_choose : if MULTIPLIER = 0 generate
-- SA_s mult : SA MULT 16BIT

-- port map(MULT A(i), MULT B(i), P(i));
-= end generate SA choose;

- booth choose : if MULTIPLIER = 1 generate
-- booth s mult : BOOTH MULT 16BIT

- port map(MULT A(i), MULT B(i), P(i));
-- end generate booth choose;

-- MULT18X18 choose : if MULTIPLIER = 2 generate
-- MULT18X18 s mult : MULT18X18

-- port map(MULT A(i), MULT B(i), P(i));

-- end generate MULT18X18 choose;

-= end generate multO;

-- end generate s mult gen;

-= p mult gen : if SorP = 1 generate
-- SA_choose : if MULTIPLIER = 0 generate
-- SA p mult : SA MULT 16BIT

- port map(MULT A(i), MULT B(i), P(i));
-- end generate SA choose;

-= booth choose : if MULTIPLIER = 1 generate
- booth p mult : BOOTH_MULT 16BIT

- port map(MULT A(i), MULT B(i), P(i));
-- end generate booth choose;

-- MULT18X18 choose : if MULTIPLIER = 2 generate
-- MULT18X18 p mult : MULT18X18

-- port map(MULT A(i), MULT B(i), P(i));

-- end generate MULT18X18 choose;

- end generate p mult gen;

-- end generate mult gen;

- s_add_gen : if SorP = 0 generate
-= RC_add gen : if ADDER = 0 generate
-- RC_add : RC_ADDER 32BIT

—— port map(ADD_A(0), ADD B(0), CO, S(0));
- end generate RC_add gen;

-= CSe_add gen : if ADDER = 1 generate

-= CSe_add : Cse ADDER 32BIT

-- port map(ADD A(0), ADD B(0), CO, S(0));
- end generate CSe_add_gen;

-= CLa_add gen : if ADDER = 2 generate

-- CLa_add : CLa_ ADDER 32BIT

-= port map(ADD_A(0), ADD B(0), CO, S(0));
-- end generate CLa add gen;

93

-- end generate s_

--= p_add gen .
--= CSa_accum

add_gen;

f SorP = 1 generate
CSa_ACCUM_32BIT

-- port map(PART S, CO, S(0));

-= end generate p_

-- init coeffs c
-= init Bs_c
-- Bs (i) <=
-= end generate
-= zero Bs c
-- Bs (i) <=
-= end generate
-= init As c
-- As (i) <=
-= end generate
-= zero As C
-- As (1) <=
-= end generate
- end generate in

-- end generate casc_

end behavioral;

SAMPLE_CTRL.vhd

-— Company:
-- Engineer:

-- Design Name:
-- Module Name:
-- Project Name:
-- Description:

library ieee;

use ieee.numeric std.
use ieee.std logic 11
use ieee.std logic un

library work;
use work.DEFINITIONS.

add gen;

for 1 in 0 to F_STAGES * 3 - 1 generate
if i < F_STAGES * 3 generate
std logic vector(to_signed(Bki (i), Bs(i)'length));
init Bs_c;
if i >= F STAGES * 3 generate
(others => '0");
zero Bs c;
if 1 < F_STAGES * 2 generate
std logic vector(to_signed(Aki (i), As(i)'length));
init As c;
if i >= F STAGES * 2 generate
(others => '0"'");
zero As C;
it coeffs c;
gen;

Cal Poly
Joseph Waddell

Sample Control

SAMPLE CTRL - behavioral

senior project

Sample Control module controls sampling timing for the
ADC and DAC.

all;
64.all;
signed.all;

all;

use work.CTRL CONSTANTS.all;

entity SAMPLE CTRL is
port (CLK

RST

EN

MISO

Yn

OUTPUT DONE

ADC SCLK

DAC_SCLK

Cs

SYNC

MOSTI

Xn

XnmM

YnmN

SAMP DONE
end SAMPLE CTRL;

in std logic;

in std logic;

in std logic;

in std logic;

in std logic_vector (11 downto 0);
in std logic;

out std logic;

out std logic;

out std logic;

out std logic;

out std logic;

out std logic vector (1l downto 0);
out vect 16x20;

out vect 16x20;

out std logic);

94

architecture behavioral of SAMPLE CTRL is

-- FSM states declarations

type state type is (IDLE, SAMP START, SAMPLE, HOLD);

signal PS, NS : state type;

-- sampling clock timing

signal SAMP_CLK : std _logic := '0';

-- flag to start sampling

signal GET_SAMP : std _logic := '0';

signal NEW_SAMP : std _logic := '0';

-- buffer for SAMP_DONE output flag

signal SAMP_DONE_INT : std logic := '0';

-- enable for read sequences

signal RD_EN : std Logic := '0';

-- flag to sync RD _EN output

signal RD : std Logic := '0';

-- enable for write sequences

signal WRT_EN : std Logic := '0';

-- flag to sync WRT EN output

signal WRT : std Logic := '0';

-- flag to initialize sampling sequence

signal FIRST_SAMP : std logic := '1l';

signal SET FIRST : std logic := '0';

-- preset and clear signals for shift registers

signal PRE : std logic := '0';

signal CLR : std logic := '0';

-- shift register buffers for ADC input and DAC output signals
signal Xn SFT : std logic vector (15 downto 0) := (others => '0'");
signal Yn SFT : std logic vector (15 downto 0) (others => '0");
-—- ADC input buffer

signal Xn TMP : std logic_vector (11 downto 0)
-- output shift register buffer

signal YnmN_INT : vect 16x20 := (others => (others => '0'));

(others => '0");

begin
-- buffer ADC input and DAC output do sent to shift registers
Xn_SFT <= "0000" & Xn_TMP;
Yn SFT <= "0000" & ¥Yn;
-- assign shift register clear signal
CLR <= RST;
-- assign SAMP DONE output flag
SAMP_DONE <= SAMP DONE_INT;
-- output input from ADC for filtering
Xn <= Xn_ TMP;
-- output shifted DAC output values for filtering
YnmN <= YnmN_INT;

-- set timing for sampling
sample_clk : CLK_DIV port map(SAMP_DIV, CLK, SAMP CLK);

-- ADC and DAC component control

convert : CONVERTER CTRL port map(CLK, RST, RD EN, WRT EN, MISO,
YnmN_INT (0) (11 downto 0), ADC SCLK,
DAC_SCLK, CS, SYNC,MOSI, Xn TMP,
SAMP_DONE_INT);

-- shift register for ADC inputs
shift x : SIPO SHR
port map(SAMP DONE INT, CLR, PRE, Xn SFT, XnmM);

-- shift register for DAC outputs

shift y : SIPO SHR
port map(OUTPUT_DONE, CLR, PRE, Yn SFT, YnmN_INT);

-- process to trigger sampling sequence
samp trig : process(CLK, RST) is
begin

-- asynchronous reset
if RST = '1l' then
GET_SAMP <= '0';
elsif rising edge(CLK) then

if (SAMP CLK) = 'l1' then
if FIRST SAMP = 'O' then
GET SAMP <= 'l';
elsif FIRST_SAMP = 'l' then
if EN = '1' then
GET SAMP <= 'l';
end if;
end 1if;
elsif SAMP_CLK = '0O' then
GET SAMP <= '0';
end 1if;
if (SAMP CLK and SAMP DONE INT) = 'l1' then
NEW SAMP <= '0';
elsif SAMP CLK = '0O' then
NEW SAMP <= '1';
end if;
end 1if;

end process samp_ trig;

-- FSM, sampling sequence control

-- synchronous process for state changes

sync_proc : process(NS, CLK, RST) is
begin
-- asynchronous reset
if RST = '1' then
PS <= IDLE;

elsif rising edge (CLK) then
-- sync RD_EN based on RD flag

if RD = '0' then
RD EN <= '0';
elsif RD = '1l' then
RD EN <= '1';
end if;

-— sync WRT_EN based on WRT flag

if WRT = '0' then
WRT EN <= '0';
elsif WRT = '1l' then
WRT EN <= 'l';
end if;

-- set FIRST SAMP flag to 0 after first sample

if SAMP DONE_INT = 'l' then

if FIRST _SAMP = '1' then
FIRST SAMP <= '0';

end if;

-- reset FIRST SAMP flag

elsif SET_FIRST = 'l' then
FIRST SAMP <= '1';

end if;

PS <= NS;

end if;

end process sync_proc;

-- combinational process for state logic
comb proc : process(PS, EN, GET SAMP, FIRST SAMP, SAMP DONE INT, NEW SAMP) is
begin
case PS 1is
-- state, idle/initialization
when IDLE =>
-- initialize read and write enables and FIRST SAMP flag
RD <= '0"';
WRT <='0";
SET FIRST <= 'l';
if EN = '1l' then
-- go to sampling state on system enable
NS <= SAMP START;
else
NS <= IDLE;
end if;

when SAMP START =>
RD <= '0';
WRT <= '0";
SET_FIRST <= '0';
-- wait for GET_ SAMP flag to begin sampling sequence

if GET_SAMP = '0' then
NS <= SAMP_START;
elsif GET_SAMP = 'l' then
NS <= SAMPLE;
end if;

-- state, sampling acquizition takes place in this state
when SAMPLE =>
SET FIRST <= '0";
if SAMP DONE INT = '0O' then
-- enable reading from ADC on GET SAMP flag assertion
RD <= '1";
NS <= SAMPLE;

elsif SAMP DONE INT = '1' then
RD <= '0"';
-- go to hold state when sample is acquired
NS <= HOLD;
end if;
if FIRST SAMP = '0'" then
WRT <= '1l';
elsif FIRST SAMP = 'l' then
WRT <= '0";
end 1if;

-- state, hold sample till next sampling interval

when HOLD =>
-- enabe DAC to output on SAMP DONE flag assertion (GET_SAMP = 0)
WRT <= '1l";
-- stop ADC read sequence

RD <= '0';
SET_FIRST <= '0";
if NEW SAMP = 'l' then
if GET_SAMP = '1l' then

-- go back for next sample on GET_ SAMP flag assertion
NS <= SAMPLE;

elsif GET_SAMP = '0O' then
NS <= HOLD;
end 1if;
elsif NEW_SAMP = '0O' then
NS <= HOLD;

end if;

when others =>
NS <= IDLE;

end case;

end process;
end behavioral;

CONVERTER_CTRL.vhd

—-- Company: Cal Poly

-- Engineer: Joseph Waddell

-- Design Name: ADC/DAC Control

-- Module Name: CONVERTER_CTRL - behavioral

-- Project Name: senior project

-- Description: ADC/DAC Control module controls SPI interfaces to the

-= ADC and DAC.
library ieee;

use ieee.numeric std.all;

use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;

library work;
use work.DEFINITIONS.all;

entity CONVERTER CTRL is

port (CLK : in std logic;
RST : in std logic;
RD_EN : in std logic;
WRT EN : in std logic;
MISO : in std logic;
Yn : in std logic vector (1l downto 0);
ADC_SCLK : out std logic;
DAC_SCLK : out std logic;
Cs : out std logic;
SYNC : out std logic;
MOST : out std logic;
Xn : out std logic vector (11 downto 0);
SAMP DONE : out std logic);

end CONVERTER CTRL;

architecture behavioral of CONVERTER CTRL is

-- FSM states declarations for ADC

type state type ADC is (IDLE ADC, SET_ADC, RUN ADC, SET SAMP);
signal PS ADC, NS ADC : state type ADC;

-- FSM states declarations for DAC

type state type DAC is (IDLE_DAC, SET _DAC, RUN DAC);

signal PS DAC, NS DAC : state type DAC;

-- control bits for DAC

constant CTRL : std logic vector (3 downto 0) := "0000";

-- store input from ADC

signal RD REG : std logic_vector (15 downto 0) := "0000000000000000";
-- store output to send to DAC

signal WRT REG : std logic vector (15 downto 0) := "0000000000000000";
-- temporary siganl to hold clock signal for ADC

signal ADC_SCLK TMP : std logic := '0';

-- temporary siganl to hold clock signal for DAC

signal DAC_SCLK TMP : std logic := '0';

-- integer to keep track of RD REG data shifts

signal RD CNT : integer range 0 to 15 := 0;

-- integer to keep track of WRT REG data shifts

signal WRT _CNT : integer range 0 to 15 := 0;
-- flag to enable RD CNT incrementation and reset

signal RD CNT EN : std logic := '0';

-- flag to enable WRT CNT incrementation and reset
signal WRT_CNT EN : std logic := '0';

-- flag to load WRT_REG with output data for DAC
signal LOAD ¥Yn : std logic := '0';

-- flag to set Xn with input data from ADC

signal SET Xn : std logic := '0';

-- flag to set SAMP DONE output

signal GOT SAMP : std logic := '0';

-- This module contains a total of 6 processes. The first 3 control operation of
-- the ADC and next 3 control DAC operation.

-- signal assignment for output data to DAC
MOSTI <= WRT_REG(15);

-- signal assignment for ADC clock

ADC SCLK <= ADC_SCLK TMP;

-- signal assignment for DAC clock

DAC SCLK <= DAC_SCLK_ TMP;

-- ADC clock timing at 12.5 MHz

ADC clk : CLK DIV port map(2, CLK, ADC_ SCLK TMP);
-— DAC clock timing at 25 MHz
DAC clk : CLK DIV port map(1, CLK, DAC_SCLK TMP);

rd reg ctrl : process(CLK, ADC SCLK TMP, RST) is
begin
-- asynchronous reset
if RST = '1' then
-- initialize read register
RD_REG <= "0000000000000000";
Xn <= "000000000000";
elsif rising edge (ADC_SCLK TMP) then
if SET Xn = '1' then
-- set output Xn when ADC register data transfer complete
Xn <= RD REG(11 downto 0);
end if;

if RD CNT EN = '0' then
-- reset RD_CNT for next read sequence
RD CNT <= 0;

elsif RD CNT EN = '1' then
-- shift RD_REG and increment counter
RD_REG <= RD_REG(14 downto 0) & MISO;
RD CNT <= RD_CNT + 1;

end if;

-- sets SAMP DONE flag when output Xn has been set

if GOT_SAMP = '0' then
SAMP_DONE <= '0';
elsif GOT SAMP = 'l' then
SAMP_DONE <= '1l"';
end if;
end 1if;

end process rd_reg ctrl;

-- FSM,

control of SPI interface to ADC

-- synchronous process for state changes
ADC_sync_proc : process(NS ADC, ADC SCLK TMP, RST) is

begi

n

-- asynchronous reset
if RST = '1' then

PS ADC <= IDLE ADC;

elsif rising edge (ADC_SCLK _TMP) then

PS_ADC <= NS ADC;

end if;
end process ADC sync proc;

-- combinational process for state logic
ADC comb proc : process(PS ADC, RD EN, RD CNT) is

begi

n

case PS_ADC is

state, idle/initialization

when IDLE ADC =>

-- initialize signals
CS <= '0";
RD CNT EN <= '0';
SET Xn <= '0";
GOT_SAMP <= '0';
if RD EN = 'l' then
-- change to state SET ADC on assertion of RD EN
NS ADC <= SET ADC;
else
NS ADC <= IDLE ADC;
end if;

state, setup for read sequence

when SET ADC =>

-- bring CS high to start transfer sequence from ADC
Cs <= "'1";

-- set remaining outputs of FSM

RD CNT EN <= '0';

GOT_SAMP <= '0';

SET Xn <= '0';

-- change state to RUN ADC to start data transfer
NS_ADC <= RUN_ADC;

flag

-- state, transfer data from ADC data register to RD_REG
when RUN_ADC =>

-- set CS low to begin data transfer from ADC
Cs <= '0"';
-- enable RD CNT_EN to begin RD REG control
RD CNT EN <= 'l';
-- set remaining outputs of FSM
SET Xn <= '0';
GOT SAMP <= '0';
if RD_CNT < 15 then
-- data tranfer incomplete
NS_ADC <= RUN_ADC;
elsif RD_CNT = 15 then
-- set input from RD REG
SET_Xn <= '1l"';
-- reset register counter for next read sequence
RD CNT EN <= '0';
-- change to idle state to wait for next sequence
NS ADC <= SET SAMP;
end if;

when SET SAMP =>

100

101

-— assert GOT_SAMP to set SAMP_ DONE output
GOT SAMP <= 'l1';

-- set remaining outputs of FSM

Cs <= '0";

RD CNT EN <= '0';

SET Xn <= '0";

NS _ADC <= IDLE ADC;

when others =>
NS_ADC <= IDLE_ADC;

end case;
end process ADC_comb_proc;

wrt_reg_ctrl : process(DAC_SCLK TMP, RST) is
begin
-- asynchronous reset
if RST = '1l' then
-- initialize write register
WRT REG <= "0000000000000000";
elsif rising edge (DAC_SCLK TMP) then
if LOAD ¥Yn = 'l' then
-- load write register with current output for DAC
WRT REG <= CTRL & Yn;
end if;
if WRT CNT EN = '0' then
-- reset WRT_CNT for next write sequence
WRT_CNT <= 0;
elsif WRT_CNT EN = '1' then
-- shift WRT REG and increment counter
WRT REG <= WRT REG (14 downto 0) & '0';
WRT CNT <= WRT CNT + 1;
end if;
end if;
end process wrt_reg ctrl;

-- synchronous process for state changes
DAC_sync_proc : process(NS _DAC, DAC_SCLK TMP, RST) is
begin
-- asynchronous reset
if RST = '1' then
PS_DAC <= IDLE_DAC;
elsif rising edge (DAC_SCLK TMP) then
PS DAC <= NS_DAC;
end if;
end process DAC sync_proc;

-- combinational process for state logic
DAC comb proc : process(PS DAC, WRT EN, WRT CNT) is
begin
case PS DAC is
-- state, idle/initialization
when IDLE DAC =>
-- initialize signals
SYNC <= '0";
WRT CNT EN <= '0';
LOAD Yn <= '0';
if WRT_EN = '1' then

102

-- change to state SET DAC on assertion of WRT EN flag
NS DAC <= SET DAC;

else
NS_DAC <= IDLE_DAC;

end if;

-- state, setup for write sequence
when SET DAC =>
WRT CNT EN <= '0';
-- bring SYNC high to start transfer sequence to DAC
SYNC <= 'l';
-- assert flag to sync WRT REG with desired output
LOAD_Y¥Yn <= '1';
-- change state to RUN DAC to start data transfer
NS DAC <= RUN DAC;

-- state, data transfer to DAC
when RUN_DAC =>
-- SYNC low to begin DAC data transfer
SYNC <= '0";
-- enable shifting of WRT REG
WRT CNT EN <= 'l';
LOAD ¥Yn <= '0';
if WRT_CNT < 15 then
-- data transfer incomplete
NS _DAC <= RUN_DAC;
elsif WRT_CNT = 15 then
-- reset WRT REG for next data shift
WRT CNT EN <= '0';
-- go to SET DAC state to begin another write sequence
NS DAC <= SET DAC;
end if;

when others =>
NS DAC <= IDLE DAC;

end case;

end process DAC_comb_proc;
end behavioral;

SA_MULT_16BIT.vhd

-- Company: Cal Poly

-- Engineer: Joseph Waddell

-- Design Name: 16-bit Shift-Add Multiplier

-- Module Name: SA MULT 16BIT - behavioral

-- Project Name: senior project

-- Description: l16-bit Shift-Add Multiplier accepts two 1l6-bit inputs

-- and computes their 32-bit product using shift-add algorithm.
library ieee;

use ieee.numeric std.all;

use ieee.std logic_1164.all;

use ieee.std logic_unsigned.all;

library work;
use work.DEFINITIONS.all;
use work.CTRL_CONSTANTS.all;

entity SA MULT 16BIT is
port (A : in std logic_vector (15 downto 0);

103

B : in std logic_vector (15 downto 0);
P : out std logic vector (31 downto 0));
end SAiMULT716BIT;

architecture behavioral of SA MULT_16BIT is
-- carry-in signal for each stage of multiplier

signal CI : vect 16x20 := (others => (others => '0'"));
-- carry-out signal for each stage of multiplier

signal CO : vect 16x20 := (others => (others => '0'"));
-- partial sums generated at each stage of multiplier
signal S : vect 16x20 := (others => (others => '0'"));
-- partials products to be accumulated

signal PP : vect 16x20 := (others => (others => '0'"));
-- inputs to each stage of the multiplier

signal As : vect 16x20 := (others => (others => '0'"));
signal Bs : vect 16x20 := (others => (others => '0'"));
begin

-- generate stages of multiplier
SA rows : for i1 in 0 to 15 generate
SA : for j in 0 to 14 generate
-- first stage is composed of half adders
SA HA : if i = 0 generate
HA : HALFADDER
port map(As (i) (j), Bs(i) (J+1), CO(1) (), S(i) ())7
end generate SA HA;
-- all other stages composed of full adders
SA FA : if i > 0 generate
FA : FULLADDER
port map(As(i) (J), Bs(i)(3), CI(i)(3), CO(1)(J), S(i) ())i
end generate SA FA;
end generate SA;
end generate SA rows;

-- determine partial products to be accumulated

set PP : for 1 in 0 to 15 generate
PP(i) <= B when A(i) = '1l' else
"0000000000000000";

end generate;

connect gen : for i in 0 to 15 generate
-- assign values to half adders in first stage of multiplier
row0 : if i = 0 generate

As (i) <= PP(1 + 1);
Bs (i) <= PP(i);
-- assign LSB of product
P(i) <= Bs(i) (0);
end generate row0;
-- assign values to full adders in second stage of multiplier
rowl : if i = 1 generate
As (i) (14 downto 0) <= As(i - 1) (15) & S(i - 1) (14 downto 1);
Bs(i) <= PP(i + 1);
CI(i) <= CO(i - 1);
-- assign bit 1 of product
P(i) <= S(i - 1) (0);
end generate rowl;
-- assign values to full adders in second to fourteenth stages of multiplier
row2told4d : if 1 > 1 and i < 15 generate
As (i) (14 downto 0) <= Bs(i - 1) (15) & S(i - 1) (14 downto 1);
Bs (i) <= PP(i + 1);
CI(i) <= CO(1i - 1);
-- assign bits 2 to 14 of product
P(i) <= S(i - 1) (0);
end generate row2tol4;

-- assign values to last stage or multiplier

rowl5 : if i = 15 generate

As (i) (14 downto 0) <= Bs(i - 1) (15) & S(i - 1) (14 downto 1);
Bs (i) (14 downto 0) <= CO(1) (13 downto 0) & '0"';
CI(i) <= CO(i1 - 1);
-- assign bit 15 of product
P(i) <= 8S(i - 1)(0);
-- assign bits 16 to 31 of product
P (31 downto 16) <= CO (i) (14) & S(i) (14 downto 0);
end generate rowlb;
end generate connect gen;
end behavioral;
BOOTH_MULT_16BIT.vhd
Company: Cal Poly
Engineer: Joseph Waddell
Design Name: 16-bit Modified Booth Multiplier
Module Name: BOOTH_MULT 16BIT - behavioral
Project Name: senior project
Description: 16-bit Modified Booth Multiplier accepts two 16-bit inputs

and computes their 32-bit product using the Booth algorithm.

library ieee;

use ieee.numeric_std.all;

use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;

library work;
use work.DEFINITIONS.all;
use work.CTRL CONSTANTS.all;

entity BOOTH MULT 16BIT is

port(A : in std logic vector (15 downto 0);
B : in std logic vector (15 downto 0
P : out std logic vector (31 downto O0)

end BOOTH MULT 16BIT;

architecture behavioral of BOOTH MULT 16BIT is
begin

-- modified Booth multiplier
mult proc : process (A, B) is
-- temp product
variable P_INT : std logic vector (36 downto
-- 2 times multiplicand
variable A2 : std logic_vector (17 downto 0)
-- -2 times multiplicand
variable NA2 : std logic_vector (17 downto
-- -multiplicand
variable NA : std logic_vector (17 downto 0)
-- padded multiplier and multiplicand
variable A INT : std logic vector (17 downto
variable B_INT : std logic_vector (17 downto
begin

-- pad multiplier and multiplicand

A _INT := "00" & A;

B_INT := "00" & B;

-- assign potential partial products
NA := not (A INT) + 1;
A2 := A INT(16 downto 0) & '0O';

:= (others =>

') ;

(others => '0");

:= (others =>

10');

(others => '0'");

:= (others =>

(others =>

CRE
10');

104

NA2

-- place multiplier in right half of product recister

P I

P INT (36 downto 19) = P INT (36 downto 19) + A INT;
when "010" =>
P INT (36 downto 19) = P INT (36 downto 19) + A INT;
when "101" =>
P _INT (36 downto 19) = P _INT (36 downto 19) + NA;
when "110" =>
P INT (36 downto 19) = P INT (36 downto 19) + NA;
when "011" =>
P INT (36 downto 19) = P INT (36 downto 19) + A2;
when "100" =>
P _INT (36 downto 19) = P _INT (36 downto 19) + NAZ2;
when others =>
null;
end case;
-- shift product register
P INT (34 downto 0) := P_INT (36 downto 2);
end loop;
-- set final value of product
P <= P INT(32 downto 1);
end process mult proc;
end behavioral;
MULT18X18.vhd
-- Company: Cal Poly
-- Engineer: Joseph Waddell
-- Design Name: MULT18x18 Multiplier
-- Module Name: MULT18X18 - behavioral
-- Project Name: senior project
-- Description: MULT18x18 Multiplier accepts two 16-bit inputs and

library i
use ieee.
use ieee.
use ieee.

:= not (A2) + 1;

NT (18 downto 1) := B_INT;
-- perform booth algorithm
for i in 0 to 8 loop
case P_INT (2 downto 0) is
when "001" =>

computes their 32-bit product using the Spartan 3E

dedicated multiplier.

eee;
numeric std.all;

std logic 1164.all;

std logic unsigned.all;

library work;

use work.
use work.

DEFINITIONS.all;
CTRL_CONSTANTS.all;

entity MULT18X18 is

port (

end MULT1

architecture behavioral of MULT18X18 is

begin
P <=

A : in std_logic_vector (15 downto 0);
B : in std logic vector (15 downto 0);
P : out std logic_vector (31 downto 0)
8X18;

A * B;

105

106

end behavioral;

RC_ADDER 32BIT.vhd

-- Company: Cal Poly

-- Engineer: Joseph Waddell

-- Design Name: 32-bit Ripple-Carry Adder

—-- Module Name: RC_ADDER 16BIT - behavioral

-- Project Name: senior project

-- Description: 32-bit Ripple-Carry Adder accepts two 32-bit inputs

-= and calculates their sum by using ripple-carry method.
library UNISIM;
use UNISIM.Vcomponents.all;

library ieee;

use ieee.numeric std.all;

use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;

library work;
use work.DEFINITIONS.all;
use work.CTRL CONSTANTS.all;

entity RC ADDER 32BIT is

port(A : in std logic vector (31 downto 0);
B : in std logic vector (31 downto 0);
CO : out std logic;
S : out std logic vector (31 downto 0));

end RC_ADDER 32BIT;

architecture behavioral of RC_ADDER 32BIT is
-- internal carries generated by full adders

signal CO_INT : std logic_vector (31 downto 0) := (others => '0'");
-- temp sum register

signal S _INT : std logic vector (31 downto 0) := (others => '0'");
—-- sum corrected for overflow

signal S _ADJ : std logic vector (31 downto 0) := (others => '0'");
begin

CO <= CO_INT(31);:
S <= S_ADJ;

-- generate adders in ripple-carry format
RC : for i in 0 to 31 generate
-- generate half adder for bit 0 of sum
RCO : 1if i = 0 generate
HA : HALFADDER
port map(A(i), B(i), CO_INT(i), S_INT(i));
end generate RCO;

-- generate full adders for bits 1 to 31 of sum
RC1lto31 : if i > 0 generate
FA : FULLADDER
port map(A(i), B(i), CO_INT(i - 1), CO_INT(i), S_INT(i));
end generate RC1lto3l;
end generate RC;

-- overflow correction
OV : OVERFLOW
port map(A(31), B(31), S _INT, S ADJ);

107

end behavioral;

CLa_ADDER _32BIT.vhd

-- Company: Cal Poly

-- Engineer: Joseph Waddell

-- Design Name: 32-bit Carry-Lookahead Adder

—-- Module Name: CLA ADDER 32BIT - behavioral

-- Project Name: senior project

-- Description: 32-bit Carry-Lookahead Adder accepts two 32-bit inputs

-= and calculates their sum by using carry-lookahead logic.
library ieee;

use ieee.numeric std.all;

use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;

library work;
use work.DEFINITIONS.all;
use work.CTRL CONSTANTS.all;

entity CLa ADDER 32BIT is
port(A : in std logic vector (31 downto 0);
B : in std logic vector (31 downto 0);
CO : out std logic;
ADD S : out std logic vector (31 downto 0));
end CLa ADDER 32BIT;

architecture behavioral of CLa ADDER 32BIT is
-- carry, generate, and propagate bits

signal CI, G, P : std logic vector (31 downto 0) := (others => '0'");
signal PG, GG : std logic vector(9 downto 0) := (others => '0');
signal GCI : std logic vector (10 downto 0) := (others => '0'");
signal S_INT : std logic _vector (31 downto 0) := (others => '0'");
signal S _ADJ : std logic vector (31 downto 0) := (others => '0'");
begin

ADD S <= S ADJ;
-- S <= S_INT;

GCI (0) <= '0";

GCI (8) <= '0";

GCI(10) <= '0';

-- generate partial full adders
RC gp : for i in 0 to 31 generate

FA gp : PARTIAL FA

port map(A(i), B(i), CI(i), G(i), P(i), S_INT(i));
end generate RC gp;

-- generate 4-bit CLA logic units
CLa lower : for i in 1 to 8 generate
CLa_0to7 : CLa_4BIT
port map(G(4 * i - 1 downto 4 * 1 - 4), P(4 * i - 1 downto 4 * i - 4),
GCI(i - 1), CI(4 * i - 1 downto 4 * i - 4),
PG(i - 1), GG(i - 1));
end generate CLa_lower;

CLa_upper(0 : CLa 4BIT

port map(GG(3 downto 0), PG(3 downto 0),
GCI(8), GCI(3 downto 0),
PG(8), GG(8));

108

CLa upperl : CLa 4BIT

port map(GG(7 downto 4), PG(7 downto 4),
GCI(9), GCI (7 downto 4),
PG(9), GG(9))

-- CLa_top (2-bit Carry-Lookahead)
GCI (9) <= (GCI(10) and PG(8)) or GG(8);

CO <= (GCI(10) and PG(8) and PG(9)) or
(GG (8) and PG(9)) or GG(9);

OV : OVERFLOW

port map(A(31), B(31), S_INT, S ADJ);
end behavioral;

CSe_ADDER_32BIT.vhd

-- Company: Cal Poly

-- Engineer: Joseph Waddell

-- Design Name: 32-bit Carry-Select Adder

—-- Module Name: CSe_ADDER_16BIT - behavioral

-- Project Name: senior project

-- Description: 32-bit Carry-Select Adder accepts two 32-bit inputs

-= and calculates their sum by using carry-select method.
library ieee;

use ieee.numeric std.all;

use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;

library work;
use work.DEFINITIONS.all;
use work.CTRL_CONSTANTS.all;

entity CSe ADDER 32BIT is

port(A : in std logic vector (31 downto 0);
B : in std logic vector (31 downto 0);
CO : out std logic;
S : out std logic_vector (31 downto 0));

end CSe ADDER 32BIT;

architecture behavioral of CSe ADDER 32BIT is
-- sums of each ripple-carry block

signal SO, S1 : std logic vector (31 downto 0) := (others => '0'");
signal S_INT, S _ADJ : std logic vector (31 downto 0) := (others => '0');
-- carries for each block

signal C, CO, C1 : std logic_vector (7 downto 0) := (others => '0');

-- Carry-Select Adder
begin
S <= S_ADJ;
-- generate ripple-carry blocks
CSe : for i in 0 to 7 generate
-- ripple-carry block 0 for 4 LSBs of sum
CSe0 : if i = 0 generate
RC_blk0 : RC_ADDER 4BIT
port map(A(4 * i + 3 downto 4 * i), B(4 * i + 3 downto 4 * i),
'0', C(i), S INT(4 * i + 3 downto 4 * i));
end generate CSe0;

-- ripple-carry blocks 1 to 7 for remaining bits of sum

CSelto7 : if i > 0 generate
-- ripple-carry sum for carry in of O
RC_blklto7 0 : RC_ADDER 4BIT

port map(A(4 * i + 3 downto 4 * i), B(4 * i + 3 downto 4 * i),
'0', CO(i), SO(4 * i + 3 downto 4 * 1));

-- ripple-carry sum for carry in of 1
RC blklto7 1 : RC_ADDER 4BIT
port map(A(4 * i + 3 downto 4 * i), B(4 * i + 3 downto 4 * i),
'1', Cl(i), S1(4 * 1 + 3 downto 4 * i));
end generate CSelto7;
end generate CSe;

-- set carries for each block of adder
carries : for i1 in 1 to 7 generate

C(i) <= (C(i-1) and Cl(i)) or CO(i);
end generate carries;

-- finalize sum based on carries from each block

set sum : for i in 1 to 7 generate
S INT(4 *i + 3 downto 4 * i) <= S0(4 * i + 3 downto 4 * i)
when C(i - 1) = '0' else

S1(4 * 1 + 3 downto 4 * 1)
when C(i - 1) = '1";
end generate set sum;

-- set carry-out of adder
Cco <= C(7);

-- adjust sum for overflow

OV : OVERFLOW

port map(A(31), B(31), S _INT, S ADJ);
end behavioral;

CSa_ACCUM_32BIT.vhd

-- Company: Cal Poly

-- Engineer: Joseph Waddell

-- Design Name: 32-bit Carry-Save Acculator

-- Module Name: SA MULT 16BIT - behavioral

-- Project Name: senior project

-- Description: 32-bit Carry-Save Acculator accepts a 32-bit by 20 register

-= and returns the accumulated 32-bit sum and carry-out bit.
library ieee;

use ieee.numeric std.all;

use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;

library work;
use work.DEFINITIONS.all;
use work.CTRL_CONSTANTS.all;

entity CSa_ ACCUM 32BIT is

port (PART_S : in vect_ 32x20;
ADD CO : out std logic;
ADD S : out std logic vector (31 downto 0));

end CSa ACCUM 32BIT;

110

architecture behavioral of CSa ACCUM 32BIT is
-- internal carry-ins generated at each stage of accumulation

signal CI : vect 32x20 := (others => (others => '0'"));

-- internal carry-outs generated at each stage of accumulation
signal CO : vect 32x20 := (others => (others => '0'"));

-- unadjusted sum generated at each stage of accumulation
signal S : vect 32x20 := (others => (others => '0'));

-- sum that has been adjusted for overflow

signal S ADJ : std logic vector (31 downto 0) := (others => '0');
-- inputs to each stage of the accumulator

signal As : vect 32x20 := (others => (others => '0'"));
signal Bs : vect 32x20 := (others => (others => '0'"));

begin

-- assign output sum with sum that has been adjusted for overflow
ADD S <= S_ADJ;

-- assign the carry-out bit of accumulator

ADD CO <= CO(F _LENGTH) (31);

-- generate stages of accumulator
SA rows : for i in O to F LENGTH generate
SA : for j in 0 to 31 generate
-- first stage is composed of half adders
SA HA : if i = 0 generate
HA : HALFADDER
port map(As(i) (3), Bs(i) (J), CO(i)(3), S(1)(3))7
end generate SA HA;
-- all other stages composed of full adders
SA FA : if i > 0 generate
FA : FULLADDER
port map(As(1i) (J), Bs(i) (J), CI(1)(3),
CO(1) (3), S(1)(3))7
end generate SA FA;
end generate SA;
end generate SA rows;

connect gen : for i in 0 to F_LENGTH generate
-- assign values to half adders in first stage of accumulator
rowO : if i = 0 generate

As (i) <= PART S(i + 1);
Bs(i) <= PART S(i);
end generate row0;

-- assign values to full adders in stages 2 to F LENGTH - 1 of accumulator
rowltol8 : if 1 > 0 and i < F_LENGTH generate

As (i) <= PART S(i + 1);

Bs(i) <= S(i - 1);

CI(i) <= CO(i - 1) (30 downto 0) & '0';
end generate rowltol8;

-- assign values to last stage of accumulator
rowl9 : if i = F LENGTH generate
As (i) <= CO(1i - 1) (30 downto 0) & '0';
Bs(i) <= S(i - 1);
carry chain : for j in 0 to 31 generate
carry0 : 1if j = 0 generate
CI(i) (§) <= '0';
end generate carry0;
carrylto3l : if j > 0 generate
CI(i) (3) <= CO(i)(§ - 1);
end generate carrylto3l;
end generate carry chain;

-- adjust sum for overflow

OvV1l9 : OVERFLOW
port map(As (i) (31),
end generate rowl9;
end generate connect gen;
end behavioral;

Bs (1) (31), S(1),

OVERFLOW.vhd

—-- Company: Cal Poly

-- Engineer: Joseph Waddell

-- Design Name: Overflow Detection

-- Module Name: OVERFLOW - behavioral
-- Project Name: senior project

-- Description:

library ieee;
use ieee.numeric std.all;
use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;

library work;
use work.DEFINITIONS.all;
use work.CTRL CONSTANTS.all;

entity OVERFLOW is

port (A : in std logic;
B : in std logic;
S _INT : in std logic vector (31 downto 0);
S _ADJ : out std logic vector (31 downto 0));

end OVERFLOW;

architecture behavioral of OVERFLOW is

begin
ovflow proc : process(A, B, S INT)
begin
-- check if sum is positive
if S INT(31) = '0O' then
-- good sum value
if ((A nor B) xor (A xor B)) = '1"
S _ADJ <= S_INT;
-- negative overflow
elsif (A and B) = '1l' then
S_ADJ(31) <= '1l';
S_ADJ (30 downto 0) <= (others
end 1if;
-- check if sum is negative
elsif S INT(31) = '1' then
-- good sum value
if ((A and B) xor (A xor B)) = '1"
S_ADJ <= S_INT;
-- positive overflow
elsif (A nor B) = 'l' then
S_ADJ(31) <= '0"';
S _ADJ (30 downto 0) <= (others
end 1if;
end if;

end process ovflow proc;
end behavioral;

S ADJ);

OVERFLOW checks and corrects for overflow
-= summation of two signals.

then

=>

"0');

then

"1);

resulting from the

111

112

HALFADDER.vhd

-- Company: Cal Poly

-- Engineer: Joseph Waddell

-- Design Name: 1-bit Half Adder

-- Module Name: HALFADDER - behavioral

-- Project Name: senior project

-- Description: 1-bit half adder that accepts two 1-bit numbers and returns

-= their sum and carry bit.
library ieee;

use ieee.numeric std.all;

use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;

library work;
use work.DEFINITIONS.all;
use work.CTRL CONSTANTS.all;

entity HALFADDER is

port (A : in std logic;
B : in std logic;
co : out std logic;
S : out std logic);

end HALFADDER;
architecture behavioral of HALFADDER is

-- Half Adder

begin

-- assign values to the sum bit and carry-out bit
CO <= A and B;
S <= A xor B;

end behavioral;

FULLADDER.vhd

-— Company: Cal Poly

-- Engineer: Joseph Waddell

-- Design Name: l1-bit Full Adder

-- Module Name: FULLADDER - behavioral

-- Project Name: senior project

-- Description: 1-bit full adder that accepts two 1-bit numbers and a carry

-= and returns their sum and carry out bit.
library ieee;

use ieee.numeric std.all;

use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;

library work;
use work.DEFINITIONS.all;
use work.CTRL_CONSTANTS.all;

entity FULLADDER is
port(A : in std logic;
B : in std logic;
CI : in std logic;
CO : out std logic;

113

S : out std logic);
end FULLADDER;

architecture behavioral of FULLADDER is

-- Full Adder

begin

-- assign values to the sum bit and carry-out bit
S <= A xor B xor CI;
CO <= ((A or B) and CI) or (A and B);

end behavioral;

PARTIAL FA.vhd

-- Company: Cal Poly

-- Engineer: Joseph Waddell

-- Design Name: 1-bit Full Adder w/ generate and propagate bits

-- Module Name: PARTIAL FA - behavioral

-- Project Name: senior project

-- Description: 1-bit full adder that accepts two 1-bit inputs and returns

-= their sum, generate and propagate bits.
library ieee;

use ieee.numeric std.all;

use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;

library work;
use work.DEFINITIONS.all;
use work.CTRL CONSTANTS.all;

entity PARTIAL FA is

port(A : in std logic;
B : in std logic;
CI : in std logic;
G : out std logic;
P : out std logic;
S : out std logic);

end PARTIAL FA;
architecture behavioral of PARTIAL FA is

-- Full Adder

begin

-- assign values to the sum, generate, and propagate output bits
G <= A and B;
P <= A xor B;
S <= A xor B xor CI;

end behavioral;

114

RC_ADDER 4BIT.vhd

-- Company: Cal Poly

-- Engineer: Joseph Waddell

-- Design Name: 4-bit Ripple-Carry Adder

—-- Module Name: RC_ADDER _16BIT - behavioral

-- Project Name: senior project

-- Description: 4-bit Ripple-Carry Adder accepts two 4-bit inputs

-= and calculates their sum by using ripple-carry method.
library ieee;

use ieee.numeric std.all;

use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;

library work;
use work.DEFINITIONS.all;
use work.CTRL CONSTANTS.all;

entity RC ADDER 4BIT is
port(A : in std logic vector(3 downto 0);
B : in std logic vector (3 downto 0);
CI : in std logic;
CO : out std logic;
S : out std logic vector (3 downto 0));
end RC_ADDER 4BIT;

architecture behavioral of RC ADDER 4BIT is
-- internal carries generated by full adders

signal CO_INT : std logic vector (3 downto 0) := (others => '0');

-- Ripple-Carry Adder

begin
-- generate adders in ripple-carry format
RC : for i in 0 to 3 generate
-- generate half adder for bit 0 of sum
RCO : 1if i = 0 generate
FAQ : FULLADDER

port map(A(i), B(i), CI, CO_INT (i), S(i))
end generate RCO;

-- generate full adders for bits 1 to 3 of sum
RC1to3 : 1if 1 > 0 generate
FAlto3 : FULLADDER
port map(A(i), B(i), CO INT(i - 1), CO_INT(i), S(i));
end generate RC1lto3;
end generate RC;

-- set carry-out of adder
CO <= CO_INT(3);
end behavioral;

115

CLa_4BIT.vhd

-- Company: Cal Poly

-- Engineer: Joseph Waddell

-- Design Name: 4-bit Carry-Lookahead Logic

—-- Module Name: CLA 4BIT - behavioral

-- Project Name: senior project

-- Description: 4-bit Carry-Lookahead Logic performs carry lookahead logic

- based on generate and propagate signals.
library ieee;

use ieee.numeric std.all;

use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;

library work;
use work.DEFINITIONS.all;
use work.CTRL CONSTANTS.all;

entity CLa_ 4BIT is

port(G : in std logic vector(3 downto 0);
P : in std logic vector (3 downto 0);
CI : in std logic;
C : out std logic vector(3 downto 0);

PG : out std logic;
GG : out std logic);
end CLa_ 4BIT;

architecture behavioral of CLa 4BIT is

-- 4-bit CLA logic
begin
Cc(0) <= CI;

C(l) <= (CI and P(0)) or G(0);

C(2) <= (CI and P(0) and P(l)) or
(G(0) and P(1l)) or G(1);

C(3) <= (CI and P(0) and P(l) and P(2)) or
(G(0) and P(1l) and P(2)) or
(G(1) and P(2)) or G(2);

GG <= (G(0) and P(l) and P(2) and P(3)) or
(G(1l) and P(2) and P(3)) or
(G(2) and P(3)) or G(3);

PG <= P(0) and P(1l) and P(2) and P(3);
end behavioral;

SIPO_SHR.vhd

-- Company:
-- Engineer:

-- Design Name:
-- Module Name:
-- Project Name:
-- Description:

library ieee;

116

Cal Poly
Joseph Waddell

Serial-in, Parallel-out Shift Register

SIPO_SHR - behavioral

senior project

Serial-in, Parallel-out Shift Register accepts a clock,
clear and preset inputs, and a 16-bit signal. It returns a
16-bit by 20 register containing stored input values that
have been shifted one index value away from O on each
positive clock edge.

use ieee.std logic 1164.all;
use ieee.std logic_arith.all;
use ieee.std logic unsigned.all;

library work;
use work.DEFINITIONS.

entity SIPO SHR is

port (CLK : in
CLR : in
PRE : in
D : in
Q : out

end SIPO_SHR;

all;

std logic;

std logic;

std logic;

std logic vector (15 downto 0);
vect 16x20);

architecture behavioral of SIPO SHR is
-- temporary signal to store values for shifting
signal Q TMP : vect 16x20 := (others => (others => '0'));

-- SIPO Shift Register

begin
—-— set output
Q <= Q TMP;

-- process shifts

register values one index place away from 0

- on each positive clock edge

shift : process (

CLK, CLR, PRE, D) is

variable STARTUP std logic := '0';
begin
if STARTUP = 'l' then

for i in 0 to 19 loop

Q TMP (1)
end loop;
STARTUP =

<= "0000000000000000";

'0';

-- asynchronous reset

elsif CLR = '1"'

then

for i in 0 to 19 loop

Q TMP (1)
end loop;

<= "0000000000000000";

-- asynchronous preset

elsif PRE = '1'

then

for i in 0 to 19 loop

Q TMP (1)
end loop;

<= "ll1l1l1l1il1l11iz111";

-- shift register values
elsif rising edge (CLK) then
Q TMP(1 to 19) <= Q TMP(0 to 18);

Q TMP(0) <=
end if;

D;

117

end process shift;
end behavioral;

CLK DIV.vhd

—-- Company: Cal Poly

-- Engineer: Joseph Waddell

-- Design Name: Clock Divider

-- Module Name: CLK_DIV - behavioral

-- Project Name: senior project

-- Description: Clock Divider accepts a clock signal, divides it by the

-= integer DIV, and returns the divided clock signal.
library ieee;

use ieee.numeric std.all;

use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;

entity CLK DIV is

port (DIV : in integer;
CLK : in std logic;
SCLK : out std logic);

end CLK DIV;
architecture behavioral of CLK DIV is

-- Clock DIvider

begin
-- process divides clock by the input integer DIV
clock : process(CLK) is
-- variables to keep track of clock dividing and temporary clock signal
variable DIV _CNT : integer := 0;
variable SCLK TMP : std logic := '0';
begin

if rising edge (CLK) then
if DIV_CNT < DIV - 1 then
-- increment DIV _CNT if dividing not done
DIV _CNT := DIV _CNT + 1;
elsif DIV_CNT = DIV - 1 then
-- negate temporary clock signal if dividing done

SCLK_TMP := not (SCLK_TMP) ;
-— reset counter
DIV _CNT := 0;

end if;

-- set output clock signal
SCLK <= SCLK TMP;
end if;
end process clock;
end behavioral;

DEFINITIONS.vhd

-- Company:
-- Engineer:

-- Design Name:
-- Module Name:
-- Project Name:
-- Description:

library

ieee;

Cal Poly

Joseph Waddell

User Definitions

DEFINITIONS - package
senior project

DEFINITIONS contains all component declarations used

throughout the project.

use ieee.std logic 1164.all;

package
type
type
type
type
type
type

DEFINITIONS i
int x20 is ar
int %30 is ar
vect 16x20 is
vect 16x30 is
vect 32x20 is
vect 32x30 is

s
ray (0 to

ray (0 to
array (O
array (0
array (0
array (O

component HALFADDER is

port (A HE
B i
CO HiNe)
S HNe)

end component;

n std logic;
n std logic;
ut std logic;

19)
29)
to
to
to
to

of
of

19)
29)
19)
29)

ut std logic);

component FULLADDER is

port(A : in std logic;
B : in std logic;
CI : in std logic;
CO : out std logic;
S : out std logic);

end component;

component PARTIAL FA is

port(A : in std logic;
B : in std logic;
CI : in std logic;
G : out std logic;
P : out std logic;
S : out std logic);

end component;

component RC_ADDER 32BIT is

port(A : in
B : in
CO : out
S : out

end component;

std logic vector (31 downto
std logic vector (31 downto

std logic;

std logic vector (31 downto

component RC_ADDER 4BIT is
std logic vector (3
std logic vector (3

port(A : in
B : in
CI : in
CO : out
S : out

end component;

std logic;
std logic;

in
in
of
of
of
of

std logic vector (3

component CLa 4BIT is
port(G : in

P : in

std logic vector (3
std logic vector (3

teger;
teger;

std logic vector (15 downto
std logic vector (15 downto
std logic vector (31 downto
std logic vector (31 downto

downto
downto

downto

downto
downto

0);
0);
0);
0);

118

119

CI : in std logic;
C : out std logic vector (3 downto 0);
PG : out std logic;
GG : out std logic);
end component;

component CLa ADDER 32BIT is

port(A : in std logic vector (31 downto 0);
B : in std_logic_vector (31 downto 0);
co : out std logic;

ADD S : out std logic vector (31 downto 0));
end component;

component CSe ADDER 32BIT is

port(A : in std logic vector (31 downto 0);
B : in std logic_vector (31 downto 0);
co : out std logic;

S : out std logic vector (31 downto 0));

end component;

component CSa ACCUM 32BIT is

port (PART S : in vect 32x20;
ADD_CO : out std _logic;
ADD S : out std logic vector (31 downto 0));

end component;

component OVERFLOW is
port (A : in std logic;
B : in std logic;
S_INT : in std logic vector (31 downto 0);
S _ADJ : out std logic vector (31 downto 0));
end component;

component SA MULT 16BIT is

port(A : in std logic vector (15 downto 0);
B : in std logic vector (15 downto 0);
P : out std logic vector (31 downto 0));

end component;

component BOOTH MULT 16BIT is

port(A : in std logic vector (15 downto 0);
B : in std logic vector (15 downto 0);
P : out std logic vector (31 downto 0));

end component;

component MULT18X18 is
port(A : in std logic vector (15 downto 0);
B : in std logic vector (15 downto 0);
P : out std logic vector (31 downto 0));
end component;

component CLK DIV is

port (DIV ¢ in integer;
CLK : in std logic;
SCLK : out std logic);

end component;

component SIPO_SHR is

port (CLK : in std _logic;
CLR : in std _logic;
PRE : in std logic;
D : in std logic_vector (15 downto 0);
Q : out vect 16x20);

end component;

component CONVERTER CTRL is

port (CLK

RST
RD_EN
WRT EN
MISO
Yn
ADC SCLK
DAC_SCLK
Cs
SYNC
MOSI
Xn
SAMP_DONE

end component;

component SAMPLE CTRL is

port (CLK

RST
EN
MISO
Yn
OUTPUT_ DONE
ADC_SCLK
DAC SCLK
Cs
SYNC
MOSI
Xn
XnmM
YnmN
SAMP_DONE

end component;

component DSP BB is
port (MULT A
MULT B

in std logic;
in std logic;
in std logic;
in std logic;
in std logic;
in std logic vector (11l downto 0);

out std logic;

out std logic;

out std logic;

out std logic;

out std logic;

out std logic vector (11l downto 0);
out std logic);

in std logic;

in std logic;

in std logic;

in std logic;

in std logic vector (1l downto 0);
in std logic;

out std logic;

out std logic;

out std logic;

out std logic;

out std logic;

out std logic vector (1l downto 0);
out vect 16x20;

out vect 16x20;

out std logic);

in vect 16x20;
in vect 16x20;

ADD A : in vect 32x20;
ADD B : in vect 32x20;

PART_S in vect 32x20;

P out vect 32x20;

S out vect 32x20;

As : out vect 16x20;

Bs : out vect 16x30;

C_VECT out std logic vector (15 downto 0));

end component;

component NORMAL is
port (CLK
RST
EN
SAMP_DONE
XnmM
YnmN

MULT B
MULT A

in std logic;
in std logic;
in std logic;
in std logic;
in vect 16x20;
in vect 16x20;
in vect 16x20;
in vect 16x30;
in std logic vector (15 downto 0);
in vect 32x20;
in vect 32x20;
out vect 16x20;
out vect 16x20;

ADD A : out vect 32x20;
ADD B : out vect 32x20;

120

PART_S
Yn

out vect 32x20 ;
out std logic vector (1l downto 0);

OUTPUT DONE : out std logic);

end component;

component CASCADE is

port (CLK in std logic;
RST in std logic;
EN : in std logic;
SAMP_DONE : in std logic;
XnmM : in vect 16x20;
YnmN in wvect 16x20;
As in vect 16x20;
Bs in wvect 16x30;
C _VECT in std logic vector (15 downto 0);
P in vect 32x20;
S in vect 32x20;
MULT B out vect 16x20;
MULT A : out vect 16x20;
ADD A : out vect 32x20;
ADD B out vect 32x20;
PART S out vect 32x20;
Yn out std logic vector (1l downto 0);

OUTPUT DONE : out std logic);

end component;

component CASC DFI is

port (CLK in std logic;
RST in std logic;
EN : in std logic;
SAMP_DONE : in std _logic;
XnmM in vect 16x20;
YnmN in vect 16x20;
As in vect 16x20;
Bs in vect 16x30;
C_VECT in std logic vector (15 downto 0);
P in vect 32x20;
S in vect 32x20;
MULT B out vect 16x20;
MULT_A : out vect 16x20;
ADD A out vect 32x20;
ADD B out vect 32x20;
PART_S out vect 32x20;
Yn out std logic_vector (11 downto 0);

OUTPUT DONE : out std logic);

end component;
end package;

121

122

CTRL_CONSTANTS.vhd

-- Company: Cal Poly

-- Engineer: Joseph Waddell

-- Design Name: Control Constants

-- Module Name: CTRL_CONSTANTS - package

-- Project Name: senior project

-- Description: Control Constants contains all constants used to control

-= various modules throughout the project.
library ieee;
use ieee.std logic 1164.all;

library work;
use work.DEFINITIONS.all;

package CTRL CONSTANTS is
-- STRUCTURE controls filter realization structure.

-- For Direct Form I realization set STRUCTURE = 0.

-- For Direct Form II Cascade realization of Canonical 2nd order systems
-- set STRUCTURE = 1.

-- For Direct Form I Cascade realization of Canonical 2nd order systems
-- set STRUCTURE = 2.

constant STRUCTURE : integer range 0 to 2 := 0;

-- SorP is used to select serial or parallel operation of the filter.
-- For serial operation set SorP = 0.

-- For parallel operation set SorP = 1.

constant SorP : integer range 0 to 1 := 0;

-- SAMP DIV is used to control sampling timing using the CLK DIV module.
-- It is used to divide the system clock to the desired sampling

-- frequency. SAMP DIV for a desired sampling frequency can be calculated
-- by the following formula:

-- SAMP DIV = 50,000,000 / (2 * Sampling Frequency)
constant SAMP DIV : integer range 1 to 50000000 := 566;

-—- SCALE is the desired bit length used for signed integer scaling.
-- For no scaling set SCALE = 1
constant SCALE : integer range 1 to 16 := 1;

-- MULTIPLIER allows for multiplier selection from the two available
-- multipliers, the Shift-Add multiplier and the Spartan 3E dedicated
-- MULT18X18 multiplier.

-— For the Shift-Add multiplier set MULTIPLIER = 0.

-- For the Radix-4 Modified Booth multiplier set MULTIPLIER = 1.
-- For the MULT18X18 multiplier set MULTIPLIER = 2.

constant MULTIPLIER : integer range 0 to 2 := 0;

-- ADDER allows for adder selection during serial operation. The three
-- available adders are the Ripple-Carry adder, the Carry-Select adder,
-- and the Carry-Lookahead adder.

-- During parallel operation a Carry-Save accululator is used to
-- facilitate parallel accumulation of filter terms.

Il
o

-- For the Ripple-Carry adder set ADDER
-- For the Carry-Select adder set ADDER =

|
=

123

-- For the Carry-Lookahead adder set ADDER = 2.
constant ADDER : integer range 0 to 2 := 0;

-- Filter length is equal to N + M - 1.
constant F LENGTH : integer range 0 to 19 := 0;

-- N is the number of Ak terms as they appear on the RIGHT side of
-- the difference equation.

constant N : integer range 0 to 19 := 0;
-- Ak terms of the filter.
constant Ak : int x20 := (¢ O, O, O, O, O, O, O, O, O, O,

-- M is the number of Bk terms.

constant M : integer range 1 to 20 := 1;
-- Bk terms of the filter
constant Bk : int x20 := (1, O, O, O, O, O, O, O, O, O,

-- This is the desired number of filter stages.
constant F _STAGES : integer range 1 to 9 := 1;

-—- Ak terms as they appear on the RIGHT side of the difference equation
-- for use with serial calculation implementation.
constant Aki : int x30 := (0, O, -- stage 1
-- stage 2
-- stage 3
-- stage 4
-- stage 5
6
7
8
9

~

~

~

-- stage
-—- stage
-- stage
-- stage

~ 0~ 0~

~
O O O O O O o o
~

~

-- Bk terms for serial calculation implementation

constant Bki S : int x30 := (0, 0, O, -- stage 1
0, 0, , -- stage 2
o, 0, 0O, -- stage 3
o, 0, O, -- stage 4
o, 0, 0O, -- stage 5
o, 0, 0O, -- stage 6
o, 0, O, -- stage 7
o, 0, 0O, -- stage 8
o, 0, 0O, -- stage 9
0, 0, 0);

-- Constant for use in parallel calculation implementation
constant C : integer := 0;

-- Bk terms for parallel calculation implementation

constant Bki P : int x20 := (0, O, -- stage 1
0, 0, -- stage 2
0, 0, -- stage 3
0, 0, -- stage 4
o0, 0, -- stage 5

-- Bk terms for use with CASC DFI.vhd module. These coefficients pair
-- with the Ak terms contained in Aki for this module.

constant Bki

end package;

int x30

(

~ 0~ 0~

~

~ 0~ 0~

O O O O O o o o o
~

~

~ 0~ 0~

~

~ 0~ 0~

O O O O O o o o o
~

~

stage
stage
stage
stage
stage
stage
stage
stage
stage

124

Appendix D: VHDL Testbenches

This appendix contains the VHDL testbenches used to test project modules.

FILT.vhd

library ieee;

use ieee.numeric std.all;

use ieee.std logic 1164.all;
use ieee.std logic unsigned.all;

library work;

use work.DEFINITIONS.all;

use work.CTRL CONSTANTS.all;

entity FILT is

end FILT;

-- NOTE -

Some component entities may need slight alterations to
-- accomidate some test signals.
architecture behavioral of FILT is
component NORMAL is
port (CLK

RST

EN

SAMP_ DONE
XnmM
YnmN

MULT B
MULT A
ADD A
ADD B
PART_S

Yn

OUTPUT DONE
AVERAGE tst

SC_OFF tst
PRODUCT tst
SUM tst

end component;

component CASCADE is
port (CLK

RST

EN
SAMP_DONE
XnmM
YnmN

in std logic;

in std logic;

in std logic;

in std logic;

in vect 16x20;

in vect 16x20;

in vect 16x20;

in vect 16x30;

in std logic vector (15 downto 0);
in vect 32x20;

in vect 32x20;

out vect 16x20;

out vect 16x20;

out vect 32x20;

out vect 32x20;

out vect 32x20 ;

out std logic vector (1l downto 0);
out std logic;

out std logic_vector (15 downto 0);
out std logic vector (31 downto 0);
out vect 32x20;

out std logic_vector (31 downto 0));

in std logic;
in std logic;
in std logic;
in std logic;
in wvect 16x20;
in vect 16x20;
in vect 16x20;
in vect 16x30;
in std logic_vector (15 downto 0);
in vect_32x20;
in vect_32x20;
out vect 16x20;
out vect 16x20;
out vect 32x20;
out vect 32x20;
out vect 32x20;
out std logic vector (1l downto 0);

125

OUTPUT DONE
SUM tst

MULT B TERMS tst
MULT A TERMS tst

CNT_TERMS_tst
PRODUCT_tst
Wn_tst

Wi_tst

Yi_tst
CNT_STAGE_tst

end component;

component CASC DFI is

end

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

signal

signal
signal

signal
signal
signal
signal

out
out
out
out
out
out
out
out
out
out

std logic;
vect 32x20;
integer range
integer range
integer range
vect 32x20;
vect 16x20;
vect 16x30;
vect 16x20;
integer range

to

to

19;
19;
19;

port (CLK in std logic;
RST in std logic;
EN in std logic;
SAMP_DONE in std logic;
XnmM in vect 16x20;
YnmN in vect 16x20;
As in vect 16x20;
Bs in vect 16x30;
C_VECT in std logic vector (15 downto 0);
P in vect 32x20;
S in vect 32x20;
MULT B out vect 16x20;
MULT_A out vect 16x20;
ADD A out vect 32x20;
ADD B out vect 32x20;
PART_S out vect 32x20;
Yn out std logic vector (1l downto 0);
OUTPUT DONE out std logic;
AVERAGE tst out std logic vector (15 downto 0);
SC_OFF tst out std logic vector (31 downto 0);
PRODUCT_tst out vect 32x20;
SUM_tst out std logic_vector (31 downto 0);
CNT STG_ tst out integer range 0 to 20;
Xi tst out vect 16x20;
Yi_tst out vect 16x20;
CNT TERMS tst out integer range 0 to 20;
STG_DONE_tst out std logic);
component;
CLK std logic := '0';
RST std logic := '0';
EN std logic := '0';
MISO std logic := '0';
ADC_SCLK std logic := '0';
DAC_SCLK std logic := '0';
Cs : std logic := '0';
SYNC std logic := '0';
MOSI std logic := '0';
LED std logic vector (1l downto 0) := (others => '0');
BB _STATE std logic vector (2 downto 0) := "000";
Bs_tst vect 16x30 := (others => (others =>'0"));
As_tst vect 16x20 := (others => (others =>'0"));
MULT B TERMS tst integer range 0 to 20 := 0;
MULT A TERMS tst integer range 0 to 20 := 0;
CNT_TERMS tst integer range 0 to 20 := 0;
CNT STG tst integer range 0 to 3 := 0;

126

127

signal MULT_ B tst vect 16x20 := (others => (others => '0"));
signal MULT_A tst vect 16x20 := (others => (others => '0'));
signal P tst vect 32x20 := (others => (others => '0'"));
signal PRODUCT_ tst vect 32x20 := (others => (others => '0"));
signal PART_S tst vect 32x20 := (others => (others => '0"));
signal ADD_A tst vect 32x20 := (others => (others => '0"));
signal ADD_B_tst vect 32x20 := (others => (others => '0'));
signal S _tst vect 32x20 := (others => (others => '0'"));
signal d SUM tst std logic vector (31 downto 0) := (others => '0'");
signal SUM tst vect 32x20 := (others => (others => '0'"));
signal AVERAGE tst std logic vector (15 downto 0) := (others => '0'");
signal Wn_tst vect 16x20 := (others => (others => '0'));
signal Xi_tst vect 16x20 := (others => (others => '0"));
signal Yi tst vect 16x20 := (others => (others => '0"));
signal Wi_tst : wvect_16x30 := (others => (others => '0'"));
signal Xn : std logic vector(ll downto 0) := (others => '0'");
signal Yn : std logic vector(ll downto 0) := (others => '0');
signal DBC_CLK std logic := '0';
signal RST DB std logic := '0';
signal EN_DB std logic := '0';
signal RST_DB_REG std logic vector (7 downto 0) := (others => '0'");
signal EN_DB_REG std logic vector (7 downto 0) := (others => '0'");
signal XnmM vect 16x20 := (others => (others => '0'"));
signal YnmN vect 16x20 := (others => (others => '0'"));
signal SAMP DONE std logic := '0';
signal STG DONE tst std logic := '0';
signal OUTPUT DONE std logic := '0';
signal SAMP CLK tst std logic := '0';
signal GET SAMP tst std logic := '0';
signal SAMP STATE std logic vector (2 downto 0) := "000";
signal DIR_STATE std logic vector (2 downto 0) := "000";
signal C_VECT tst std logic vector (15 downto 0) := (others => '0'");
signal SC_OFF tst std logic vector (31 downto 0) := (others => '0');
begin
dir if STRUCTURE = 0 generate
d filter NORMAL port map(CLK, RST DB, EN DB, SAMP DONE, XnmM, YnmN, As tst, Bs tst,
C_VECT tst, P_tst,
S tst, MULT B tst, MULT A tst, ADD A tst, ADD B tst,
PART S tst, Yn,

end generate dir;

OUTPUT DONE, AVERAGE tst, SC OFF tst, PRODUCT tst, d SUM tst);

Bs_tst,

casc if STRUCTURE = 1 generate
c filter CASCADE port map(CLK, RST_DB, EN DB, SAMP_DONE, XnmM, YnmN, As_tst,
C VECT tst, P tst,
S _tst, MULT B tst, MULT A tst, ADD A tst, ADD B tst,
PART S tst, Yn, OUTPUT DONE,

SUM tst, MULT B TERMS tst, MULT A TERMS tst,
PRODUCT_tst,
Wn_tst, Wi tst, Yi tst, CNT_STG tst);
end generate casc;
if STRUCTURE =

-- casc_dir 2 generate

CNT TERMS tst,

128

-= nc_filter : CASC DFI port map(CLK, RST DB, EN DB, SAMP_DONE, XnmM, YnmN, As_ tst, Bs_ tst,
C VECT tst, P tst,

-= S tst, MULT B tst, MULT A tst, ADD A tst, ADD B tst,
PART S tst, Yn,

-= OUTPUT DONE, AVERAGE tst, SC OFF tst, PRODUCT tst, d SUM tst,
CNT STG tst, Xi tst,
- Yi tst, BB_STATE, CNT_TERMS tst, STG DONE tst);
-- end generate casc_dir;

bb : DSP_BB port map(MULT A tst, MULT B tst, ADD_A tst, ADD B_tst, PART S tst, P_tst,
S_tst, As tst, Bs_tst, C_VECT tst);

sample : SAMPLE CTRL port map(CLK, RST DB, EN DB, MISO, Yn, OUTPUT DONE,
ADC_SCLK, DAC SCLK, CS, SYNC, MOSI,
Xn, XnmM, YnmN, SAMP DONE, SAMP CLK tst, GET SAMP tst,
SAMP STATE) ;

debounce clk : CLK DIV port map(2, CLK, DBC CLK);
input proc : process is

variable FIRST : std logic := '1l';

begin

---- max value input
-- wait for 2190 ns;
-- MISO <= '0';
-= wait for 80 ns;
-- MISO <= '0';
-- wait for 80 ns;
-= MISO <= '0';
-- wait for 80 ns;
-- MISO <= '0';
-= wait for 80 ns;
-= MISO <= '1"';
-- wait for 80 ns;
-= MISO <= '1"';
-- wait for 80 ns;
—-= MISO <= '1"';
-= wait for 80 ns;
—-= MISO <= '1"';
-- wait for 80 ns;
-= MISO <= '1"';
-- wait for 80 ns;
—-= MISO <= '1"';
-= wait for 80 ns;
—-= MISO <= '1"';
-- wait for 80 ns;
-= MISO <= '1"';
-- wait for 80 ns;
—-= MISO <= '1"';
-= wait for 80 ns;
-= MISO <= '1"';
-— wait for 80 ns;
-= MISO <= '1';
-— wait for 80 ns;
-= MISO <= '1"';

- loop

-— wait for 2800 ns;
-= MISO <= '0';

-— wait for 80 ns;
- MISO <= '0';

-= wait for 80 ns;

MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
end loop;

<= IOI;
for 80 ns;
<= IOI;
for 80 ns;
<= 111;
for 80 ns;
<= lll,.
for 80 ns;
<= 111;
for 80 ns;
<= 111;
for 80 ns;
<= lll,.
for 80 ns;
<= 111;
for 80 ns;
<= 111;
for 80 ns;
<= lll,.
for 80 ns;
<= '1';
for 80 ns;
<= '1';
for 80 ns;
<= lll,.
for 80 ns;
<= '1';

-- one volt input

wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO

loop

for

2190 ns;
IOI;
80 ns;
IOI;
80 ns;
lOl,.
80 ns;
lOl,.
80 ns;
IOI;
80 ns;
lll;
80 ns;
lOl,.
80 ns;
IOI;
80 ns;
lll;
80 ns;
lll;
80 ns;
IOI;
80 ns;
lll;
80 ns;
lll;
80 ns;
IOI;
80 ns;
lOl;
80 ns;
lll;

129

- wait
-= MISO
-= wait
- MISO
-= wait
-= MISO
- wait
-= MISO
-= wait
- MISO
-= wait
-= MISO
- wait
-= MISO
-= wait
- MISO
-= wait
-= MISO
-= wait
-= MISO
-= wait
-= MISO
-= wait
-= MISO
-= wait
-= MISO
-= wait
-= MISO
-= wait
-= MISO
-= wait
-= MISO
-= end loop;

130

for 2800 ns;
<= IOI;
for 80 ns;
<= IOI;
for 80 ns;
<= IOI;
for 80 ns;
<= IOI;
for 80 ns;
<= IOI;
for 80 ns;
<= 111;
for 80 ns;
<= IOI;
for 80 ns;
<= IOI;
for 80 ns;
<= 111;
for 80 ns;
<= '1';
for 80 ns;
<= IOI;
for 80 ns;
<= '1';
for 80 ns;
<= '1';
for 80 ns;
<= IOI;
for 80 ns;
<= 'O','
for 80 ns;
<= '1';

----0000000000000001 input

-= wait
-= MISO
-= wait
-= MISO
-- wait
-= MISO
-= wait
-= MISO
-= wait
-= MISO
-- wait
-= MISO
-= wait
-= MISO
-= wait
-= MISO
-- wait
-= MISO
-= wait
-= MISO
-= wait
-= MISO
-= wait
-= MISO
-= wait
-= MISO
-= wait
-= MISO
-- wait

for

2190 ns;
IOI;
80 ns;
lOl,.
80 ns;
lOl,.
80 ns;
IOI;
80 ns;
lOl,.
80 ns;
lOl,.
80 ns;
IOI;
80 ns;
lOl,.
80 ns;
lOl;
80 ns;
IOI;
80 ns;
lOl;
80 ns;
lOl;
80 ns;
IOI;
80 ns;
lOl;
80 ns;

MISO <= '0';

wait for 80

MISO <= '1';

loop

wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=

end loop;

131

7
ns;

7

2800 ns;
IOI;
80 ns;
IOI’.
80 ns;
IOI’.
80 ns;
IOI;
80 ns;
IOI’.
80 ns;
IOI’.
80 ns;
IOI;
80 ns;
IOI’.
80 ns;
IOI’.
80 ns;
IOI;
80 ns;
IOI’.
80 ns;
IOI’.
80 ns;
IOI;
80 ns;
IOI’.
80 ns;
IOI’.
80 ns;
lll,.

incrementing input
for 2190 ns;

wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO

<= lOl,.
for 80 ns;
<= lOl,.
for 80 ns;
<= IOI;
for 80 ns;
<= lOl,.
for 80 ns;
<= lOl,.
for 80 ns;
<= IOI;
for 80 ns;
<= lOl’.
for 80 ns;
<= lOl’.
for 80 ns;
<= '0"';
for 80 ns;
<= lOl’.
for 80 ns;
<= lOl’.
for 80 ns;
<= '0"';

wait for 80 ns
MISO <= '0';
wait for 80 ns
MISO <= '0';
wait for 80 ns
MISO <= '0';
wait for 80 ns
MISO <= '1';
loop

if FIRST

wait

MISO

wait

MISO

wait

MISO

wait

MISO

wait

MISO

wait

MISO

wait

MISO

wait

MISO

wait

MISO

wait

MISO

wait

MISO

wait

MISO

wait

MISO

wait

MISO

wait

MISO

wait

MISO

end if;
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for

’

7

7

’

for

'0"' then

2800 ns;
IOI;
80 ns;
IOI’.
80 ns;
IOI’.
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
lOl,.
80 ns;
lOl,.
80 ns;
lll,.

2800 ns;
lOl,.
80 ns;
IOI;
80 ns;
lOl,.
80 ns;
lOl’.
80 ns;
IOI;
80 ns;
lOl’.
80 ns;
lOl’.
80 ns;
IOI;
80 ns;
lOl’.
80 ns;

132

MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO

wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO

wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait

IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
|1|;
80 ns;
IOI;

2800 ns;
IOI;
80 ns;
IOI’.
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
lOl,.
80 ns;
lOl,.
80 ns;
IOI;
80 ns;
lOl,.
80 ns;
lll;
80 ns;
lll,.

2800 ns;
IOI;
80 ns;
lOl,.
80 ns;
lOl;
80 ns;
IOI;
80 ns;
lOl;
80 ns;
lOl;
80 ns;
IOI;
80 ns;
lOl;
80 ns;

133

MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO

wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO

wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait

IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
l1l;
80 ns;
IOI;
80 ns;
IOI;

2800 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
lOl,.
80 ns;
lOl,.
80 ns;
IOI;
80 ns;
lOl,.
80 ns;
lll;
80 ns;
IOI;
80 ns;
lll;

2800 ns;

lOl,.
80 ns;
lOl;
80 ns;
IOI;
80 ns;
lOl;
80 ns;
lOl;
80 ns;
IOI;
80 ns;
lOl;
80 ns;

134

135

MISO <= '0';
wait for 80 ns;
MISO <= '0';
wait for 80 ns;
MISO <= '0';
wait for 80 ns;
MISO <= '0';
wait for 80 ns;
MISO <= '0';
wait for 80 ns;
MISO <= '0';
wait for 80 ns;
MISO <= '1"';
wait for 80 ns;
MISO <= '1';
wait for 80 ns;
MISO <= '0';

FIRST := '0';
end loop;

--—- sine input

-- wait for 2190 ns;
-- MISO <= '0';
-- wait for 80 ns;
-- MISO <= '0';
-- wait for 80 ns;
-- MISO <= '0";
-- wait for 80 ns;
-- MISO <= '0';
-- wait for 80 ns;
-- MISO <= '1";
-- wait for 80 ns;
-- MISO <= '0";
-- wait for 80 ns;
-- MISO <= '0';
-- wait for 80 ns;
-- MISO <= '0';
-- wait for 80 ns;
-- MISO <= '0"';
-- wait for 80 ns;
-- MISO <= '1"';
-- wait for 80 ns;
-- MISO <= '1"';
-- wait for 80 ns;
-- MISO <= '1";
-- wait for 80 ns;
-- MISO <= '1"';
-- wait for 80 ns;
-- MISO <= '0';
-- wait for 80 ns;
-- MISO <= '1";
-- wait for 80 ns;
-- MISO <= '1";

- loop

—— if FIRST = '0' then
-= wait for 2800 ns;
-— MISO <= '0';

- wait for 80 ns;
-= MISO <= '0';

- wait for 80 ns;
-— MISO <= '0';

-= wait for 80 ns;

MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
end if;

wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=
wait for
MISO <=

wait for
MISO <=
wait for
MISO <=

<= IOI;
for 80 ns;
<= 111;
for 80 ns;
<= IOI;
for 80 ns;
<= IOI;
for 80 ns;
<= IOI;
for 80 ns;
<= IOI;
for 80 ns;
<= lll,.
for 80 ns;
<= 111;
for 80 ns;
<= 111;
for 80 ns;
<= lll,.
for 80 ns;
<= 'O','
for 80 ns;
<= '1';
for 80 ns;
<= lll,.

2800 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
lOl,.
80 ns;
lll;
80 ns;
IOI;
80 ns;
lOl,.
80 ns;
lll;
80 ns;
lll,.
80 ns;
lOl,.
80 ns;
lll;
80 ns;
lll;
80 ns;
lOl;
80 ns;
lOl;

2800 ns;
IOI;

80 ns;
IOI;

136

wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO

wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO

wait
MISO

80 ns;
IOI;
80 ns;
IOI;
80 ns;
|1|;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
|1|;
80 ns;
|1|;
80 ns;
IOI;
80 ns;
|1|;
80 ns;
v
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
lll;

2800 ns;
IOI;
80 ns;
IOI’.
80 ns;
IOI’.
80 ns;
IOI;
80 ns;
lOl,.
80 ns;
lOl,.
80 ns;
IOI;
80 ns;
lOl,.
80 ns;
lOl,.
80 ns;
IOI;
80 ns;
lOl,.
80 ns;
lOl;
80 ns;
IOI;
80 ns;
lll;
80 ns;
lOl;
80 ns;
IOI;

2800 ns;
IOI;

137

wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO

wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO
wait
MISO

80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
IOI;
80 ns;
v
80 ns;
IOI;
80 ns;
v

2800 ns;
IOI,.
80 ns;
IOI,.
80 ns;
IOI;
80 ns;
lOl,.
80 ns;
lOl,.
80 ns;
IOI;
80 ns;
lOl,.
80 ns;
lOl,.
80 ns;
IOI;
80 ns;
lOl,.
80 ns;
lOl;
80 ns;
IOI;
80 ns;
lOl;
80 ns;
lll;
80 ns;
lll;
80 ns;
lOl;

138

- FIRST := '0';
-= end loop;

end process input proc;

en _proc : process is
begin
wait for 100 ns;
EN <= '1";
end process en_proc;

clock proc : process is
begin

wait for 10 ns;

CLK <= not (CLK) ;

wait for 10 ns;

CLK <= not (CLK) ;
end process clock proc;

-- debounce process for button inputs
debounce proc : process (CLK, DBC CLK) is
begin

if rising edge (DBC _CLK) then

RST DB REG(7 downto 1) <= RST DB REG(6 downto 0);

RST DB REG(0) <= RST;

EN DB REG(7 downto 1) <= EN DB REG(6 downto O0);
EN DB REG(0) <= EN;
end if;

if rising edge (CLK) then
if EN DB REG = "11111111" then
EN DB <= '1';
elsif EN DB REG = "00000000" then
EN DB <= '0';
end if;

if RST DB REG = "11111111" then
RST DB <= 'l';
elsif RST DB REG = "00000000" then
RST DB <= '0';
end if;
end 1if;
end process debounce_proc;
end behavioral;

ADD_TB.vhd

library ieee;

use ieee.numeric_std.all;

use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;

library work;
use work.DEFINITIONS.all;
use work.CTRL_CONSTANTS.all;

ENTITY ADD TB IS
END ADD_TB;

ARCHITECTURE behavior OF ADD TB IS

-- Component Declaration for the Unit Under Test

(UUT)

139

140

COMPONENT RCiADDER732BIT

PORT (
A : IN std logic vector (31 downto 0);
B : IN std logic vector (31 downto 0);
CO : OUT std logic;
S : OUT std logic_ vector (31 downto 0)
)i

END COMPONENT;

COMPONENT CLa ADDER 32BIT
PORT (
A : IN std logic vector (31 downto 0);
B : IN std logic vector (31 downto 0);
CO : OUT std logic;
ADD S : OUT std logic vector (31 downto 0)
)i
END COMPONENT;

COMPONENT CSe ADDER 32BIT
PORT (
A : IN std logic vector (31 downto 0);
B : IN std logic vector (31 downto 0);
CO : OUT std logic;
ADD S : OUT std logic vector (31 downto 0)
)i
END COMPONENT ;

COMPONENT CSa ACCUM 32BIT is

port (PART_S : in vect 32x20;
ADD CO : out std logic;
ADD S : out std logic vector (31 downto 0));

end COMPONENT;

COMPONENT WRAPPER

PORT (
A : in std logic vector (31 downto 0);
B : in std logic vector (31 downto 0);
S : out std logic_vector (31 downto 0);

CO : out std logic
END COMPONENT ;

COMPONENT WRAPPER is

port (PART S : in vect 32x20;
ADD S : out std logic vector (31 downto 0);
ADD CO : out std logic);

end COMPONENT;

—--Inputs
signal A : std logic vector (31 downto 0) := (others => '0'");
signal B : std logic vector (31 downto 0) := (others => '0'");

signal S : std logic_vector (31 downto 0);

signal PART S : vect 32x20 := (others => (others => '0'));
signal CO : std logic;

signal ADD S : std logic_vector (31 downto 0);

signal ADD CO : std logic;

signal AQ : std logic vector (31 downto 0) := (others => '0"');
signal BO : std logic vector (31 downto 0) := (others => '0'");
signal SO : std logic vector (31 downto 0);
signal CO0 : std logic;

-= signal Al : std logic vector (31 downto O0)
-= signal Bl : std logic vector (31 downto O0)

(others => '0'");
(others => '0'");

- signal S1 : std logic vector (31 downto 0);

-- signal COl : std logic;
-- No clocks detected in port list. Replace <clock> below with
-- appropriate port name

BEGIN

-- Instantiate the Unit Under Test (UUT)
-- uut: RCiADDER732BIT PORT MAP (

A => A,
B => B,
co => Co,
S => 8

)

-- uut: CSe ADDER 32BIT PORT MAP (

A => A,
B => B,
co => Co,
S => 8

-- uut: CLa ADDER 32BIT PORT MAP (

uut:
port map(PART S, ADD CO, ADD S);

A => A,
B => B,
co => Co,
S =>8

)i
CSA_ACCUM 32BIT

—--uut: WRAPPER PORT MAP (

A,
B,
Sl
CcO
)i
WRAPPER

port map(PART_ S, ADD S, ADD CO);

A
B

AQ
BO

Al
Bl

<= "11111111111111111111111111111111";
<= "11111111111111111111111111111111";

wait for 20 ns;
<= "01010101010100101010101010101010";
<= "00101010101010101010101010101010";

wait for 20 ns;
<= "0l11111111111111111111119111121111";;
<= "00000000000000000000000000000001";

-- Stimulus process

stim proc: process

beg

in

hold reset state for 100 ns.

wait for 100 ns;

insert stimulus here

PART S (0) <= "00000000000000000000000000000001";

141

PART S (1) <= "00000000000000000000000000000001";
PART S (2) <= "00000000000000000000000000000001";
PART S (3) <= "00000000000000000000000000000001";
PART S (4) <= "00000000000000000000000000000001";
PART S (5) <= "00000000000000000000000000000001";
PART S (6) <= "00000000000000000000000000000001";
PART S (7) <= "00000000000000000000000000000001";
PART S (8) <= "00000000000000000000000000000001";
PART S (9) <= "00000000000000000000000000000001";

-= A <= "11111111111111111111111111111111";
-- B <= "11111111111111111111111111111111";

-= wait for 20 ns;
-= A0 <= "10101010101010101010101001010101";
-= BO <= "10101010101010101010101010101010";

-= wait for 20 ns;
-= Al <= "0O11111111111111111111111111212222";;
-- Bl <= "00000000000000000000000000000001";

wait;
end process;

END;

MULT_TB.vhd

library ieee;

use ieee.numeric std.all;

use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;

library work;
use work.DEFINITIONS.all;
use work.CTRL CONSTANTS.all;

ENTITY MULT TB IS
END MULT TB;

ARCHITECTURE behavior OF MULT_TB IS
-- Component Declaration for the Unit Under Test

COMPONENT SA MULT 16BIT

PORT (
A : IN std logic vector (15 downto 0);
B IN std logic vector (15 downto 0)
P : OUT std logic vector (31 downto 0
)7

END COMPONENT;

)

COMPONENT BOOTH_MULT 16BIT

PORT (
A : IN std logic_vector (15 downto 0);
B IN std logic_vector (15 downto 0)
P : OUT std logic_vector (31 downto 0
)i

END COMPONENT;

)

COMPONENT MULT18X18
PORT (

(UUT)

142

A : IN std logic vector (15 downto 0);
B IN std logic vector (15 downto 0);
P : OUT std logic vector (31 downto 0)
)i

END COMPONENT;

COMPONENT WRAPPER

PORT (
A : IN std logic_vector (15 downto 0);
B : IN std logic vector (15 downto 0);
P : OUT std logic vector (31 downto O0)
);

END COMPONENT ;

--Inputs

signal A : std logic vector (15 downto 0) :=
signal B : std logic vector (15 downto 0) :=
signal P : std logic vector (31 downto 0);

signal A0 : std logic vector (15 downto 0)
signal BO : std logic vector (15 downto 0)
signal PO : std logic vector (31 downto 0);

signal Al : std logic vector (15 downto 0) :=
signal Bl : std logic vector (15 downto 0) :=
signal P1 : std logic vector (31 downto 0);

BEGIN

Instantiate the Unit Under Test (UUT)
uut: BOOTH_MULT_16BIT PORT MAP (

A => A,
B => B,
P =>P

)

uutO: BOOTH MULT 16BIT PORT MAP (

A => AQ,
B => BO,
P => PO

)i

uutl: BOOTH MULT 16BIT PORT MAP (

A => Al,
B => B1,
P => P1

)i

uut: SA MULT 16BIT PORT MAP (

A => A,
B => B,
P =>P

)i

uut: MULT18X18 PORT MAP (

A => A,
B => B,
P =>P

)i

--uut: WRAPPER PORT MAP (

A => A,
B => B,
P =>P

(others =>
(others =>

(others
(others

(others
(others

=>
=>

=>
=>

CRE
10');

') ;
') ;

IOI)’.
"0');

143

144

-)i

-- Stimulus process

stim proc: process

begin
-- hold reset state for 100 ns.
wait for 100 ns;

-= insert stimulus here
A <= "l111111111111111";
B <= "ll11l11l1l11l11111111";

A0 <= "0001101010001111";
BO <= "0001001110110110";

Al <= "0000000001111000";
Bl <= "0000000000000010";
wait;

end process;

END;

