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Abstract 

This paper summarizes the results of a recent investigation on the dynamic response 
of asymmetric-plan buildings with supplemental viscous damping to harmonic 
ground motion using modal analysis techniques. It is shown that most modal 
parameters, except modal damping ratios and dynamic amplification factors, are 
affected very little by the plan-wise distribution of supplemental damping in the 
practical range of system parameters. The first modal damping ratio increases while 
the second decreases as CSD moves from right to left of the system plan, and their 
values increase with larger plan-wise spread of the supplemental damping. Trends 
for the dynamic amplification factors are reversed, as they are inversely influenced 
by the damping ratio, i.e., higher the damping lower the dynamic amplification 
factor. The largest reduction in the flexible edge deformation occurs when damping 
in the first mode is maximized. 

Introduction 

A research program has been designed to systematically investigate the seismic 
behavior of linearly-elastic, one-story, asymmetric-plan systems with supplemental 
viscous damping devices. First, three additional system parameters were identified: 
the damping ratio due to supplemental damping devices, ζsd ; the normalized 
supplemental damping eccentricity, e sd ; and the normalized supplemental damping 
radius of gyration, ρ sd . Next, the effects of these parameters on the flexible and 
stiff edges of asymmetric-plan systems subjected to a selected earthquake ground 
motion were investigated. It was shown that supplemental damping reduces edge 
deformations, and that the degree of reduction strongly depends on the plan-wise 
distribution of the supplemental damping. Results of this research were reported 
earlier (Goel, 1997). 



 
 

 

 

 

     

 

 

Subsequent research focused on developing a fundamental understanding of why 
certain plan-wise distribution of damping lead to higher reduction in edge 
deformations with specific objectives of developing the necessary theoretical 
background for modal analysis of asymmetric plan buildings with supplemental 
viscous damping, and systematically investigating how various modal parameters 
and deformations are affected by the plan-wise distribution of supplemental 
damping.  This paper summarizes the findings of this research; details are available 
in a full-length journal publication (Goel, 1999). 

Presented first is the theoretical background necessary for modal analysis in the 
complex domain, followed by description of the system and related parameters. 
Subsequently, the effects of plan wise distribution of supplemental damping on the 
modal parameters are investigated. Finally, the effects on modal deformations at the 
two extreme edges are examined. 

Theoretical Background 

For non-proportionally damped systems, equations of motion in the state-space are 
given as: 

Az�( )t + Bz( )t = Ru��g ( )t (1) 

where z( )t = u( )t u�( )t T is a 2N ×1 vector; 

�− K 0 � � 0 K � � 0 � (2)
A = , B = , and R = � � ,� 0 M � �K C � −Mr� � � � � �

M , C , and K  characterize the mass, damping, and stiffness related to the 
deformations u( )t  at various degrees of freedom; r  is the influence vector; and 
ug t�� ( )  is the ground acceleration. For a system with N degrees-of-freedom (DOF), A 

and B are 2N × 2N matrices; M , C , and K  are N × N matrices; and u( )t  and r 
are N × 1vectors. 

Solving the quadratic eigenvalue problem, obtained from the state-space 
formulation, 

(B + λ ΦA)Φ 0 (3)ΦΦ = 000 

gives 2N complex-valued eigenvalues λn  and eigenvectors ΦΦΦΦn . The complex 
eigenvalues λn  appear in complex conjugate pairs in the form of 

2 (4)λ n = −ζ n ω n − jω n 1 − ζ 2 
n and λ* 

n = −ζ n ωn + jωn 1−ζ n 



   

 
   

 

 

  
 

 

   

in which ω  and ζ n  are the apparent natural vibration frequency and apparentn

modal damping ratio, respectively, associated with the nth modal pair. Eq. (4) may 
be utilized to obtain the apparent vibration frequencies and apparent modal 
damping ratios as 

− ( )2 2 Re λ n (5)
Re ( ) + Im ( ) and ζ =ω n = λ n λ n n 

Re ( )λ 2 Im ( )n 
2 

n + λ 

For proportionally damped systems, 2N complex-valued eigenvalues λn  and 
eigenvectors ΦΦΦΦn  may easily be transformed to N real-valued frequencies and mode 
shapes. For non-proportionally damped systems the mode shapes would always be 
complex valued and occur in complex conjugate pairs; the real-valued apparent 
frequencies, however, may be computed from Eq. (5). 

Steady-State Response to Harmonic Ground Motion 

Let z( )t  be the steady-state response of the system due to harmonic ground 
acceleration defined by 

ωu��g ( )t = u e��go 
j t  (6) 

in which u��go  is the peak value of the ground acceleration and ω is the forcing 
frequency. The response z( )t to the harmonic ground motion can be computed as 
(Goel, 1999): 

N (7)zk (t) = � ẑkn (t) 
n=1 

with ẑkn (t) defined as 

2Rdn j (ωt+θn +θkn ) (8)
ẑkn (t) = Γn × Φ × ×Ckn × u��goe 

R C 

kn
 ωn
 

in which and are magnitudes (or absolute values) of the modal 
participation factor and the mode shape component, respectively; Rdn  is the 

Γn Φkn 

dynamic amplification factor; Ckn  is the angular constant; θn
R is the phase angle; 

Cand θkn is the angle. 

One-Story System and Parameters Considered 

The system considered was the idealized one-story building of Fig. 1 consisting of a 
rigid deck supported by structural elements (wall, columns, moment-frames, 
braced-frames, etc.) in each of the two orthogonal directions, and included fluid 



  

 

  

    

  

 

 
  

  
 

 

viscous dampers incorporated into the bracing system. The mass properties of the 
system were assumed to be symmetric about both the X- and Y-axes whereas the 
stiffness and the damper properties were considered to be symmetric only about the 
X-axis. The distance between the center of mass (CM) and the center of 
supplemental damping (CSD) is denoted by the supplemental damping eccentricity, 
esd , whereas distance between the CM and the center of rigidity (CR) is defined by 
the stiffness eccentricities, e . 

CM CRCSD 

a 

d X 

Y 

e 

esd 

Flexible-Edge Stiff-Edge 

Damper 

Figure 1. One-story asymmetric plan system with supplemental viscous damping. 

The following system parameters were considered in this investigation: Ωθ = 1 to 
represents systems with strong coupling between lateral and torsional motions in 
the elastic range; e = 0.2 which implies an eccentricity of 20% of the plan 
dimension; 5% damping ratio in both vibration modes of the system without 
supplemental damping; and ζ  = 10%. The  was varied between the extreme sd e sd

values of −0.5 to 0.5. The selected values of ρsd  = 0, 0.2, and 0.5 represent low, 
medium, and large spreads of the supplemental damping about the CSD. 

Effects of System Parameters on Modal Properties 

Effects of the plan-wise distribution of supplemental damping on various modal 
properties – apparent modal periods, apparent damping ratios, mode shape 
components, modal participation factors, and dynamic amplification factors – were 
examined. It was found that among all the modal parameters, only apparent 
damping ratios and dynamic amplification factors are significantly affected by the 
plan-wise distribution of supplemental damping. Therefore, these modal quantities 
are discussed next; details for other quantities may be found in Goel (1999). 

Damping Ratios. Fig. 2 presents variation of apparent modal damping ratios, ζ1

and ζ2 , with e sd  and ρ sd . This figure leads to the following conclusions. The 
apparent modal damping ratios are significantly affected by both e sd  and ρ sd . In 
particular, ζ1  decreases and ζ2  increases as the CSD moves from left to right in the 
system plan, i.e., e sd  varies from −0.5 to 0.5, and both ζ1  and ζ2 become larger as 
ρ sd  increases. 



 
 

 

 

 

 

 

 
 

       

Damping ratios much higher than the damping obtained by evenly distributing the 
supplemental damping in the system plan, i.e., e sd  = 0, are possible. Consider, for 
example, the damping ratios in systems with ρ sd  = 0.5. The apparent value of ζ1  is 
nearly two-and-a-half times for e sd  = −0.5 compared that for e sd  = 0; the two 
values are 62% and 25%, respectively. Similarly, the apparent value of ζ2  is more 
than two times for e sd  = 0.5 compared to that for e sd  = 0; the two values are 43% 
and 19%, respectively. 

It is also apparent that damping ratios much higher than those in the corresponding 
symmetric-plan system are possible with appropriate plan-wise distribution of the 
supplemental damping. For example, a total of 15% damping (5% natural + 10% 
supplemental) in the symmetric system may give up to 62% in the fundamental 
modal pair of asymmetric-plan system with careful plan-wise distribution of the 
supplemental damping. 
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Figure 2. Apparent damping ratios of asymmetric-plan systems with supplemental 
damping. 

The largest possible values of ζ1  and ζ2  do not occur for the same values of e sd : 
ζ2  is nearly at its minimum value when ζ1  reaches its maximum value and vice 
versa. This indicates that the plan-wise distribution of the supplemental damping, 
i.e., selection of e sd , should depend on which of the two modal pairs dominates the 
response. If the first modal pair dominates, the supplemental damping should be 
distributed to maximize ζ1  by locating the CSD as far away from the CM, on the 
side opposite to the CR, as possible, i.e., e sd  as close to −0.5 as possible. If the 
second modal pair dominates, then the supplemental damping should be distributed 
to maximize ζ2  by locating the CSD as far away from the CM, on the same side of 
the CR, as possible, i.e., e sd  as close to 0.5 as possible. 



 
 

 
 

 
 

 
 

 

 

  

 

Dynamic Amplification Factor. Figure 3 shows the variation of Rdn  with the plan-
wise distribution of supplemental damping. Results are presented for β1= 1, i.e., 
forcing frequency equal to the first apparent modal frequency. Since Rd 2  is nearly 
equal to one for β2 = β1 ×T 2 ÷ T 1 << 1, Rd 2  is not included in the figure. The 
presented results show that Rd1  increases as CSD moves from left to right of the 
system plan, i.e., as e sd  varies from –0.5 to 0.5. The degree to which Rd1  increases 
depends on ρ : larger the value of ρ , smaller the increase. These trends are sd sd 

nearly opposite to the previous observations on ζ1  which decreases as e sd  varies 
from −0.5 to 0.5, and becomes larger as ρ sd  increases (Fig. 2). This is to be 
expected because Rdn  is reduced significantly as damping is increased and vice 
versa. Although results are not presented here for β2 = 1, the results presented in 
Goel (1999) show that Rd 2 decreases as CSD moves from left to right of the system 
plan, i.e., as e sd  varies from –0.5 to 0.5 and Rd 2  becomes smaller as value of ρ sd 

increases. The trends for Rd 2  are related to ζ2  which increases as e sd  varies from 
−0.5 to 0.5, and becomes larger as ρ sd  increases. 
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Figure 3. Dynamic response (or amplification factor) for asymmetric-plan systems 
with supplemental damping; β1 = 1. 

Effects of System Parameters on Edge Deformations 

Figure 4 presents the deformations at the flexible and stiff edges of the system, us1 

and u f 1 , due to the first modal pair for β1  = 1. As expected, deformations on the 
flexible edge, u f 1 , are much larger than those on the stiff edge, us1 . The edge 
deformations are the smallest for e sd  = −0.5. They increase as the CSD moves from 
the left to right, i.e., e sd  varies from –0.5 to 0.5 and reach their maximum value 
near e sd  = 0.5. Although results are not presented for reasons of brevity, the 
opposite trends may be expected for β2  = 1 
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The dependence of the edge deformations on e sd  as well as ρ sd  is the largest for 
e sd  > 0. For e sd  < 0, especially for values of e sd  between –0.25 and –0.5, the edge 
deformations are affected very little by either e sd , as indicated by flattening of the 
curves, or by ρ , as apparent from closeness of the three curves for ρ  = 0, 0.2sd sd 

and 0.5. 
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Figure 4. Deformations at the flexible and stiff edge of asymmetric-plan systems 
with supplemental damping due to first modal pair: β1 = 1. 

Since one of the major concerns for asymmetric plan buildings is to reduce 
deformations on the flexible edge, the plan-wise distribution of the supplemental 
damping should be such that deformation of this edge are reduced the most. The 
presented results suggest that this objective would be met if the supplemental 
damping is distributed such the CSD is as far away from the CM, on the side 
opposite to the CR, as possible, i.e., e sd  as close to −0.5 as possible, and ρ sd  is as 
large as possible. Such a distribution corresponds to maximizing the apparent modal 
damping in the first mode (Fig. 2). Since value of e sd  as close to −0.5 as possible 
and largest value of ρ sd  can not be physically obtained simultaneously, it may be 
sufficient to distribute supplemental damping such that e sd  is equal to in magnitude 
but opposite in algebraic sign to the structural eccentricity. This distribution leads to 
near optimal reduction in the flexible edge deformation; additional reductions, 
although possible, are small because of the low sensitivity of the deformation in this 
range of system parameters. 

Conclusions 

It is demonstrated that most modal parameters, except dynamic amplification factor, 
are affected very little by the plan-wise distribution of supplemental damping. This 
is especially true for practical range of the system parameters. Dynamic 
amplification factor (DAF) is significantly affected by the plan-wise distribution of 
supplemental damping. If the forcing frequency is close to the first apparent 



 
 

 
    

  
 

 

 

 

 

  

 

frequency, i.e., β1  = 1, Rd1  increases as CSD moves from left to right of the system 
plan, i.e., as e sd varies from –0.5 to 0.5. If the forcing frequency is close to the 
second apparent frequency, i.e.,β2 = 1, Rd 2  increases as CSD moves from right to 
left of the system plan, i.e., as e sd  varies from 0.5 to –0.5. DAF becomes smaller 
with larger the value of ρ sd . These trends for DAF are directly related to the 
apparent modal damping ratios, ζ1  and ζ2 . ζ1  increases and ζ2  decreases as CSD 
moves from right to left of the system plan, i.e., as e sd  varies from 0.5 to –0.5. Both 
ζ1  and ζ2  become larger as ρ sd  increases. 

For obtaining the largest reduction in the flexible edge deformation, which is 
generally the most critical edge, the supplemental damping should be distributed 
such the CSD is as far away from the CM, on the side opposite to the CR, as 
possible and ρ sd  is as large as possible. Since both these criteria can not be 
physically satisfied simultaneously, it may be sufficient to distribute supplemental 
damping such that e sd  is equal to in magnitude but opposite in algebraic sign to the 
structural eccentricity. 
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