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Abstract 

Conditionalization, i.e., computation of a conditional probability distribution given a joint probability 
distribution of two or more random variables is an important operation in some probabilistic database 
models. While the computation of the conditional probability distribution is straightforward when the 
exact point probabilities are involved, it is often the case that such exact point probability distributions 
of random variables are not known, but are known to lie in a particular interval. 

This paper investigates the conditionalization operation for interval probability distribution functions 
under a possible world semantics. In particular, given a joint probability distribution of two or more 
random variables, where the probability of each outcome is represented as an interval, we (i) provide 
formal model-theoretic semantics; (ii) define the operation of conditionalization and (iii) provide a closed 
form solution/efficient algorithm to compute the conditional probability distribution. 

1 Introduction 

The problem of finding conditional probability given a joint probability of two events is as old as probability 
theory itself. The famous Bayes formula, P (AjB) � P (AB)�P (B);
 
lies at the core of Bayesian probability theory. It is no surprise, therefore, that database models for managing 
probabilistic data include the operation of conditionalization, the procedure for obtaining the conditional 
probability distribution. The first occurrence of conditionalization in a probabilistic relational algebra is due 
to Dey and Sarkar [4]. Conditionalization operation is also used by Dekhtyar, Goldsmith and Hawkes in 
their Semistructured Probabilistic Database model [2]. In both of these models, the exact probabilities are 
assumed to be known, so it is possible to use the Bayes formula to compute the conditional probability. 

In many situations, however, exact probabilities of events/ exact probability distributions are not available, 
but interval estimates for each probability can be obtained. Such situations include, but are not limited to, 
domains where (i) probabilities are derived via limited sampling, or (ii) probabilities are elicited from experts 
as intervals, or (iii) probabilities are obtained as the combination of dissimilar sets of probabilities. 



Work on imprecise probabilities, and interval probability in particular, falls into two categories: mathe­
matical foundations and use in applications. We focus here on the former. Our work differs significantly 
from the major foundational work so far [10, 11, 8] because we consider a different semantics (as compared 
to Walley, for instance [10]) or the same semantics applied to different objects (see Weichselberg [11]). The 
semantics we consider can be described as a possible worlds semantics. 

If probabilities are elicited as gambles, as described by Walley [10], the behavioural semantics [8] leads to 
a computation of conditionalization of upper and lower previsions separately and independently, rather than 
direct conditionalization of probability intervals. On the other hand, Weichselberger [11] gives a possible 
world semantics for probability intervals. However, his semantics, and therefore his definition of conditional 
probability, apply to Kolmogorov-style probability structures based on atomic events, as opposed to join 
interval probability distributions of discrete random variavbles. 

In this work we solve the following problem. Consider a set of random variables and a joint probability 
distribution of two or more of them, such that the probability of each outcome is expressed as a subinterval 
of the interval [0; 1]. Given a condition on one of the random variables participating in this joint distribu­
tion, compute the resulting conditional probability distribution. More formally, if are random v ; : : : ; v1 n
variables, P (v ) is an interval probability distribution function, and x ), we want to find ; : : : ; v 2 dom(v
1 n n
0 0a function P ) that P(v ; : : : ; v (v � a ; : : : ; v � a ) � P (v � a ; : : : ; v � a jv � x):1 n�1 1 1 n�1 n�1 1 1 n�1 n�1 n

In order to adress this problem, we first need some defintions. In Section 2 we define interval probabil­
ity distribution functions. In this section we also describe the semantics of these functions and their key 
properties. Assuming this semantics, we describe the conditionalization problem in Section 3. In particular, 
we define the conditionalization operator on interval probability distribution functions and then provide an 
efficient mechanism for computing this operator. The two major contributions of this paper are � Model-theoretic semantics for interval probability distribution functions, and � Closed-form solutions for conditionalization of interval probability distribution functions and effi­

cient algorithms for computing conditionalization for the proposed semantics for interval probability 
distribution functions. 

It is important to note that the meaning of the conditionalization problem, and therefore its solution, 
depend greatly on one’s interpretation of what an interval probability distribution function is. While we 
feel that the model presented here is a reasonable interpretation, it is not the only possible one. Our results 
on conditionalization hold only with respect to the possible world semantics of the interval probability 
distribution functions. 

2 Semantics of Interval Probability Distributions 

2.1 Consistency and p-interpretations 

In this paper we assume that the probability space P C[0,1] is the set of all subintervals of the interval �
 [0; 1]. The rest of this section introduces the notions of formal semantics for the probability distributions over P and the notions of consistency and tightness of the distributions. Similar treatment of interval probability 
distributions appeared for the first time in [3], where interval probability distributions were discussed in 
the context of Temporal Probabilistic Databases. Here, we give a more general version of the semantic 
framework and extend it to match our goals. 



V 2 We consider a finite universe V , dom(v) denotes the set of possible values 
of discrete random variables v can take. If Vv1�; v2; : : : v1 N . kFor each random variable ) is a sequence of random v 1) � dom(v2) � : : : � dom(vk()v. ; : : : ; vvariables, then dom(V ) denotes dom(v

Definition 1 Let V ) be a sequence of random variables from (V ). An interval probability � (v ; v ; : : : ; v1 2 k
distribution function1 over V is any function P dom(V ) ! C[0,1].: 

Where the use of it does not cause confusion, we abbreviate “probability distribution function” to “pdf” 
and “interval probability distribution function” to “ipdf”. 

There is one major omission in the definition above. Remember that a (complete) point probability dis-P 
tribution over is defined as a function [0; 1], such that The V p : dom(V ) ! p(�x) � 1. x�2dom(V ) 
latter condition specifies which of the functions can be considered valid probability f : dom(V ) ! [0; 1] 
distribution functions. In what follows, we investigate such a validity criterion for the ipdfs. 

Our first goal is to interpret the interval as the probability of a particular outcome. We approach this 
problem by assuming that in the “real world” the probability of any outcome is a point probability. This 
means that the “real” probability distribution function for the joint distribution of random variables V in our 
world is a point probability distribution. The intervals represent our lack of knowledge about the exact point 
probability distribution. Therefore, we assume that an interval probability distribution represents a set of 
possible point probability distributions. 

Definition 2 Let V be a sequence of random variables. A probabilistic interpretation (p-interpretation) P
 
over V is a function I : ! [0; 1], such that I (� � 1.dom(V ) x)V Vx�2dom(V ) 

Given a set of random variables, any valid point probability distribution is a p-interpretation over it. Given 
an ipdf, a p-interpretation plays the role of a “possible point probability distribution” as mentioned above. 

In the rest of the paper we adopt the following notation. Given a probability distribution funtion � x)dom(V ) ! C[0,1], we write for each x 2 dom(V ), P (� � [lx�; ux�]. Whenever we enumerate dom(V P) as 
: dom� ((aV ); a�; : : : ; ax x g, we write P (�xi) � [li ], I1 � i m. Also, it is sometimes convenient to write i if� ; : : : � ; u �1 m iI 1 2 m) to represent a p-interpretation such that I(�x ) � a , 1 � i � m. 

Definition 3 Let V be a set of random variables and P ! C[0,1] an ipdf over V . A probabilistic : dom(V ) 
interpretation I satisfies P (I � P ) iff jV V (8x� 2 dom(V ))(l � I (�x) � u ):
x� V x�

Basically, if a p-interpretation satisfies an interval pdf P , then given P , I is a possible point prob-IV V
ability distribution. As such, we interpret an ipdf P as a set fIV jI j� Pg. These I s are the “possible V V
worlds” represented by the ipdf. 

Example 1 Consider a random variable v with domain fa; b; cg. Let probability distribution functions P ,1P and P and p-interpretations I , I , I and I be defined as 2 3 1 2 3 4 P1 P2 P3 I1 I2 I3 I4 P1(a) � [0:2; 0:3] P2(a) � [0:3; 0:6] P3(a) � [0:4; 0:5] I1(a) � 0:3 I2(a) � 0:5 I3(a) � 0:25 I4(a) � 0:7
 P1(b) � [0:3; 0:45] P2(b) � [0:3; 0:4] P3(b) � [0:4; 0:5] I1(b) � 0:3 I2(b) � 0:4 I3(b) � 0:45 I4(b) � 0:3
 P1(c) � [0:3; 0:5] P1(c) � [0; 0:4] P3(c) � [0:4; 0:5] I1(c) � 0:4 I2(c) � 0:1 I3(c) � 0:3 I4(c) � 0
 
1Here, we consider only complete interval probability distribution functions, i.e., functions which provide probability estimates 

for each possible combination of values of the participating random variables. The framework described here can be extended to 
the case of incomplete probability distributions. 



P-interpretation I satisfies both P and P . P-interpretation I satisfies P but not P while I satisfies 1 1 2 2 2 1 3 P ; I ; I1 but not P . Finally, I satisfies neither P nor P . None of the p-interpretations I ; I 4 satisfies P .2 4 1 2 1 2 3 3
Now consider an arbitrary ipdf As mentioned above, Definition 1 lacks a validity criterion for ipdfs. P . 

We can reconstruct this criterion now.2 

Definition 4 An interval probability distribution function C[0,1] is consistent iff there V V j� P . P : dom(V ) ! 
exists a p-interpretation I , such that I

From now on, we consider only consistent ipdfs. This excludes all ipdfs which have no satisfying p-
interpretations. Example 2 below illustrates this definition. j� PExample 2 Consider the ipdfs P , P and P described in Example 1. As that example shows I and 1 2 3 1 1 I j� P , so both P and P are consistent ipdfs. 1 2 1 2 

On the other hand, none of the p-interpretations from Example 1 satisfied P . Any p-interpretation 
satisfying P3 must have I(a) � 0:4, I(b) � 0:�4 and 1 I(c) � 0:4, hence I(a) + I3 (b) + I(c) � 1:2, which 

I 
contradicts the constraint I(a) + I(b) + I(c) on p-interpretations. No p-interpretation could satisfy P ; P is inconsistent.
 

Given an interval pdf P , there is a straightforward procedure that allows one to check P ’s consistency.
 

3 3 
The procedure is based on the following result. 

Theorem 1 Let be a set of random variables and C[0,1] be an ipdf over Let domi�1(Vli)��1 fx�1V; : : : ; x�mg Pi�1(�xui)i ��1[. li; ui]. P P : dom(V ) ! V . 
and is consistent iff the following conditions hold: (i) P P m mand (ii) 

Proof. 
Let P be an ipdf over V and let dom(V ) � f� ; : : : ; � g. Remember that we denote P (�x ) as [l ; u ].x x
1 m i i i

Consider now two functions such that and for all f ; f : dom(V ) ! [0; 1] f (�x ) � l f (�x ) � ul u l i i u i i1 � i � m. P P m m1. � 1 and is consistent.� 1) P i�1 i�1 m P li l � 1 then f ui j� P , therefore P is consistent. If is a p-interpretation and f
If 
Pimi�1�1 uii � 1 then flu P l u j� P , therefore PP is consistent. P is a p-interpretation and fm m m m � U . li � 1 P ui � 1. li � L ui � U .Consider now the case when and Let and We i�1 i�1 i�1 i�1 

know that L � 1 
Consider a function I such that : dom(V ) ! [0; 1] � � 1� L 1� L I(�x ) � u + 1� l :
i i i
U � L U � L 1�LWe now show that is a p-interpretation and I � Let � � . As L 1 U , 0 � 1I j P . � � � � 

and we can rewrite the definition of I as I(�xi) � li + �(ui � li). Then 
U�L li � I(�xi) � ui. Thus, if I is a 

p-interpretation then I j� P . P mTo show that I is a p-interpretation we need ) � 1. This can be demonstrated as follows: I( �x
ii�1 P P P P m m 1�L 1�L m m I( �x ) � ( u + (1 � )l ) � � u + (1 � �) l � �U + (1 � �)L �i i i i ii�1 i�1 i�1 i�1U�L U�L 2 2(1�L)U+(U�L�1+L)L1�L 1�L U�LU+LU�L �L+L U�L U + (1 � )L � � � � 1. U�L U�L U�L U�L U�L 
2For historical reasons we refer to this criterion as “consistency”. 
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Figure 1: Tightness of interval probability distributions. P P m m2. � 1 and is consistent.l u � 1( Pi ii�1 i�1 

If P is consistent, then there exists a p-interpretation [0; 1], such that I Then, for I : dom(V ) ! j� P . 
each � � i � m, we have l . But then, xi; l1i � I(�xi) � i � uIi(�. xi) � uiP P P m m m i�1 i�1 i�1 P P P m m mAs I is a p-interpretation, � 1 and we immediately get � 1 and I(�xi) li ui � 1. 2 i�1 i�1 i�1 
2.2 Tightness 

Consistency is not the only property of interval probability distribution functions of interest. Another prop­
erty, tightness, is also very important. A similar notion arises in Walley’s work [10] (he talks about “avoiding 
sure loss”). In Weichselberger [11], tightness shows up as F-probability. 

Example 3 Consider the ipdf P as shown in Figure 1 (left). It is easy to see that P is consistent (indeed, 
the sum of lower bounds of probability intervals adds up to 0.4 and the the sum of the upper bounds adds 
up to 1.5). In fact, there will be many different p-interpretations satifying Of particular interest to us P . 
are the p-interpretations that satisfy P and take on marginal values. E.g., p-interpretation :I I (�x ) �1 1 10:1; I (�x ) � 0:1; I (�x ) � 0:1; I (�x ) � 0:7 satisfies P and hits the lower bounds of probability intervals 
provided by 

1 2 P for x�11, x�32 and x�3. 
1
Similarly, 

4 I2: I2(�x1) � 0:2; I2(�x2) � 0:2; I2(�x3) � 0:3; I2(�x4) � 0:3 
satisfies P and hits the upper bounds of probability intervals for and � . Thus, every single number x� ; x� x1 2 3
in the probability intervals for � , � and � is reachable by different p-interpretations satisfying P .x x x1 2 3 

However, the same is not true for � . It is easy to see that for no p-interpretation I satisfying P , I(�4 400::19. Indeed, we know that 
. However, the maximum values for 

I(�x1)+I(�xx2)+x�I1(�, xx�32)+and 
I(�xx�43) � 1 

allowed by 
and if IP(�xare 

4) � 00:2:, 10then :2 and 
I(�x01:)+3 respectively, and 

I(�x2)+I(�xx3)) �� 
they add up to only 0:7. 

Similarly, no p-interpretation I satisfying P can have I(� ) � 0:8. Indeed, in this case, I(�x x ) + I(�x ) + 4 1 2I(�x ) � 1 � 0:8 � x� x x0:2. However, the smallest values for , � and � allowed by P are all 0:1 and they 3 1 2 3 
add up to 0:3. 

The “reachability” notion discussed in the example above can be formalized. 

Definition 5 Let P C[0,1] be an interval probability distribution function over a set of random 
variables V . Let X �: Xfx�1!; : : : ; Vx�jmg and P (�xi) � [xlii; u) �i]. A number �. 

� 2 [li; ui] is reachable by P xi iff at �
there exists a p-interpretation I � P , such that I(�

The proposition below specifies the key property of reachability: it is continuous, i.e., every point between 
two reachable points is also reachable. 



Proposition 1 Let P C[0,1] be an interval probability distribution function over a set of random : X ! 
variables V . If for some there exist �, �, lx� 2 X �x
� � � � � u
�x
which are both reachable by P at x�, 
then any � 2 [�; � ] is reachable by P at x�. 

Proof. Similar to the proof of Theorem 1. 2 
Intuitively, points unreachable by an ipdf represent “dead weight”; they do not provide any additional 

information about the possible point probabilities. Dealing with such interval pdfs is inconvenient - un­
reachable points obscure the actual structure of the set of satisfying p-interpretations. It is desirable to 
consider only those interval pdfs that contain no unreachable points. We need, however to make sure that (i) 
no expressive power is lost by ignoring ipdfs with unreachable points and (ii) given an ipdf with unreachable 
points there is a way to “deflate” it, i.e., to identify and “remove” all unreachable points. 

Definition 6 Let C[0,1] be an ipdf over a set of random variables. is called tight iff P : X ! V P
 (8x� 2 X)(8� 2 [l
�x
; u
�x
])
 (� is reachable by at P x�). 
Example 4 Let us pick up where Example 3 left off. As shown in that example, the ipdf P shown on the 0left-hand side of Figure 1 is not tight. On the other hand, the ipdf P on the right-hand side of Figure 1 
is tight. Its tightness follows from the fact that p-interpretations I
1
 and I2
 from Example 3 both satisfy it, 
and now, both upper and lower bounds for x�
4
 are reachable. By Proposition 1 this means that every point 
between upper and lower bound is reachable for �x4
.
 

Function P 0 has another important distinction w.r.t. to P . Indeed, one can show that for any p-interpretation I , I j� P iff I j� P 0, i.e., the sets of p-interpretations that satisfy P and P 0 coincide. Hence, one can say 0that P is a tight equivalent of P . 
In general when dealing with interval probability distributions that are not tight, we will want to replace 

them with their tight equivalents. The procedure of substituting an untight interval pdf with its tight equiva­
lent, which we call tightening is exactly the “deflation” mechanism that we mentioned above. 0Definition 7 Given an ipdf P , an ipdf P is its tight equivalent iff 0 � P is tight. 0 � For each p-interpretation I , I j iff I j .� P � P 

An ipdf P uniquely determines the set of p-interpretations that satisfy it. Hence, 

Proposition 2 Each interval probability distribution function P has a unique tight equivalent.
 

Definition 8 A tightening operator T takes as input an interval probability function P C[0,1] and
 : X ! 0returns its tight equivalent P ! C[0,1].: X 
Our next goal is to compute the result of applying the tightening operator to an interval probability distri­

bution function efficiently. First we notice that if P is tight then T (P ) � P . The intuition behind tightening 
can be shown in the following example. 



Example 5 We continue studying the interval pdfs in Figure 1. As shown in Examples 3 and 4, the ipdf P 
on the left is not tight, and the ipdf P on the right is its tight equivalent. But how, given P , do we construct P 0 � T (P ) ? P 0 x�4 T (P )(�xi) � P (xi)We know that is not tight only for , so from this we can conclude that for i x x� 1; 2; 3. Consider now � . What is the largest possible probability that � can have? Well, this probability 4 4 
is maximized when the probabilities of all other outcomes are minimized. This occurs when the probabilities 
take the value of their respective lower bounds. In our case, we can minimize the sum of probabilities for ; � xoutcomes x�1 x2 and �3 at 0:3 � 0:1 + 0:1 + 0:1 � l1 + l2 + l3. As the sum of all probabilities must 
be equal to 1, the probability of must take the value of Since x� 1 � (l + l + l ) � 1 � 0:3 � 0:7. 0:7 2 [l ; u ] � [0:1; 0:8], the p-interpretation 

4 I defined as x (0:1; 0:11; 0:1;20:7) 3satisfies P . 0 x1It is now clear that no p-interpretation 
4 4 I 0 such that I 0(�4) � 0:7 can satisfy P : constraints 0:1 � I (� ), 0:1 � I 0(�x2), 0:1 � I 0(�x3), 0:7 � I(�x4), and I 0(�x1) + I 0(�x1) + I 0(�x1) + I 0(�x1) � 1 cannot be 

simultaneously satisfied. 
Similar reasoning about the smallest possible probability value for � yields 0:3x � 1 � (0:2+0:2+0:3) �4 1 � (u + u + u ) I � (0:2; 0:2; 0:3; 0:3) Pas the answer. P-interpretation satisfies and for any p-

interpretation I�(�x4)1� 2 I� such that 
3 I�(�x1) + I�(�xI4�)(�x�1) + 0:3I , constraints �(�x1) + I�(�x00I1�)(�x�1)1 � 0:2, I�(�x2) � 0:2, I�(�x3) � 0:3, 0:3, and cannot be satisfied. Combining these two 

observations together, we conclude that T (P )(�x4) � [0:3; 0:7] � [1 � (u1 + u2 + u3); 1� (l1 + l2 + l3)]. 
In practice, there are other cases to consider. Theorem 2 specifies the exact closed form solution for the 

tightening operator. This solution induces an efficient procedure for computing the results of tightening an 
interval probability distribution function. 

Theorem 2 Let C[0,1] be a consistent ipdf over a set of random variables Let dom(V ) � fx�1; : : : ; P :x�dommg and 
(V )P!(�xi) � [li; ui]. Then m (8i)(1 � i � m) m V . X X T (P )(�x ) � [max(l ; 1� u + u ); min(u ; 1� l + l )]:
i i j i i j jj�1 j�1 

Proof(sketch) P P m m0Let P )]: We need to prove two statements: (�x ) � [max(l ; 1� u + u ); min(u ; 1� l + li i j i i j jj�1 j�1 0 0 P � P and P is tight. � P � P . 
First we notice that for all 

Indeed, 

0 li � max(li; 1 �1P�mji�1�umj , +[max(uiP) and 
li; 1min(�Pujmi�1; 1u�jP+mju�1i);lmin(j + lju)]i; 1��[liP; uPjmi�1] �lj u+1. Now, because 

lj)]: � [li; ui]. m m
 P is consistent, P 81 � i � m, l � u and lj �P1 � Pj�1 u . But then, 1� m uj � 0 and hence i i jj�1 j�1 1P� umj�1j �uuj i+ ui � ui, and therefore i � min(Pui; 1 �max(ujP+mj�1luii; 1l�j�+1 �ljmj)]P�1 . Finally, for 
uj l+j +ui)li�1u�i. j � m, lj � uj , Pmj�1 lj � li �Similarly, we obtain lm m mand therefore 1� . Therefore, j�1 j�1 j�1 m m
 X X
 l � max(l ; 1� u + u ) � min(u ; 1� l + l ) � u :
i i j i i j j i
j�1 j�1
 0This means that (8I : dom(V )! [0; 1])(I j� P ) I j� P ). 0We now need to show the inverse: (8I : dom(V )! [0; 1])(I j� P ) I j� P ). 



Let I be a p-interpretation over V and let I P . Therefore, (81 ). We need to 
show max(li; 1 �Pjm�1Pujm+ ui) � I(�xi) �j�min(ui; 1 �Pjm�1 lj��ilj�). m)(li � I(�xi) � ui

We show max(l ). The other inequality can be proven similarly. 
We know that li i�; 1I�(�xi)jso if 

�1 ujmax(+ uil)i;�1 �I(�Pxi jm�1 uj + ui) � li, then the inequality holds. 
Assume now that Pmj�1 max(li; 1�Pmj�1 uj+ui) � 1 �Pjm�1 ujP+ui. Then, as li � 0, 1�Pmj�1 uj+ui � 0 

and therefore mAssume that the inequality does not hold, i.e., I(� . We know that for all 1 m m m m. Therefore I(�x ) � u I(�x ) � I(�x ) + I(�x ) � u � u + I(�x ) � u � u +
jP i ujP� ju�1i � 1. j Pj�1;j�6 i xji) � 1 �i jP�1j+�1ui j i i Pj�1 �j j �im m j�1 1�mj�1 uj + ui � 1. Pjm�1 I(�xj) I(�xi) � 1 �But as I is a p-interpretation, must be equal to 1. The contradiction implies P 0 uj + ui. � P is tight. 0
We show that for all 1 m, every point a ) is reachable. By Proposition 1, it is sufficient to � i � 2 P (�xi0prove that the end points of the P ) interval are reachable. (�xiP P P m m m0 P (�x ) � [max(l ; 1� u +u ); min(u ; 1� l +l ; 1� u +u )
)]: We show that max(li i j i i j j i j ij�1 j�1 j�1 
is reachable. Similar reasoning can be applied to show the reachability of the upper bound. P mWe show that there exists a p-interpretation such that I and I(�0 0 I Pj� P xi) � max(li; 1 � P uj + ui). j�1 
As we have shown that P , I� P j� P . 

Two cases need to be considered. First, let max(l . Then 1� l
As 
Pm lj � 1, we get 

Pm lj � li � 1� li �Pim; 1�uj �mj�1ui. uj + ui) � li i � mj�1 uj � ui j�1 j�1 j�1 
But then (by reasoning similar to that in the proof of Theorem 1), there exist numbers a , such ; : : : ; a1 m

that a and (81 ) and a 1. But then, let I be a p-interpretation � l � j � m)(l � a � u + : : : + a �i i j i j 1 mP m 0such that I(� for all 1 m. Then I(� , 1 and I P . Therefore Ix ) � a � j � x ) � l I(�x ) � j� j� Pj j i i jj�1 P mand l ) is reachable. � max(l ; 1� u + uP P m mLet now 

i max(i li; 1 � j�1: domjuj (+Viu)i!) � 1 � uj + uxi. i) � 1 �P jm�1 uj + ui xj) � ujj�1 j�1 P 
Consider the function I [0; 1], such that I(� and I(� for all m 1 � j � m, j 6 i. If I is a p-interpretation then I j PP as l �x1 � j�1 u + u � u and u 2 [l ; uj ].� � i j i i j imTo prove that I is a p-interpretation we must show that Pmj�1 I(�xj) P�mjP�1mj�1uj;j+�6 iuIi(�� max(xj) + I(�lix;i1) ��PPmjmj�1�1j�1uujjI+(��uju) � 1ii + 1 . �Pmj�1 uj + ui � 2 Indeed, 1. This proves 

the reachability of 1� ), which, in turn proves the theorem. 

3 Conditionalization of Interval Probability Distributions 

Interval probabilities arise in probabilistic inference (Bayes nets, for instance) or planning (Markov decision 
processes). Such stochastic models are often built from probabilistic data in the form of joint probability 
distributions. In order to compute conditional probability tables, we must define conditionalization. Such 
conditionalization also occurs in the query algebras of probabilistic databases [4, 2, 1]. These applications 
require efficient computation methods such as those described in this section. 

To illustrate what is involved in the conditionalization of ipdfs, consider the following example. 0Example 6 Consider the joint probability distribution of two random variables v and v shown in Fig-P 0
ure 2. In this example, our goal is to find the ipdf P ! C[0,1] that best describes the probability : dom(v) 0distribution of v given that v � a. 



P: 0 v v
 
a a 
a b 
b a 
b b 

l u 
0.3 0.45 
0.2 0.25 
0.25 0.3 
0.1 0.25 

P 0 � �v 0 �a(P): v l u 
a 0.5 0.643 
b 0.357 0.5 

Figure 2: Conditionalization of Interval PDFs 

As we recall, P is associated with a set of p-interpretations fIjI � Pg, each p-interpretation representing j
 0
a possible point probability distribution. For each p-interpretation I satisfying : dom(v)�dom(v ) ! [0; 1]
 0 0 0
 P , we can find such a p-interpretation [0; 1], such that I as follows: I : dom(v) ! (x) � p(xjv � a)
 I(x;a)
0 0
 I (x) � 2
(x fa; bg). The ipdf P we are trying to determine must then be associated with the I(a;a)+I(b;a)
 0
set of all such p-interpretations I 0: fI0 I dom(v) j 0 0 I(x;a) g.: ! [0; 1]jI � P; I (x) �
 I(a;a)+I(b;a)
 0 0
We can therefore describe P as P (x) � [min I (x); max I (x)]. Ij�P Ij�P
I I
 
This reasoning leads to the following definition of the conditionalization operation.
 
In order to simplify the definitions below, we employ the following notation. Let V be
 � (v ; : : : ; v )
1 n
0
a sequence of random variables and let v and V Without loss of generality, we further 2 V � V � fvg. 0
assume that v and V Now, let I be a p-interpretation. Let X � fx1; : : : x�kgv�n dom(v)� fvy�1; : : : v2 domn�(1Vg. 0 : Idom[X](�(yV))�!P[0im�1; 1]I(�y; xiand ). We define: ). With this notation 

in mind, we define conditionalization as follows. � fx ; : : : ; x
Definition 9 1; : : : xLet v 2 V . A conditionalization constraint, c, is an expression of the form “� fvxg. 
1 kg” 

where x 2 dom(v). We slightly abuse notation and write v � x instead of vk

Intuitively, conditionalization of a joint probability distribution P over the set of random variables fv1 : : : vng 1 : : : vn�1 vn � fx1; : : : ; xkg n 1; : : : xkg. 

V � 
under the constraint means finding the joint probability distribution of ran­

dom variables fv g under the assumption that v takes one of the values fx 0
Definition 10 Let V (v ; : : : ; v ) be a sequence of random variables, 1 k v � n and V V � fvg. Let c� v �
1 n

be a conditionalization constraint v � fx ; : : : ; x g. V
The conditionalization operator � takes as input a (consistent) tight interval pdf P over V and condi­0 V 0
tionalization constraint c and returns an interval pdf P ! C[0,1] such that3 � � (P; c) : dom(V )
 " � ! � !# 0 IX(�y) IX(�y) P (�y) � min P ; max P : �0 �0 Ij�P 0 0 I (y ) Ij�P 0 0 I (y )X Xy 2dom(V ) y 2dom(V )
 V
When V and c are fixed, we write � (P; c) as �c(P ). 

Example 6 and Definition 10 specify what the result of conditionalization operation should represent, 
however, they do not specify how to compute this result. 

3The denominator in the expression is 0 only if the numerator is also 0. In such cases we default to a value of 0. 



Example 7 Let us continue where Example 6 left off. In order to compute the result of conditionalization I(x;a)0 P � � 0 (P ) we must find the minimum and maximum values of the expressions of the form v �a I(a;a)+I(b;a) 
for x 2 fa; bg over all p-interpretations I j� P . yLet us determine these bounds for As the function for is monotonically x � a. f(y) � c � 0 y+c I(a;a)increasing when y � 0, both minimum and maximum values of correspond to I(a; a) assuming I(a;a)+I(b;a) 
its minimum and maximum value in conjunction with I(b; a) being the largest (for minimum) and smallest 
(for maximum values). P (a; a) � [0:3; 0:45] and P (b; a) � [0:25; 0:3] specify the upper and lower bounds on I(a; a) and I(b; a) 
respectively. Since P is tight, all the bounds are reachable. Thus, we could expect that I(a;a) max(I(a;a)) 0:45 0:45
 � max � � � � 0:643 I(a;a)+I(b;a) max(I(a;a))+min(I(a;b)) 0:45+0:25 0:7 I(a;a) min(I(a;a)) 0:3 0:3
 min � � � � 0:5. I(a;a)+I(b;a) min(I(a;a))+max(I(a;b)) 0:3+0:3 0:6 and 

There is, however, one caveat. While all four upper and lower bounds are reachable, they are reachable 
independently, i.e., we do not know up front whether the upper bound for P (a; a) is reachable (in a single 
p-interpretation) togehter with the lower bound of and vice versa. This needs to be checked. In P (b; a) 
our example, it turns out to be the case: p-interpretation 02:25, I1 � 0:3� 

, I2 and reaches both 2 � 0:3, I2 max(I(a; aI : ))I (a; a) 
and reaches both 

1
and p-interpretation 

�min(0:2I, (Ia; a(b; a)) )I2 I (a; a)(b; b) 0(:a; b1 satisfies ) � 0:2P , I (b; a) (b; b) 1 1
and min(� I0(:b; a45, ))I (a; b) 1

and 

�: � 0:2 satisfies P max(I(b; a)). 0 0This allows us to conclude that P � [0:5; 0:643]. Similar reasoning leads to establishing that P(a) (b) � [1 � 0:643; 1 � 0:5] � [0:357; 0:5]. 
Observe that, by Definition 10, in order to compute the result of conditionalization of an ipdf, a number of 

non-linear optimization problems must be solved. In the example above, the computation of the condition­
alization result was simple because the pairs max(I(b; a)) and max(I(a; a)),min(I(a; a)), min(I(b; a)) 
were simultaneously reachable. In practice, this is not always the case. When simultaneous reachability is 
unachievable, the optimization problems become more complex. Luckily, even in such cases, the optimiza­
tion problems have closed form solutions, as described in the following theorem. 0Theorem 3 Let V ) be a sequence of random variables, v and V � fvg. Let c be � (v ; : : : ; v � v � V
1 n n
a conditionalization constraint. 0For � ) let y 2 dom(V � � P P l[X] � max l ; 1� u�0 0 �0 0y� y;x)x2X (� y 6��y x 62X (y ;x )or � � P P u[X] � min 1� l ; u�0 0 �0 0y� (�y;x)or y ��6 y x 62X (y ;x ) x2X 
Then 2 l[X]y�0 4 � �P (�y) � ;
 P P min 1� 0 l �0 0 ; � u ��
 + l[X]� y�x 62X (y ;x ) y 6��y ; x2X (y ;x) 3 u[X]
y�
 5� �
 P P max �� l �� + u[X] ; 1� 0 u �0 0
y�y 6��y ; x2X (y ;x) x 62X (y ;x ) 
Proof (sketch). We sketch here the proof of the theorem for the case when the conditionalization constraint c is of the form v � x. 



0 0 0 0Let � ). We need to find Py 2 dom(V (�y) � [l ; u ] y� y�0 0
Consider the problem of finding the lower bound l of P . y�
As follows from Definition 10 of conditionalization, � ! � ! I(�y; x) I(�y; x)
 l � min P � min P :
y� 0 0 Ij�P 0 0 I(�y ; x) Ij�P I(�y; x) + 0 0 0 I(�y ; x)
 y� 2dom(V ) y� 2dom(V );y� ��6 y
 wThis minimization problem can be simplified to min(f(w; z)) Given the additional con­� min( ). w+z 
straints on the relationship of w and z imposed by p-interpretation origins of these variables, the minimum of 
this function can be computed by first computing the minimum w0 for w and then finding the maximum z sat-P 
isfying the ensuing constraints when w � w0. Substituting w � I(�y; x) and z � y�02dom(V 0);y�0��6 y I(�y0; x) 
we get � ! min (I(�y; x))I(�y; x) Ij�P min P � P : 0 0 Ij�P I(�y; x) + �y 0 2dom(V 0 );�y 0 6��y I(�y ; x) min Ij�P (I(�y; x)) + max Ij�P ( �y 0 2dom(V 0 );�y 0 6��y I(�y ; x)) P 0
Now, we find min and max(I(�y; x)) ( 0 0 0 I(�y ; x)). Ij�P Ij�P
 y� 2dom(V );y� ��6 y
 P
 

From the proof of Theorem 2 we know that min 0); i.e., (I(�x)) � max(l ; 1� 0 u
Ij�P x� x�x� �6 x
 min0 Ij�P (I(�y; x) � max(l(�y;xI(�)y; x; 1 �)P to 
x�l0[�(�6fxy;xg]y)�, the maximum of the sums of the 

ux�0 � l[fxg]y�): I(�y; x)Now, fixing the value of of the remaining 
(� 0) rows of will be the minimum of the following two quantities (the other being (�y ; x) y 6� y� dom(V )
 

unreachable): P
 � u
the sum of their respective upper bounds according to P : ;�0 0 �0 �0
 y 2dom(V );y ��6 y (y ;x)
1 minus the sum of lower bounds of all other rows of dom(V ) according to P :� 1 �Py�02dom(V 0)Px0�6 x l(�y0;x0) � l[fxg]y�0 . 
These formulas, when combined, give us the desired result. Similar reasoning establishes the formula for 
the upper bound. 2
 
4 Related Work and Conclusions 

Imprecise probabilisties have attracted the attention of researchers for quite a while now, as documented 
by the Imprecise Probability Project [8]. The seminal work of Walley [10] made the case for interval 
probabilities as the means of representing uncertainty. In this book, Walley talks about the computation of 
conditional probabilities of events. As discussed in Section 1, his semantics is quite different from ours. 

On the other hand, Weichselberger [11] extends the Kolmogorov axioms of probability theory to the case 
of interval probabilities. As it builds on Kolmogorov probability theory, the interval probability semantics 
is defined for a �-algebra of random events. Weichselberger completes his theory with the definition of 
conditional probability. Our semantics can be viewed as extending the semantics of Weichselberger [11] to 
the case of probability distributions of discrete random variables. Our notion of consistent interval pdfs cor­
responds to Weichselberger’s R-probabilities and our tight interval pdfs correspond to his F-probabilities. 
However, his definition of conditional probability applies to a different structure than ours. Note that this 
is also true about the work on conditional probabilities by Walley [10]. Dekhtyar, Ross and Subrahmanian 
in [3] developed a specialized semantics for probability distributions used in their Temporal Probabilistic 
Database model. In particular, they defined the notions of consistency and tightness of interval probability 



distributions. Our semantics generalizes theirs. One other instance of the possible world semantics for in­
terval probabilities occurs in Givan, Leach and Dean’s discussion of Bounded Paramenter Markov Decision 
Processes [6]. 

Conditionalization as an operation in a probabilistic database model had first been considered by Dey and 
Sarkar [4]. Dekhtyar, Goldsmith and Hawkes also use this operation in their Semistructured Probabilistic 
Algebra [2]. In both works, conditionalization is performed on point probability distributions of discrete 
random variables, and the operation itself is fairly striaghtforward. Interval probabilities have attracted the 
attention of a number of researchers in databases [9, 3, 5], but the database models proposed did not include 
the conditionalization operation. The work described here is part of the research that lead to the extension 
of the Semistructured Probabilistic Database model of [2] to the case of interval probabilities [1]. 
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