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Unlike standard models, a split population hazard model allows the exit 
probability to be less than one. Although conceptually attractive, split 
models are prone to identification problems. In the reduced form 
estimation of the hazard function, the influence of split may not be 
distinguishable from that of neglected heterogeneity. For illustration, 
I use Monte Carlo simulations to highlight the problem of interpreting 
the structural parameters of the split Weibull and the Weibull-gamma 
models. 

I. Introduction 

Hazard rate models are used to study the instanta­
neous probability (hazard) of a transition from one 
state to another, given that the transition has not 
already occurred. An implicit assumption in standard 
models is that of certain exit implying that all 
observations will eventually experience the event of 
interest if the observation period is sufficiently 
prolonged. In an application of unemployment 
durations, it implies that all unemployed individuals 
will eventually find employment. In studying criminal 
recidivism, Schmidt and Witte (1989) argue that some 
criminals are 'cured' in that they will never commit 
another crime that sends them back to prison. They 
introduce a split hazard model that takes into 
account the possibility that the transition from one 
state to another may never occur. 1 

In this article, I show that although split models 
have an obvious intuitive appeal in social sciences, 
they are prone to certain identification problems. 

In particular, a split parameter can spuriously be 
influenced by the misspecification of the functional 
form of the underlying hazard function. Similarly, an 
incorrect functional form of the hazard may be 
inferred when the hazard model is split. For illustra­
tion, I show that when the underlying model is 
Weibull-gamma, the estimated split Weibull model 
spuriously indicates that a fraction of observations 
will never experience an exit. Similarly, researchers 
may confuse split data with the presence of neglected 
heterogeneity in the model. The allowance for both 
split and neglected heterogeneity may just be com­
pensating for a restrictive Weibull specification that 
only allows monotonic hazards. It is difficult to 
discriminate between the split Weibull and the 
Weibull-gamma models since the reduced form of 
both models permit an 'inverted U' shape of the 
hazard. This result is highlighted with Monte Carlo 
experiments. I argue that although the reduced forms 
are somewhat similar, the interpretation of the results 
for the two models can be quite different. 

1 In biostatistics, these models, referred to as cure models, allow for a cured fraction of individuals who will never experience a 
reoccurrence of disease. For applications in economics and finance, see Bandopadhyaya and Jaggia (2001), DeYoung (2003), 
Mavromaras and Orme (2004), Chang and Yeh (2007), Madden (2007) etc. 

 

 


 




 

II. Background 

Hazard models are represented in terms of the 
density, survivor and hazard functions, denoted by 
f(t; X), S(t; X) and h(t; X) respectively.2 These 
functions, conditional on the vector of characteristics 
X, are defined as follows: 

f(t; X)
h(t; X) = S(t; X); S(t; X) = P(T > t); 

f(t; X) = as(t; X) (1)
at 

Let C be an indicator variable that equals 1 if the 
duration is complete and 0 if it is right censored. 
The following log-likelihood function uses the logs 
of f(t; X) for completed and S(t; X) for censored 
observations: 

ln L = L
N 

C(lnf(ti; Xi))+ (1 - C) ln(S(ti; Xi)) (2) 
i=i 

An implicit assumption made in the above formula­
tion is that of certain exit, implying that S(t; X) --+ 0 
as t --+ oo. In other words, an event (transition from 
one state to another) will take place if the observation 
period is sufficiently long. A split hazard model takes 
into account the possibility that for some observa­
tions, the exit may not happen. 3 The resulting model 
estimates the hazard parameters along with the split 
parameter, 8, which allows the probability of eventual 
exit to be less than one. 

As mentioned earlier, we typically observe com­
pleted as well as censored observations. For some 
censored observations, the exit may never happen. 
Let u be a latent variable that equals 1 for an eventual 
exit and 0 otherwise. Further let P(u = 1) = 8, 
where 8 .:::; 1 represents the probability of eventual 
exit. If the event occurs, we have C = 1 and 
u = 1. The appropriate contribution for such an 
observation is 

P(u = 1)/(t; X, u = 1) = 8f(t; X, u = 1) (3) 

For a censored observation, we entertain two 
possibilities: (a) the event would occur if the obser­
vation period is prolonged and (b) the event would 
never occur. Specifically, the contribution of a 
censored observation is 

P(u = 0) + P(u = 1)S(t; X, u = 1) 

= 1-8 + 8S(t; X, u = 1) (4) 

2 See Kiefer (1988) and Lancaster (1990). 

The corresponding log-likelihood function of a split 
hazard model is 

N 

ln L = L C(ln 8 + lnf(ti; Xi))+ (1 - C) 
i=i 

X ln(1 - 8 + 8S(ti; xa) (5) 

where f(t; X) = f(t; X, u = 1) and S(t; X) = 
S(t; X, u = 1). 

Split models are known to be prone to certain 
inherent identification problems. First, a censored 
observation suggests that the event of interest has not 
yet happened, but it is not clear if the event would 
have occurred had the observation period been 
prolonged. Second, researchers often formulate 8 as 
a logistic function of the X variables, which are also 
used in the hazard. Since economic theory usually 
provides no direction, it is difficult to identify the 
influence of the same variable on both the hazard and 
the eventual exit probability. 

Another issue that has not been discussed in the 
literature is that the split parameter can spuriously 
compensate for a misspecified functional form of the 
hazard function. Similarly, split data may be obser­
vationally equivalent to a heterogeneous model. This 
issue becomes obvious once we derive the reduced 
form of the split hazard as follows: 

h(t; X) = 8f(t; X, u = 1) (6)
1-8 + 8S(t; X, u = 1) 

As we can see from Equation (6), with 8 less than 1, 
the split model forces the hazard to decline, especially 
at high t-values. This condition will hold irrespective 
of the functional form of the underlying hazard. In 
the following section, we will show how the above 
property causes the identification problem between 
the reduced forms of the split Weibull and the 
Weibull-gamma models. 

Ill. The Weibull Model 

For parametric estimation, we must specify a priori 
the functional form of the hazard function. The 
hazard of a commonly used W eibull distribution is 

h(t; X)= {-Lata-! (7) 

The scale parameter fL = exp(X,B), whereas the shape 
parameter a allows monotonically increasing a> 1 
and decreasing a< 1 hazard functions. 

3 See Schmidt and Witte (1989) and Bandopadhyaya and Jaggia (2001) for details. 



  

If the Weibull specification is deemed inappropri­
ate, an appropriate formulation is fL = v exp(X,B) 
where v accounts for neglected heterogeneity. As v 
is not observable, the unconditional survivor 
function is 

S(t; X)= L)O exp(-vexp(X,B)t")f(v)dv (8) 

Using a convenient gamma mixing distribution, with 
a unit mean and variance equal to a 2

, we can easily 
derive 

(9) 

The corresponding reduced form hazard for a 
Weibull-gamma model is derived as 

fLala-1 
h(t; X)= (10)

1 +a2 fLl" 

Note that the above function allows an 'inverted-U' 
shape if a> 1 and a 2 > 1.4 On the other hand, the 
reduced form of the split Weibull model (see 
Equation 6) is 

8afLla-i exp(-tLt")
h(t· X)- (11)

' - 1-8 + 8exp(-tLt") 

Although the W eibull formulation only allows 
monotonic hazards, with the split parameter 8< 1, it 
can also accommodate an 'inverted U' shape if a> 1. 
While different in the structural formulations, the 
reduced forms of the split Weibull as well as the 
Weibull gamma hazards are somewhat similar. 

IV. Monte Carlo Experiments 

Monte Carlo experiments are conducted to highlight 
the identification problem discussed above. For all 
experiments, a sample of 200 observations, repeated 
2000 times, is used to compare the performance of 
three models, namely, the estimated Weibull, 
Weibull-gamma and split Weibull models. These 
models are compared on the basis of their parameter 
estimates as well as the estimated hazards evaluated 
at various points in time. True models used in 
simulations are the (a) Weibull-gamma, (b) split 
Weibull and (c) split Weibull-gamma models. In each 
case, the base model is a Weibull-gamma with 
fL = vexp(-5 + X1 - 0.5X2 ) and the duration 

dependence parameter, a= 2. The variables X1 and 
X 2 are drawn from a standard normal distribution 
and are held fixed for all experiments. In order to 
incorporate neglected heterogeneity, vis drawn from 
the gamma distribution with a unit mean, E(v) = 1, 
and variance, a~ = 1 for small and a~ = 2 for large 
heterogeneity. 5 In order to introduce split, I ran­
domly select 20% of the observations and make their 
durations infinite. In other words, I use the split 
parameter, 8 = 0.80, implying that only 80% of the 
observations will eventually conclude. Finally, in 
order to incorporate censoring, I impose thresholds 
on data observation periods so that about 38-42% of 
the observations are right censored. Remember that 
with split data, a censored observation denotes that 
an event will either occur beyond the censoring point 
or that it will never occur. 

Weibu/1-gamma model 

Here, I simulate data according to the Weibull­
gamma specification with small (a;= 1) and large 
(a; = 2) levels of neglected heterogeneity. As men­
tioned earlier, simulated data are used to estimate the 
Weibull, Weibull-gamma and split Weibull models. 
The means of the estimated parameters and their 
respective t-statistics are presented in Tables 1 and 3. 
The corresponding hazard at various points in time, 
evaluated at the mean estimates, is presented in 
Tables 2 and 4, respectively. As expected, since the 
Weibull model does not accommodate a nonmono­
tonic hazard, it spuriously underestimates the dura­
tion dependence parameter a. Given the true a= 2, 
the mean estimates are &= 1.51 for small and 
& = 1.24 for large heterogeneity. The correctly 
specified Weibull-gamma model estimates the para­
meters precisely and the corresponding hazard 
captures the true shape. The most interesting result 
pertains to the significance of the split parameter of 
the split Weibull model. The mean estimate of the 
split parameter, 8= 0.88 (0.83) for small (large) 
heterogeneity, spuriously implies that only 88% 
(83%) of the observations will eventually exit while 
the remaining 12% (17%) will never exit. 

As noted above, the Weibull specification is 
restrictive since it does not allow a nonmonotonic 
hazard. However, the reduced forms of the 
Weibull-gamma as well as the split Weibull models 
permit an 'inverted U' shape (Equations 10 and 11). 
Tables 2 and 4 highlight the difficulty of 

4 Jaggia and Thosar (1995) suggest that the mixing distribution is used not only to compensate for omitted factors, but also to 

correct for an overly restrictive Weibull hazard function. 

5 Note that for cr; = 1, the Weibull-gamma model specializes to a log-logistic model. Further, for cr; = 0, the model reduces to 

a basic Weibull with no heterogeneity. 




 

Table 1. Parameter estimates (true model: Weibull-gamma with small variance) 

Parameters True values Wei bull Weibull-gamma Split Weibull 

Constant -5.00 -4.24 (-13.24) -5.34 (-9.61) -4.54 (-12.63) 
XI 
x2 

1.00 
-0.50 

0.69 (7.07) 
-0.37 (-3.97) 

1.13 (5.18) 
-0.65 (-3.58) 

0.82 (7.59) 
-0.46 (-4.34) 

a 2 1.51 (4.28) 2.19 (3.88) 1.74(4.92) 
(52 I NA 1.33 (2.30) NA 
/5 I NA NA 0.88 ( -2.54) 

Notes: The table contains the means of the estimated parameters and the corresponding t-values, in parentheses, 
from 2000 simulations. a represents the shape parameter of the Weibull model, r52 is the variance of the 
heterogeneity term and /5 is the split parameter. For a and /5, the t-statistics are evaluated at I. 

Table 2. Estimated hazards (true model: Weibull-gamma with small variance) 

Duration True hazard Wei bull Weibull-gamma Split Weibull 

5 0.054 0.047 0.054 0.049 
10 0.077 0.066 0.078 0.076 
15 0.078 0.081 0.076 0.089 
20 0.071 0.094 0.066 0.084 
25 0.064 0.105 0.058 0.061 
30 0.057 0.116 0.050 0.033 
35 0.051 0.125 0.044 0.013 
40 0.045 0.134 0.039 0.004 

Table 3. Parameter estimates (true model: Weibull-gamma with large variance) 

Parameters True values Wei bull Weibull-gamma Split Weibull 

Constant -5.00 -3.73 (-13.29) -5.21 (-9.27) -4.03 (-12.73) 
XI 
x2 

1.00 
-0.50 

0.51 (5.34) 
-0.23 (-2.58) 

1.15 ( 4.68) 
-0.55 (-2.89) 

0. 71 ( 6.49) 
-0.32 (-3.12) 

a 2 1.24 (2.55) 2.21 (3.61) 1.51 (4.04) 
(52 2 NA 2.21 (2.94) NA 
/5 I NA NA 0.83 (-3.51) 

Notes: The table contains the means of the estimated parameters and the corresponding t-values, in parentheses, 
from 2000 simulations. a represents the shape parameter of the Weibull model, r5

2 is the variance of the 
heterogeneity term and /5 is the split parameter. For a and /5, the t-statistics are evaluated at I. 

Table 4. Estimated hazards (true model: Weibull-gamma with large variance) 

Duration True hazard Wei bull Weibull-gamma Split Weibull 

5 0.047 0.042 0.056 0.046 
10 0.055 0.050 0.064 0.060 
15 0.049 0.055 0.054 0.064 
20 0.042 0.059 0.045 0.059 
25 0.035 0.063 0.037 0.046 
30 0.031 0.066 0.032 0.031 
35 0.027 0.068 0.028 0.018 
40 0.024 0.070 0.024 0.009 



 

Table 5. Parameter estimates (true model: split Weibull with no heterogeneity) 

Parameters True values Wei bull Weibull-gamma Split Weibull 

Constant -5.00 -4.18 (-13.35) -5.95 (-9.66) -5.10 (-12.59) 
XI 1.00 0.58 (6.14) 1.28 (5.47) 1.02 (8.50) 
x2 -0.50 -0.31 (-3.32) -0.65 (-3.54) -0.51 (-4.68) 
a 2 1.47 (4.15) 2.52 (4.55) 2.04 (6.24) 
(52 0 NA 1.89 (3.14) NA 
/5 0.80 NA NA 0.80 ( -4.53) 

Notes: The table contains the means of the estimated parameters and the corresponding t-values, in 
parentheses, from 2000 simulations. a represents the shape parameter of the Weibull model, r52 is 
the variance of the heterogeneity term and /5 is the split parameter. For a and /5, the t-statistics are evaluated 
at I. 

Table 6. Estimated hazards (true model: split Weibull with no heterogeneity) 

Duration True hazard Wei bull Weibull-gamma Split Weibull 

5 0.048 0.046 0.055 0.048 
10 0.085 0.063 0.079 0.087 
15 0.093 0.077 0.071 0.095 
20 0.062 0.088 0.060 0.062 
25 0.024 0.098 0.050 0.022 
30 0.005 0.106 0.043 0.005 
35 0.001 0.114 0.037 0.001 
40 0.000 0.122 0.033 0.000 

discriminating between these two models since the 
Weibull model clearly does not capture the essential 
feature of the data. The estimated hazard at various 
points in time of the split Wei bull model captures the 
basic shape of the true Weibull-gamma process 
although its decline is steeper at high durations. The 
two models, however, have very different interpreta­
tion of the structural parameters. For instance, 
although all observations in the sample do eventually 
exit, the split model suggests that a portion of the 
observations will never do so. 

Split Weibu/1 model 

The results of the three estimated models when the 
true model is the split Weibull are presented in 
Tables 5 and 6. Again, the Weibull model under­
estimates the duration dependence parameter, with 
the average estimate of the duration dependence 
parameter, & = 1.47. As expected, the parameter 
estimates of the estimated the split Weibull model 
are consistent with their true parameter values. The 
Weibull-gamma model, on the other hand, suggests 
neglected heterogeneity when none existed. For 
instance, the true variance, a 2 = 0, is spuriously 

a2estimated as = 1.89. The average hazard of the 
Weibull-gamma accommodates the inverted 'U' 

shape of the hazard function; however it does not 
drop as steeply as the true hazard. As before, the 
Weibull model is unable to capture the nonmono­
tonic hazard function. 

Split Weibu/1-gamma model 

Here the same three estimated models are compared 
using simulated data from the split Weibull-gamma 
model, with 8 = 0.8 with a; = 1 for small and a; = 2 
for large heterogeneity; see Tables 7-10 for results. 
Note that none of the three estimated models are 
appropriate. The Weibull model is clearly inappro­
priate. The Weibull-gamma model, that ignores split, 
exaggerates the presence of neglected heterogeneity. 
The average variances of the heterogeneity term are 
estimated as a~= 3.21 and a~= 4.10 when the true 
variances equals 1 and 2, respectively. Similarly the 
split Weibull model, that ignores neglected heteroge­
neity, results in the average estimate of the split 
parameter as 8= 0.74 (8 = 0.71) with small (large) 
heterogeneity when the true value is 8 = 0.8 Although 
the Weibull-gamma and split Weibull models are 
both misspecified, they are able to somewhat cap­
ture the true shape of the hazard; the Weibull 
gamma model is preferable with large neglected 
heterogeneity. 



 

Table 7. Parameter estimates (true model: split Weibull-gamma with small variance) 

Parameters True values Wei bull Weibull-gamma Split Weibull 

Constant -5.00 -3.70 (-13.10) -5.67 (-8.85) -4.19 (-12.35) 
XI 
x2 

1.00 
-0.50 

0.42 (4.48) 
-0.17 (-1.91) 

1.23 ( 4.49) 
-0.51 (-2.31) 

0.74 (6.47) 
-0.27 (-2.48) 

a 2 1.15 (1.67) 2.41 (3.70) 1.57 (4.37) 
(52 I NA 3.21 (3.34) NA 
/5 0.80 NA NA 0.74 (-5.65) 

Notes: The table contains the means of the estimated parameters and the corresponding t-values, in 
parentheses, from 2000 simulations. a represents the shape parameter of the Weibull model, r52 is 
the variance of the heterogeneity term and /5 is the split parameter. For a and /5, the t-statistics are evaluated 
at I. 

Table 8. Estimated hazards (true model: split Weibull-gamma with small variance) 

Duration True hazard Wei bull Weibull-gamma Split Weibull 

5 0.037 0.035 0.049 0.040 
10 0.040 0.039 0.054 0.052 
15 0.033 0.042 0.044 0.054 
20 0.026 0.044 0.035 0.045 
25 0.020 0.045 0.029 0.032 
30 0.016 0.046 0.024 0.019 
35 0.013 0.048 0.021 0.010 
40 0.011 0.049 0.018 0.004 

Table 9. Parameter estimates (true model: split Weibull-gamma with large variance) 

Parameters True values Wei bull Weibull-gamma Split Weibull 

Constant -5.00 -3.55 (-13.01) -5.68 (-8.33) -3.90 (-12.20) 
XI 
x2 

1.00 
-0.50 

0.41 (4.41) 
-0.12 (-1.26) 

1.29 ( 4.25) 
-0.45 (-1.85) 

0.68 (5.97) 
-0.18 (-1.58) 

a 2 0.98 ( -0.26) 2.30 (3.16) 1.33 (2.89) 
(52 2 NA 4.10 (3.26) NA 
/5 0.80 NA NA 0.71 (-5.88) 

Notes: The table contains the means of the estimated parameters and the corresponding t-values, in 
parentheses, from 2000 simulations. a represents the shape parameter of the Weibull model, r5

2 is the 
variance of the heterogeneity term and /5 is the split parameter. For a and /5, the t-statistics are evaluated 
at I. 

Table 10. Estimated hazards (true model: split Weibull-gamma with large variance) 

Duration True hazard Wei bull Weibull-gamma Split Weibull 

5 0.037 0.027 0.039 0.030 
10 0.040 0.026 0.040 0.034 
15 0.033 0.026 0.032 0.035 
20 0.026 0.026 0.026 0.032 
25 0.020 0.026 0.021 0.028 
30 0.016 0.026 0.018 0.023 
35 0.013 0.026 0.016 0.018 
40 0.011 0.026 0.014 0.013 



 

V. Conclusion 

Hazard models typically assume that every agent in 
the population is susceptible to the event in study and 
will eventually experience the event if the observation 
period is sufficiently long. This assumption is appro­
priate in medical and engineering sciences since 
eventually all machines break down and all patients 
die. In economics, however, not everyone finds a job 
and not all firms file for bankruptcy. The implausi­
bility of this assumption has prompted some research­
ers to use split models that allow some agents not to 
be susceptible and, therefore, will never experience the 
event of interest. Although split models have the 
obvious intuitive appeal in applications in social 
sciences, they are prone to identification problems. 
In particular, in the reduced form estimation of the 
hazard function, the influence of split may not be 
distinguishable from that of neglected heterogeneity. 
Monte Carlo simulations suggest that it is difficult 
to discriminate between the split Weibull and the 
Weibull-gamma models since the reduced forms of 
these models are somewhat similar. 

It is not unreasonable to expect both neglected 
heterogeneity and split in the hazard model applica­
tions in social sciences. Since the effect of the two 
issues can be confounded, as shown in the article, care 
must be exercised in interpreting the models. If 
correct interpretation of the structural parameters is 
essential, it is important that a generally specified 
hazard model be used. For instance, in order to 
correctly capture the split parameter, the hazard 
function needs to be correctly specified with allow­
ance made for neglected heterogeneity. Given the 

uncertainty regarding the true hazard, it is perhaps 
better to analyse the heterogeneous and split models 
in their reduced form formulations since they may 
also have been compensating for an overly restrictive 
hazard function. 
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