Dyreson and Snodgrass have drawn attention to the fact that in many temporal database applications, there is often uncertainty present about the start time of events, the end time of events, the duration of events, etc. When the granularity of time is small (e.g. milliseconds), a statement such as "Packet p was shipped sometime during the first 5 days of January, 1998" leads to a massive amount of uncertainty ($5 \times 24 \times 60 \times 60 \times 1000$) possibilities. As noted in [41], past attempts to deal with uncertainty in databases have been restricted to relatively small amounts of uncertainty in attributes. Dyreson and Snodgrass have taken an important first step towards solving this problem.

In this paper, we first introduce the syntax of Temporal-Probabilistic (TP) relations and then show how they can be converted to an explicit, significantly more space-consuming form called Annotated Relations. We then present a Theoretical Annotated Temporal Algebra (TATA). Being explicit, TATA is convenient for specifying how the algebraic operations should behave, but is impractical to use because annotated relations are overwhelmingly large.

Next, we present a Temporal Probabilistic Algebra (TPA). We show that our definition of the TP-Algebra provides a correct implementation of TATA despite the fact that it operates on implicit, succinct TP-relations instead of the overwhelmingly large annotated relations. Finally, we report on timings for an implementation of the TP-Algebra built on top of ODBC.
weather in Washington in the past, but also contains projections for the future. Needless to say, any prediction about the future is liable to be uncertain. How often have we heard a TV newscaster say "There is a 39% probability of rain this afternoon?"

Time-Series Stock Applications: There are a wide variety of programs that analyze the behavior of stocks, and predict their rise and fall in the future. Most such programs associate with their predictions a level of uncertainty. Such programs may say "We expect, with 60-70% certainty, that IBM stock will fall by 30% sometime in the next 2 weeks." When the output of such programs is to be stored in a relational database system, we must have the ability to represent and manipulate such statements.

All the above applications require the ability to make statements of the following kind: *Data tuple d is in relation R at some point of time in the interval [t_i, t_j] with probability between p and p'.* For example, in the Transportation Application above, we should be able to store statements of the form "Package p will arrive in Albany at some time between 9am and 5pm on Nov. 8 with probability 50-60%." Similarly, in the weather application, we should be able to store statements of the form "Rain is expected to begin sometime between 2pm and 12 midnight on Nov. 8 with probability 520%." In the stock market application, we should be able to store statements of the form "IBM stock will reach $300 per share some time during the time interval Nov 1-10 with probability 90-100%." The main contributions of this paper may now be summarized as follows.

• First, in Section 3 we introduce the concept of a *temporal-probabilistic tuple* or TP-tuple, for short. Intuitively, a TP-tuple allows us to augment classical relational database tuples with temporal-probabilistic data, as well as arbitrary probability distributions. For example, not only can we say "Data tuple d is in relation r at some point of time in the interval [t_i, t_j] with probability between p and p'" but we can also say that the probability mass is distributed over [t_i, t_j] according to an arbitrary probability distribution. Throughout this paper, we will introduce definitions which allow us to make such statements in a TP-relation and which allow us to manipulate such TP-relations algebraically.

• Then, in Section 4 we show how given any TP-tuple tp, we may "flatten" tp into a set of *annotated tuples*. In general, the set of annotated tuples associated with a single TP-tuple can be very large hence, annotated tuples serve as a purely theoretical device.

• We then define a *Theoretical Annotated Temporal Algebra* (TATA) in Section 5 and show how the classical relational algebra operations can be extended to the case of annotated tuples. Intuitively, the Theoretical Annotated Temporal Algebra provides a theoretical specification of how the TP-Algebra operations must be defined.

• We proceed in Section 6 by defining a *Temporal-Probabilistic Algebra* (TPA) which directly manipulates TP-tuples *without converting them to annotated tuples*. This has a great advantage, as TP-tuples are very succinct objects. We show that for each operation a in the Theoretical Annotated Temporal Algebra, there is a corresponding operation a' in the Temporal-Probabilistic Algebra which precisely captures it. Thus, the Temporal-Probabilistic
Algebra is a sound and complete way of implementing the declarative semantics for temporal probabilistic data prescribed by the Theoretical Annotated Temporal Algebra. The correctness results are formally proved for every operation.

- In Sections 5 and 6 we also show how each operator, whether in the TP-Algebra, or in the Theoretical Annotated Temporal Algebra, can be parameterized by the user's knowledge of the dependencies between events. This is important because, as shown in [23], the probability of a complex event like (el V ez) depends upon our knowledge of the dependencies between e₁ and e₂.
- Finally, in Section 7 we present an implementation of the TP-Algebra on top of ODBC and provide a set of experimental results.

2. PRELIMINARIES AND BASIC DEFINITIONS

In this section, we provide some basic definitions that are used in the algebras we develop later in the paper. The work reported in sections 2.1, 2.2, 2.3 and 2.4 is not new, but forms the basic definitions needed to describe our algebras. Section 2.5 describes new work.

Section 2.1 contains the description of a notion of a calendar, borrowing from definitions in [22]. Calendars are needed because all TP-relations will assume that time is specified w.r.t. an arbitrary but fixed calendar. Section 2.2 defines temporal constraints over an arbitrary but fixed calendar. As specified earlier in the paper, our algebras use constraints to describe sets of time points. Section 2.3 describes distribution functions. Section 2.4 specifies a set of axioms that a function must satisfy for it to be considered a probabilistic conjunction or disjunction strategy. As is known that the probability of conjunctive and disjunctive combinations of two or more events depends not only on the probabilities of the events themselves but also on the dependencies between them, there is no unique way of computing such probabilities. This section specifies what axioms a function must satisfy for it to be considered a possible way of computing the probabilities of compound events given the probabilities of simple events. Section 2.5, finally, contains a description of how conflicting information about the probability of an event (which must be true at a certain time point) can be combined together. We introduce the concept of a combination function as a function that combines a set of probability intervals into one interval while satisfying a prerequisite set of axioms.

2.1 Calendars

In this section, we define the concept of a calendar that is used by a TP application. In our architecture, a TP application assumes the existence of an arbitrary but fixed calendar. The definitions in this section are not new, but taken from [22].

Definition 2.1 (time unit). A time unit consists of a name and a time-value set. The time-value set has a linear order, denoted $<_T$, where T is the name of the time unit. As usual, we let \leq_T denote the reflexive closure of the $<_T$ relation. A time unit is either finite or infinite, depending on whether its time-value set is finite or infinite; an infinite time-value set is assumed to be countable. □
DEFINITION 2.2 (LINEAR HIERARCHY). A linear hierarchy of time units, denoted H, is a finite collection of distinct time units with a linear order \subseteq among those time units. The greatest time unit according to \subseteq may be either finite or infinite, while all other time units in the hierarchy must be finite.

For instance, $H_1 = \text{day} \subseteq \text{month} \subseteq \text{year}$, $H_2 = \text{minute} \subseteq \text{hour} \subseteq \text{day} \subseteq \text{month} \subseteq \text{year}$, and $H_3 = \text{hour} \subseteq \text{day} \subseteq \text{month}$ are all linear hierarchies of time units.

DEFINITION 2.3 (TIME POINT). Suppose $T_1 \subseteq \cdots \subseteq T_n$ is a linear hierarchy H of time units. A time point t in H is an n-tuple (v_1, \ldots, v_n) such that for all $1 \leq i \leq n$, v_i is a time-value in the time-value set of T_i. Let $(v_1/\ldots/v_n)$ be an abbreviation for time point t.

A time point in linear hierarchy H is simply an instantiation of each time unit in H (a specific point in time with respect to H). For instance, using hierarchy H_1 given above, "March 16, 1997" could be specified by the time point $(16/3/1997)$. By using hierarchy H_2 given above, "3:45pm on March 12, 1997" could be specified by the time point $(45, 15, 12, 3, 1997)$. For hierarchy H_1 given above, time point t occurs before or simultaneously with t', denoted $t = (v_{\text{day}}, v_{\text{month}}, v_{\text{year}}) \leq H_1 t' = (v'_{\text{day}}, v'_{\text{month}}, v'_{\text{year}})$, is true iff $((v_{\text{year}} < v'_{\text{year}}) \lor (v_{\text{year}} = v'_{\text{year}} \land v_{\text{month}} < v'_{\text{month}}) \lor (v_{\text{year}} = v'_{\text{year}} \land v_{\text{month}} = v'_{\text{month}} \land v_{\text{day}} < v'_{\text{day}}))$.

DEFINITION 2.4 (CALENDAR). A calendar τ consists of a linear hierarchy H of time units and a validity predicate denoted valid_H (or simply valid if H is clear from context). A validity predicate specifies a non-empty set of valid time points; $\text{valid}_H(t)$ is true iff t is a valid time point. The set of all time points over calendar τ, denoted S_τ, is defined as $\{t \mid t$ is a time point in H and $\text{valid}_H(t)$ is true$\}$.

For instance, if we are representing the Gregorian calendar τ by hierarchy H_1 given above, a suitable validity predicate states that valid$(14/3/1996) = \text{true}$ but valid$(29/2/1997) = \text{false}$. (29/2/1997) is not a valid time point since February of 1997 only contains 28 days. Note that a calendar for the hierarchy dayOfWeek \subseteq day \subseteq month \subseteq year should have only one valid time point for each instantiation of (day, month, year) since these three time units uniquely determine the valid time-value for dayOfWeek.

Let next$_\tau(t)$ denote the next, consecutive time point after t. Thus, next$_\tau(t)$ denotes the time point $t' \in S_\tau$ where t' occurs after t and for all other $t'' \in S_\tau$ where t'' occurs after t, t'' also occurs after t'.

2.2 Constraints

When expressing a statement of the form "Data tuple d is in relation r at some time point in a set T of time points with probability in the interval $[p_1, p_2]$ and with the probability distributed according to distribution δ", we must be able to specify the set T of time points. Constraints are a natural way of specifying such sets. In this section, we recapitulate (from [22]) how temporal constraints can be used to specify sets of time points associated with a calendar.
DEFINITION 2.5 (ATOMIC TEMPORAL CONSTRAINT). Suppose $T_1 \subseteq \cdots \subseteq T_n$ is a linear hierarchy H of time units over calendar τ. An \textit{atomic temporal constraint over calendar τ} must take one of the following forms:

1. $(T_i \text{ op } v_i)$ where op is a member of the set $\{\leq, <, =, \neq, >, \geq\}$ and v_i is a time-value in the time-value set of time unit T_i. Here, $(T_i \text{ op } v_i)$ is called an \textit{atomic time-value constraint}.

2. $(t_1 \sim t_2)$ where $t_1, t_2 \in S_\tau$ and $t_1 \leq_H t_2$. Here, $(t_1 \sim t_2)$ is called an \textit{atomic time-interval constraint}. For convenience, let (t_1) be an abbreviation for $(t_1 \sim t_1)$. □

For example, $(\text{day} < 15)$, $(\text{month} > 8)$, and $(12/3/1997 \sim 10/4/1997)$ are all atomic temporal constraints, but $(1996 = \text{year})$ is not. Also, $(\text{day} < 45)$ is not an atomic temporal constraint since 45 is not in the time-value set of day. Similarly, $(15/2/1997 \sim 29/2/1997)$ is not an atomic temporal constraint since $(29/2/1997)$ is not a valid time point in τ. Furthermore, $(10/4/1997 \sim 12/3/1997)$ is not an atomic temporal constraint since time point $(10/4/1997)$ occurs after $(12/3/1997)$.

DEFINITION 2.6 (TEMPORAL CONSTRAINT). A \textit{temporal constraint} C over calendar τ is defined inductively in the following way:

- \textit{Any atomic temporal constraint over τ is a temporal constraint over τ}.
- \textit{If C_1 and C_2 are temporal constraints over τ, then $(C_1 \land C_2)$, $(C_1 \lor C_2)$, and $(\neg C_1)$ are temporal constraints over τ.}

If temporal constraint C is solely a boolean combination of \textit{atomic time-value constraints}, then C is a \textit{time-value constraint}. Similarly, if temporal constraint C is solely a boolean combination of \textit{atomic time-interval constraints}, then C is a \textit{time-interval constraint}. □

For instance, $((\text{day} > 5 \land \text{day} < 15) \land (\text{month} = 4 \land \text{month} \geq 8) \land \text{year} = 1996)$ and $((12/3/1997 \sim 10/4/1997) \lor (10/7/1997 \sim 10/7/1997))$ are temporal constraints but $(\text{day} > 5 \land \text{day} < 15)$ is not.
Definition 2.7 (solution set to a temporal constraint). Suppose $T_1 \subseteq \cdots \subseteq T_n$ is a linear hierarchy H of time units over calendar τ. Then an atomic temporal constraint over τ is of the form $(T_i \text{ op } v_i)$ or $(t_1 \sim t_2)$. The solution set to an atomic temporal constraint over calendar τ is defined in the table below.

<table>
<thead>
<tr>
<th>Case</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>$op = (\leq)$</td>
<td>$S = {t \mid t \in S_\tau \land t.T_i \leq T_i \lor v_i}$</td>
</tr>
<tr>
<td>$op = (<)$</td>
<td>$S = {t \mid t \in S_\tau \land t.T_i < T_i \lor v_i}$</td>
</tr>
<tr>
<td>$op = (=)$</td>
<td>$S = {t \mid t \in S_\tau \land t.T_i = v_i}$</td>
</tr>
<tr>
<td>$op = (\neq)$</td>
<td>$S = {t \mid t \in S_\tau \land t.T_i \neq v_i}$</td>
</tr>
<tr>
<td>$op = (>)$</td>
<td>$S = {t \mid t \in S_\tau \land v_i < T_i \land t.T_i}$</td>
</tr>
<tr>
<td>$op = (\geq)$</td>
<td>$S = {t \mid t \in S_\tau \land T_i \leq t.T_i}$</td>
</tr>
<tr>
<td>$op = (~)$</td>
<td>$S = {t \mid t \in S_\tau \land v_i \sim T_i \land t.T_i}$</td>
</tr>
</tbody>
</table>

The solution set $\text{sol}(C)$ to a non-atomic temporal constraint C over calendar τ, is defined inductively as shown in the following table:

<table>
<thead>
<tr>
<th>Case</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>C is an atomic temporal constraint</td>
<td>$S = \text{sol}(C)$</td>
</tr>
<tr>
<td>$C = (C_1 \land C_2)$</td>
<td>$S = \text{sol}(C_1) \cap \text{sol}(C_2)$</td>
</tr>
<tr>
<td>$C = (C_1 \lor C_2)$</td>
<td>$S = \text{sol}(C_1) \cup \text{sol}(C_2)$</td>
</tr>
<tr>
<td>$C = \neg C_1$</td>
<td>$S = S_\tau - \text{sol}(C_1)$</td>
</tr>
</tbody>
</table>

Each time point $t \in \text{sol}(C)$ is called a solution to C. □

For instance, the solution set to $(\text{day} > 25)$ over the Gregorian calendar T is the set of all time points $(\text{day}, \text{month}, \text{year}) \in T$ where $\text{day} > 25$. Note that $(29, 2, 1996)$ is in this set but $(29, 2, 1997)$ is not since the latter is not a valid time point in ST. Also, the solution set to $(1/1/1996 \sim 31/12/1996)$ over the Gregorian calendar would contain 366 time points (one for each calendar day in 1996) while the solution set to $(1/1/1997 \sim 31/12/1997)$ over the same calendar would contain 365 time points.

For example, the solution set to $((5/8/1997 \sim 10/8/1997) \lor (7/8/1997 \sim 12/8/1997))$ would contain eight time points.

The following well known result states that any time-value constraint can be rewritten as an equivalent time-interval constraint (i.e., one which has an equal solution set) and vice-versa.

Proposition 1 (Folk Theorem). Time-value constraints and time-interval constraints have the same expressive power.

Calendar T is a finite calendar iff S_T is finite. When all time units in a calendar are finite, the calendar itself is also finite. Furthermore, for all temporal constraints C over a finite calendar T, $\text{sol}(C)$ must be a finite subset of S_T. Given a finite calendar T, we use t_s^T to denote the smallest time point of T (w.r.t. the ordering $<H$ associated with the calendar) and t_e^T to denote the largest time point. When T is clear from context, we will drop the superscript T and just write t_s and t_e.

In the rest of this paper, all calendars are assumed to be finite unless we specifically state otherwise. Furthermore, all of our examples will use a finite version of the Gregorian calendar.
2.3 Distribution functions

Consider a simple statement saying that data tuple d is in relation r at some time point in the set \{1, 2, 3, 4\} with probability 0.7. Suppose we are now asked "what the probability that d is in r at time 2?" There is no way to answer this question without assuming the existence of some probability distribution. In this paper, we wish to allow designers of TP-databases to specify probability distributions for each set of time points.

Definition 2.8 (Probability Distribution Function). Let D be a temporal constraint over calendar \(\tau\) such that \(|\text{sol}(D)| \geq 1\). Then a probability distribution function (PDF) over calendar \(\tau\), denoted pdf(D, \(t_j\)), is a function which takes D and a time point \(t_j \in S_\tau\) as input, and returns as output a probability \(p_j\) which satisfies the following conditions:

1. For each \(t_j \in S_\tau\), \(0 \leq p_j \leq 1\).
2. For all \(t_j \in S_\tau\) where \(t_j \notin \text{sol}(D)\), \(p_j = 0\).
3. \(\sum_{t_j \in S_\tau} p_j \leq 1\). This implies that \(\sum_{t_j \in \text{sol}(D)} \text{pdf}(D, t_j) \leq 1\).

If the sum \(\sum_{t_j \in S_\tau} (p_j)\) is strictly less than one, the function is called a partial PDF; if the sum is exactly equal to one, the function is called a complete PDF. A PDF is determinate if \(\sum_{t_j \in S_\tau} (p_j)\) is computable in constant time.

PDFs are both discrete and finite. Complete PDFs tell us what percentage of the total probability mass (i.e., 1.0) is associated with each \(t_j \in \text{sol}(D)\). Partial PDFs are useful when modeling infinite distributions; here, we are considering only a finite portion of the total probability mass. Determinate PDFs tell us up-front that a fixed percentage of the probability mass is unassigned. Thus, every complete PDF is determinate. In addition, a partial PDF which is known to allocate only a total of 0.9 to the values in \(S_\tau\) is determinate.

To see how specific PDFs may be defined, let us examine some examples.

Example 2.1 (PDF; Uniform). The PDF for the uniform distribution over calendar \(\tau\), denoted pdf\(_u\)(D, \(t_j\)), is defined as \(p_j = \frac{1}{|\text{sol}(D)|}\) if \(t_j \in \text{sol}(D)\) or \(p_j = 0\) otherwise. pdf\(_u\) is a complete PDF.

Notice that for all \(t_1, t_2 \in \text{sol}(D), p_1 = p_2\). In other words, we are equally dividing the probability mass among all of the relevant time points. Also, \(\sum_{t \in S} (p_j) = 1\) is clearly true since there are \(n = |\text{sol}(D)|\) non-zero \(p_j\)s, one for each \(t_j \in \text{sol}(D)\), and \(n \cdot p_j = |\text{sol}(D)| \cdot 1/|\text{sol}(D)| = 1\).

Furthermore, we will never divide by zero since by definition of PDFs, \(|\text{sol}(D)| > 1\).

For the following PDF examples, let D be a temporal constraint and let \(t_0, \ldots, t_n\) be a list of distinct time points in \(S_\tau\) where \(\text{sol}(D) = \{t_0, \ldots, t_n\}\) and \(t_i \text{ occurs before } t_{i+1}\) for all \(0 < i < n\), i.e. \(\text{sol}(D)\) is enumerated in ascending order of time points. For instance if \(D = (1/8/1997 \sim 3/8/1997)\) then \(n = 2\), \(t_0 = 1/8/1997, t_1 = 2/8/1997\), and \(t_2 = 3/8/1997\).
EXAMPLE 2.2 (PDF; geometric). Let p be a probability where ($0 < p < 1$). Then the PDF for the geometric distribution with parameter p over calendar τ, denoted $pdf_{g,p}(D, t_j)$, is defined as $\rho_j = p \cdot (1 - p)^{t_j}$ if $t_j = t_i \in \text{sol}(D)$ or $\rho_j = 0$ otherwise. pdf_{g} is a partial PDF. Note that if $|\text{sol}(D_j)|$ is fixed (or constant time computable), then pdf_{g} is a determinate PDF.

If $p = \frac{1}{3}$, $pdf_{g,p}(D, t_0) = \frac{1}{3} \cdot \left(\frac{2}{3}\right)^0$, $pdf_{g,p}(D, t_1) = \frac{1}{3} \cdot \left(\frac{2}{3}\right)^1$, and $pdf_{g,p}(D, t_2) = \frac{1}{3} \cdot \left(\frac{2}{3}\right)^2$. Notice that if $p = \frac{1}{2}$, then $pdf_{g,p}(D, t_0) = \frac{1}{2}$ and $pdf_{g,p}(D, t_i)$ will be half of $pdf_{g,p}(D, t_{i-1})$ for each $1 \leq i \leq n$.

Let $pdf_{g,p}$ be defined in the same way as $pdf_{g,p}$ except $pdf_{g,p}(D, t_n) = 1$ if $|\text{sol}(D)| = 1$ or $pdf_{g,p}(D, t_n) = 1 - \left(\sum_{j=0}^{n-1}(pdf_{g,p}(D, t_j))\right)$ otherwise. We call $pdf_{g,p}$ the complete correlate of $pdf_{g,p}$ since $pdf_{g,p}(D, t_j) = pdf_{g,p}(D, t_j)$ for all $t_j \in S_\tau - \{t_n\}$ and since $pdf_{g,p}$ is a complete PDF. In general, one can construct a complete correlate for any partial PDF in a similar way. Note that when $p = \frac{1}{2}$ and $|\text{sol}(D)| > 1$, $pdf_{g,p}$ has the nice property that $pdf_{g,p}(D, t_n) = pdf_{g,p}(D, t_{n-1})$.

EXAMPLE 2.3 (PDF; binomial). Let p be a probability where ($0 < p < 1$). Then the PDF for the binomial distribution with parameter p over calendar τ, denoted $pdf_{b,p}(D, t_j)$, is defined as $\rho_j = \binom{n}{t_j} \cdot p^{t_j} \cdot (1 - p)^{n-t_j}$ if $t_j = t_i \in \text{sol}(D)$ or $\rho_j = 0$ otherwise. pdf_{b} is a complete PDF.

EXAMPLE 2.4 (PDF; Poisson). Let ($\lambda > 0$) be a rate and let e be the base of the natural logarithm (i.e., $e \approx 2.71828$). Then the PDF for the Poisson distribution with parameter λ over calendar τ, denoted $pdf_{p,\lambda}(D, t_j)$, is defined as $\rho_j = e^{-\lambda} \cdot \frac{\lambda^{t_j}}{t_j!}$ if $t_j = t_i \in \text{sol}(D)$ or $\rho_j = 0$ otherwise. $pdf_{p,\lambda}$ is a partial PDF. When $|\text{sol}(D)|$ is known, then $pdf_{p,\lambda}$ is a determinate PDF.

Techniques that specify how to associate and store probability distributions with events are provided by Dyreson and Snodgrass [11, p. 8] and by Dey and Sarkar [10]. Hence, we do not discuss this in further detail.

Throughout the rest of this paper, we will use ($\delta = \text{"u"}$), ($\delta = \text{"g,p"}$), ($\delta = \text{"g, p"}$), ($\delta = \text{"b, p"}$), and ($\delta = \text{"p, \lambda"}$) to represent the distribution functions for pdf_{u}, $pdf_{g,p}$, $pdf_{g,p}$, $pdf_{b,p}$, and $pdf_{p,\lambda}$ respectively. Furthermore, unless we specifically state otherwise, assume that parameter $p = 0.5$. Thus, ($S = \text{"g"}$) represents the $pdf_{g,0.5}$ function.

Temporal Probabilistic Databases studied in this paper will use pdfs to store compactly the probabilistic information (One key feature of pdfs is the fact that they define a known probability distribution. Situations when the user does not have information about probability distribution theoretically can be taken care of by introducing a special kind of distribution function: ignorance distribution. However, this would require changes in the semantics of our relations, many relational algebra operators would have to be extended with a special case handling the ignorance distribution. For the sake of clarity we will not consider such distributions in this paper.)

2.4 Probabilistic strategies

Given the probabilities p_1 and p_2 of events e_1 and e_2, how do we compute the probability p of compound event ($e_1 \Lambda e_2$)? As argued in [23], the answer depends
on the relationship between \(e_1\) and \(e_2\). For instance if \(e_1\) and \(e_2\) are mutually exclusive, \(p\) should be zero; if \(e_1\) and \(e_2\) are independent of each other, \(p\) should be \((p_1 \cdot p_2)\). A similar situation arises when computing the probability of \((e_1 \lor e_2)\). We address these problems by consulting probabilistic conjunction strategies and probabilistic disjunction strategies. Both of these concepts were originally defined in [23] and are recapitulated below.

Before proceeding, recall that intervals obey the following definitions /properties:
1. \([L_1, U_1] \leq [L_2, U_2]\) iff \((L_1 \leq L_2 \wedge U_1 \leq U_2)\).
2. \([L_1, U_1] \geq [L_2, U_2]\) iff \((L_1 \geq L_2 \wedge U_1 \geq U_2)\).
3. \([L_1, U_1] \subseteq [L_2, U_2]\) iff \((L_1 \geq L_2 \wedge U_1 \leq U_2)\).
4. \([L, U] = ([L_1, U_1] \cap [L_2, U_2])\) iff \((L = \max(L_1, L_2) \land U = \min(U_1, U_2) \land L \leq U)\).

Definition 2.9 (Probabilistic Conjunction/Disjunction Strategy). Let events \(e_1, e_2\) be associated probabilistic intervals \([L_1, U_1]\) and \([L_2, U_2]\) respectively. Then a probabilistic conjunction strategy (probabilistic disjunction strategy) is a binary operation \(\otimes (\oplus)\) which uses this information to compute the probabilistic interval \([L, U]\) for event \(e_1 \land e_2\) ("\(e_1 \lor e_2\)"). When the events involved are clear from context, we use \([L, U] = [L_1, U_1] \otimes [L_2, U_2]\) to denote \((e_1 \land e_2, [L, U]) = (e_1, [L_1, U_1]) \otimes (e_2, [L_2, U_2])\) and we use \([L, U] = [L_1, U_1] \oplus [L_2, U_2]\) to denote \((e_1 \lor e_2, [L, U]) = (e_1, [L_1, U_1]) \oplus (e_2, [L_2, U_2])\). Every conjunctive (disjunctive) strategy must conform to the following postulates:

<table>
<thead>
<tr>
<th>Generic postulates (\ast \in {\otimes, \oplus})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Commutativity ({(L_1, U_1) \ast [L_2, U_2]} = {(L_2, U_2) \ast [L_1, U_1]})</td>
</tr>
<tr>
<td>2. Associativity ({(L_1, U_1) \ast [L_2, U_2]} \ast [L_3, U_3]) = ((L_1, U_1) \ast ([L_2, U_2] \ast [L_3, U_3]))</td>
</tr>
<tr>
<td>3. Monotonicity ((L_1, U_1) \ast [L_2, U_2] \leq ([L_1, U_1] \ast [L_3, U_3]) \ast ([L_2, U_2] \leq [L_3, U_3]))</td>
</tr>
</tbody>
</table>

Probabilistic Conjunction postulates

| 4.a. Bottomline \(\{(L_1, U_1) \otimes [L_2, U_2]\} \leq \min(L_1, L_2, \min(U_1, U_2)\]) |
| 5.a. Identity \(\{(L_1, U_1) \otimes [1, 1]\} = [L_1, U_1]\) |
| 6.a. Annihilator \(\{(L_1, U_1) \otimes [0, 0]\} = [0, 0]\) |
| 7.a. Ignorance \(\{(L_1, U_1) \otimes [L_2, U_2]\} \subseteq \max(0, L_1 + L_2 - 1), \min(U_1, U_2)\]) |

Probabilistic Disjunction postulates

| 4.b. Bottomline \(\{(L_1, U_1) \oplus [L_2, U_2]\} \geq \max(L_1, L_2, \max(U_1, U_2)\]) |
| 5.b. Identity \(\{(L_1, U_1) \oplus [0, 0]\} = [L_1, U_1]\) |
| 6.b. Annihilator \(\{(L_1, U_1) \oplus [1, 1]\} = [1, 1]\) |
| 7.b. Ignorance \(\{(L_1, U_1) \oplus [L_2, U_2]\} \subseteq \max(L_1, L_2, \min(1, U_1 + U_2)\]) |

Postulates 1-6 follow from the well-known properties of the probabilities of conjunctions and disjunctions. A brief explanation of axiom 7 is in order. Boole proved in 1854 [4] that if events \(e_1, e_2\) are known to have probabilities in the intervals \([L_1, U_1]\), \([L_2, U_2]\), and we do not know anything about the relationship between these two events, then the best that can be said about the probability of \((e_1 \land e_2)\) is that it lies in the interval shown above. Similarly, \([\max(L_1, L_2), \min(1, U_1 + U_2)]\) had been established by Boole as the probabilistic interval for the disjunction of \(e_1\) and \(e_2\). This forms the basis for numerous pieces of work in the AI and deductive database literature ((16; 27; 29) to name a few). This axiom merely says that if we know something about the dependency between \(e_1, e_2\), then we must be able to infer a tighter probability interval than complete ignorance about dependencies would allow us to infer.

The following are some sample conjunctive and disjunctive strategies (23):
Conjunctive Strategies

<table>
<thead>
<tr>
<th>Ignorance</th>
<th>(([L_1, U_1] \bowtie_{ig} [L_2, U_2]) = \max(0, L_1 + L_2 - 1), \min(U_1, U_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Correlation</td>
<td>(([L_1, U_1] \bowtie_{pc} [L_2, U_2]) = \min(L_1, L_2), \min(U_1, U_2))</td>
</tr>
<tr>
<td>Negative Correlation</td>
<td>(([L_1, U_1] \bowtie_{nc} [L_2, U_2]) = \max(0, L_1 + L_2 - 1), \max(0, U_1 + U_2 - 1))</td>
</tr>
<tr>
<td>Independence</td>
<td>(([L_1, U_1] \bowtie_{in} [L_2, U_2]) = [L_1 \cdot L_2, U_1 \cdot U_2])</td>
</tr>
</tbody>
</table>

Disjunctive Strategies

<table>
<thead>
<tr>
<th>Ignorance</th>
<th>(([L_1, U_1] \bowtie_{ig} [L_2, U_2]) = \max(L_1, L_2), \min(1, U_1 + U_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Correlation</td>
<td>(([L_1, U_1] \bowtie_{pc} [L_2, U_2]) = \max(L_1, L_2), \max(U_1, U_2))</td>
</tr>
<tr>
<td>Negative Correlation</td>
<td>(([L_1, U_1] \bowtie_{nc} [L_2, U_2]) = \min(1, L_1 + L_2), \min(1, U_1 + U_2))</td>
</tr>
<tr>
<td>Independence</td>
<td>(([L_1, U_1] \bowtie_{in} [L_2, U_2]) = [L_1 + L_2 - (L_1 \cdot L_2), U_1 + U_2 - (U_1 \cdot U_2)])</td>
</tr>
</tbody>
</table>

Note that we use the more general notion of a probability interval \([L, U] \subset [0, 1]\) instead of a point probability \(p \in [0, 1]\); intervals allow us to reason about the probabilities of compound events (through operators such as \(\bowtie_{ig}\)) without making traditional assumptions like independence [23].

Probabilistic conjunctions will be useful when describing TATA and TPA semantics for cartesian products (§5.6, §6.7). As conjunctive and disjunctive probabilistic strategies are commutative and associative, we can extend the definition of either strategy to apply to more than two arguments. We adopt the notations \(([L_i, U_i] \ldots [L_k, U_k])\) to represent this generalization.

2.5 Combination functions

Suppose we wish to determine the probability that a single event \(e\) is true at time point \(t\). Occasionally, we may have multiple sources of information where each source provides a different probability interval for \(e\) at time \(t\). Combination functions are a generic mechanism to combine these intervals into a single interval.

Definition 2.10 (Combination Function). Let \(S = \{[L_1, U_1], \ldots, [L_k, U_k]\}\) be a non-empty multiset of probabilistic intervals. Then a combination function \(\chi\) is a function which takes \(S\) as input, and returns as output a probabilistic interval \([L, U]\) which satisfies the following axioms:

1. **Identity:** If \(L_1, U_1 = \ldots = L_k, U_k\), then \(\chi(S) = [L_1, U_1]\). In other words, when all input intervals are equal, the output interval is also equal to all of the input intervals.
2. **Bottomline:** \(L \leq \max\{L_i \mid [L_i, U_i] \in S\}\). In other words, the lower bound of the result cannot exceed the largest lower bound of the intervals in \(S\). \(\square\)

One may be tempted to add an axiom similar to Bottomline which applies to upper bounds. However, consider a case where \(\cap_{[L_i, U_i] \in S} [L_i, U_i] = \emptyset\). In this case, it is reasonable for a human user to say "A conflict has occurred. In this case, I prefer to acknowledge being completely ignorant about the true, probabilities, i.e. I want to set \([L, U] = [0, 1]\)." This seems like a reasonable strategy, but adding an extra axiom \(U \geq \max\{U_i \mid [L_i, U_i] \in S\}\) would rule out this strategy. Similarly, \(U \leq \min\{U_i \mid [L_i, U_i] \in S\}\) will be violated by a function which returns the closure of a union of intervals as the result. Finally, constraint \(U \geq \min\{U_i \mid [L_i, U_i] \in S\}\), arguably the weakest and more reasonable, is violated by a function which returns interval \([0,
DEFINITION 2.11 (CONFLICT). A multiset S of probability intervals conflict iff
$$\bigcap_{[L, U] \in S} [L, U] = \emptyset.$$ □

Note that all combination functions must find a way to remove conflicts. A class of combination functions called equity combination functions prescribe to the view that if $S = \{[L_1, U_1], [L_2, U_2]\}$ does not conflict, then $x(S)$ should equal $[L_1, U_1] \cap [L_2, U_2]$. However, if these intervals conflicted, then different equity combination functions may resolve the conflict in different ways.

DEFINITION 2.12 (EQUITY COMBINATION FUNCTION). An equity combination function χ_e is a combination function where $(\bigcap_{[L, U] \in S} [L, U]) \neq \emptyset \Rightarrow (\chi_e(S) = \bigcap_{[L, U] \in S} [L, U]).$ □

EXAMPLE 2.5 (EXAMPLE EQUITY COMBINATION FUNCTIONS).
\[
\begin{array}{|l|l|}
\hline
\text{Name} & \text{Interval Returned when } \bigcap_{[L, U] \in S} [L, U] = \emptyset \\
\hline
\text{Optimistic Equity} & \chi_{eq}(S) = \max\{L_i \mid [L_i, U_i] \in S\}, \max\{U_i \mid [L_i, U_i] \in S\} \\
\text{Enclosing Equity} & \chi_{ec}(S) = \min\{L_i \mid [L_i, U_i] \in S\}, \max\{U_i \mid [L_i, U_i] \in S\} \\
\text{Pessimistic Equity} & \chi_{ep}(S) = \min\{L_i \mid [L_i, U_i] \in S\}, \min\{U_i \mid [L_i, U_i] \in S\} \\
\text{Rejecting Equity} & \chi_{er}(S) = [0, 0] \\
\text{Skeptical Equity} & \text{N/A} \\
\text{Quasi-independence Equity} & \chi_{eqi}(S) = \prod_{[L_i, U_i] \in S} L_i, \prod_{[L_i, U_i] \in S} U_i \\
\hline
\end{array}
\]

Note that when $\bigcap_{[L, U] \in S} [L, U] \neq \emptyset$, all of the functions above return $\bigcap_{[L, U] \in S} [L, U]$.

PROPOSITION 2. Every function listed in Example 2.5 is an equity combination function.

3. TP-RELATIONS

In this section, we define the syntax and semantics of a Temporal-Probabilistic relation. Intuitively, a TP-relation is a multiset of TP-tuples. Each TP-tuple consists of a “data” part and a “probabilistic-temporal” part. This latter part is called a TP-case statement and it intuitively specifies the probability with which the “data” part of the tuple is in the relation at different instances of time. Once TP-cases are defined in Section 3.1 below, we will provide a formal definition of TP-tuples and TP-relations in Sections 3.2 and 3.3.

We intend for TP-tuples defined in this section to represent events. An event is instantaneous if it can only occur at a single point in time. For example, consider the event “Toss toss_id of coin C comes up heads.” This is an instantaneous event as it can only be true at a single point in time the same coin cannot be tossed twice at the same time and two different tosses of the same coin represent two distinct events. Our TP-tuples will represent such instantaneous events. It is
important to note that a real world event e (which has a continuous duration) may be modeled in our framework through two instantaneous events the event \(st(e)\) denoting the start of e and the event \(end(e)\) denoting the end of e. Thus here, without loss of generality, we only consider events that are instantaneous. A similar assumption is made by Dyreson and Snodgrass[11].

3.1 TP-case statements

Definition 3.1 (TP-case statement over calendar \(\tau\)). A TP-case statement \(\gamma\) over calendar \(\tau\), is an expression of the form

\[
\{(C_1, D_1, L_1, U_1, \delta_1), \ldots, (C_n, D_n, L_n, U_n, \delta_n)\}
\]

where \(n \geq 1\), \(C_i\) and \(D_i\) are a temporal constraints over \(\tau\), \(L_i\) and \(U_i\) are probabilities, \(\delta_i\) is a distribution function over \(\tau\), and the following conditions are satisfied for all \(1 \leq i \leq n\):

1. \((0 \leq L_i \leq U_i \leq 1)\).
2. \(\text{sol}(C_i) \subseteq \text{sol}(D_i)\). This ensures that \(\delta_i(D_i, t)\) is defined for each time point \(t \in \text{sol}(C_i)\).
3. \(|\text{sol}(C_j)| \geq 1\). In other words, \(C_i\) and \(D_i\) each have at least one solution in \(S_\tau\).
4. For all \(1 \leq j \leq n\), \(i \neq j \Rightarrow \text{sol}(C_i) \cap \text{sol}(C_j) = \emptyset\). In other words, \((C_i \land C_j)\) is always inconsistent. This ensures that each TP-case statement specifies at most one probability interval for each \(t \in S_\tau\). Note that we do not have a similar requirement for \((D_i \land D_j)\).

For each \(1 \leq i \leq n\), \(\gamma_i = \{C_i, D_i, L_i, U_i, \delta_i\}\) is called a TP-case of \(\gamma\). On occasion, we may want to assign probabilities to every time point in \(S_\tau\). Here, \(\text{sol}(C_n) = \text{sol}(\neg C_1 \land \neg C_2 \land \ldots \land \neg C_{n-1})\) and \(\gamma_n\) is called the catch-all case. For brevity, when \(\gamma_n\) is a catch-all case, we may use "(*)" to represent \(C_n\).

Note: If \(\text{sol}(C_i) = \text{sol}(D_i)\), we let "(#)" be an abbreviation for \(C_i\). □

One may wonder why two constraints \((C_i\) and \(D_i)\) occur in each TP-case \(\gamma_i = \{C_i, D_i, L_i, U_i, \delta_i\}\). Intuitively, \(\text{sol}(C_i)\) is the set of time points which \(\gamma_i\) is "interested in" while \(\text{sol}(D_i)\) is the set of time points used when distributing the probability interval \([L_i, U_i]\) according to \(\delta_i\). When this TP-case is associated with a data-tuple \(d\), it says that \(d\) is in some relation at some time point \(t \in \text{sol}(C_i)\). The probability that \(d\) is true in the relation at such a \(t\) is \(\delta_i(D_i, t)\). In other words, \(D_i\) is used to specify the set of time points used when distributing the probability interval \([L_i, U_i]\) according to \(\delta_i\). This is an important distinction which is critically necessary. Why ? Suppose that originally, \(\text{sol}(C_i) = \text{sol}(D_i) = S = \{1, 2, 3, 4\}\) and \(\delta_i = "b,0.5"\). Thus, the probabilities associated with time points 1,2,3,4 are 0.125, 0.375, 0.375, 0.125. Now suppose we perform a selection operation (§5.4) which only asks for time points in the set \(S' = \{2,3\} \subseteq S\). If we had no \(D_i\) field in our TP-cases, then we would merely carry over the fact that \(S'\) has the binomial distribution on it. But applying this distribution to \(S'\) yields a probability of 0.5 to both 2 and 3 which is incorrect because selections should not change the probabilities assigned to time points \(t \in S'\). Thus, some mechanism is needed to correctly compute the probabilities of relations resulting from algebraic operations executed.

Thus, in order to accurately compute probabilities, we must do one of two things:
3.2 (HIDDEN FIELD). A hidden field holds a lexicographically sorted hidden list of field-value pairs (i.e., \("<field_1>:<value_1>, \ldots, <field_n>:<value_n>\")).

If there are no pairs to store, the hidden list will be EMPTY.

(i) either carry with us the original set of values over which a probability distribution was defined, or (ii) determine how to accurately restrict an arbitrary distribution to apply to a subset of the set to which the distribution was originally applicable. The latter option requires a complex algebraic theory of distributions and its implementation is likely to be extremely expensive. For this reason, we chose the first option above.

For another (simpler) example, consider a TP-case statement with one TP-case \(\gamma_1\):

\[
\{(1/8/1997 \sim 5/8/1997), (1/8/1997 \sim 10/8/1997), 0.4, 0.8, u\}
\]

Intuitively, \(\gamma_1\) says that some event occurred during the first five days of August 1997 (in other words, it occurred during one of the time points in \(\text{sol}(\text{Cl})\)). Since \(\delta_1 = "u"\), the probability that it occurred on any of these days is the same. Specifically, this probability is \([1/10 \cdot 0.4, 1/10 \cdot 0.8] = [0.04, 0.08]\) since we are uniformly distributing the probability mass \([0.4, 0.8]\) between all of the (10) time points in \(\text{sol}(\text{Di})\). In general, the probability interval for some time point \(t \in \text{sol}(\text{Cl})\) is \([L_t \cdot \delta_t(D_i, t), U_t \cdot \delta_t(D_i, t)]\). Note that even when \((\text{Cl} = \text{Di})\), it is still possible that the probability interval for \(\text{Cl}\), \([\sum_{t \epsilon \text{sol}(\text{Cl})} \delta D_i, t) \cdot L_t \cdot \sum_{t \epsilon \text{sol}(\text{Cl})} \delta D_i, t) \cdot U_t\], may not be equal to \([L_i, U_i]\) because \(\delta_1\) can be incomplete (i.e., if \(\sum_{t \epsilon \text{sol}(\text{Cl})} \delta D_i, t) < 1\).

Note: Even though TP-cases contain two distinct constraint fields, viz. \(\text{C}\) and \(\text{D}\), this distinction can be hidden from the user, especially in base relations where \(\text{C}\) and \(\text{D}\) are equal.

The expression on the left below is a TP-case statement. However, the expression on the right is not a TP-case statement as the solution set to \(\text{Cl}\) (and \(\text{Di}\)) is empty.

\[
\begin{align*}
\{(\#), (\text{month < 6 } \land \text{year = 1997}), 0.4, 0.8, \text{g}\}, & \quad \{(\#), (\text{year = 1996 } \land \text{year = 1997}), 0.4, 0.8, \text{g}\} \\
\{(\#), (\text{month > 6 } \land \text{year = 1997}), 0.6, 0.6, \text{u}\}, & \quad \{(\#), (\text{year = 1998}), 0.0, 0.0, \text{u}\}
\end{align*}
\]

Furthermore, \(\{(\#), (\text{month < 6 } \land \text{year = 1997}), 0.4, 0.8, \text{g}\}, (\#), (\text{month > 3 } \land \text{year = 1997}), 0.6, 0.6, \text{u}\}\)

is not a TP-case statement as \((\text{Cl} \land \text{C}_2)\) is not inconsistent (i.e., the probabilities for the overlapping time points are over-specified).

We reiterate that each temporal constraint in a TP-case statement must have a finite number of solutions (as \(S_T\) is finite). We restrict ourselves to finite calendars and solution sets to avoid the complications which arise when trying to determine whether a constraint using negations is infinite or not.

3.2 TP-tuples

Before defining TP-tuples, the key concept of our framework, we need to define "hidden fields", which will serve to distinguish the identities of different TP-tuples.

Definition 3.2 (Hidden Field). A hidden field holds a lexicographically sorted hidden list of field-value pairs (i.e., \("<field_1>:<value_1>, \ldots, <field_n>:<value_n>\")).

If there are no pairs to store, the hidden list will be EMPTY. \(\square\)
Definition 3.3 (TP-tuple). Let \(T_1 \subseteq \cdots \subseteq T_m \) be the linear hierarchy of time units over calendar \(\tau \) and suppose \(A = (A_1, \ldots, A_k) \) is a relational schema where for all \(1 \leq i < k, A_i \notin \{"C", "D", "L", "U", "\delta", "U_i", "H"\} \), and for all \(1 \leq j \leq m, A_i \neq T_j \). Furthermore, let \(A_k \) be the hidden field “H”, let \(d = (d_1, \ldots, d_k) \) be a (data) tuple over \(A \), and let \(\gamma \) be a TP-case statement over \(\tau \). Then \(t_p = (d, \gamma) \) is a TP-tuple over relational schema \(A \) and calendar \(\tau \). Intuitively, \(\gamma \) gives the probability for each \(t \in S_\tau \) that \(d \) occurs at time \(t \).

For instance, suppose our calendar consists of all days in 1996, and our relational schema is \(A = (\text{Item}, \text{Origin}, \text{Dest}, \text{H}) \). Then

<table>
<thead>
<tr>
<th>Item</th>
<th>Origin</th>
<th>Dest</th>
<th>H</th>
<th>(C)</th>
<th>(D)</th>
<th>L</th>
<th>U</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>Rome</td>
<td>Vienna</td>
<td></td>
<td>(#)</td>
<td>day < 15 & \text{month} = 11 & \text{year} = 1996</td>
<td>0.5</td>
<td>0.6</td>
<td>u</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(#)</td>
<td>day \geq 15 & \text{month} = 11 & \text{year} = 1996</td>
<td>0.4</td>
<td>0.4</td>
<td>u</td>
</tr>
</tbody>
</table>

is a TP-tuple which indicates that item "I1" left from "Rome" and will arrive in "Vienna" in November 1996 at some time before the 15th (with 50 - 60% probability) or on/after the 15th (with 40% probability). This TP-tuple is not concerned with I1’s arrival before or after November 1996 since no probabilities are assigned to this time range.

If we were sure that I1 did not arrive in Vienna before or after November 1996, we could add the TP-case ((#), (*), 0, 0, u) to the TP-tuple above. If we had no information regarding I1’s arrival before or after November 1996 but we were assuming that the distribution function for this time was "u", we could add the TP-case ((#), (*), 0, 1, u) to the TP-tuple above.

Finally, if we had no information whatsoever regarding I1’s arrival before or after November 1996, we would not change the TP-tuple above. Here, we are implicitly assigning a probability interval of \([0, 1]\) to each time point \(t \) (in 1996) which lies outside of November 1996 since for all \(1 < i < n, t \notin \text{sol}(C_i) \). We now introduce two intermediate operators that we use to define operators in the TP-algebra.

Definition 3.4 (manifest projection). Let \(A = (A_1, \ldots, A_k) \) be a relational schema where \(A_k \) is the hidden field (“H”) and let \(d = (d_1, \ldots, d_k) \) be a (data) tuple over \(A \). Then the manifest projection of data tuple \(d \), denoted \(\mathcal{P}(d) \), is defined as \((d_1, \ldots, d_{k-1}) \). In other words, the tuple \(\mathcal{P}(d) \) contains every value in \(d \) except the hidden list \((d.H) \). Here, \(A_1 \) to \(A_{k-1} \) are known as manifest data fields.

Definition 3.5 (Hidden list concatenation). The concatenation of hidden lists \(d.H \) and \(d'.H \), denoted \((d.H || d'.H) \), is a hidden list \(h'' \) which can be constructed by lexicographically merging every field-value pair in \(d.H \) and \(d'.H \). For instance if \(d.H = \{"Fld3:Val3", Fld6:Val6"\} \) and \(d'.H = \{"Fld4:Val4", Fld8:Val8, Fld9:Val9"\} \), then \(h'' = \{"Fld3:Val3", Fld4:Val4, Fld6:Val6, Fld8:Val8, Fld9:Val9"\} \).

Intuitively, the manifest projection of a TP-relation simply eliminates the hidden field of the TP-relation while the concatenation of two hidden lists unites the contents of the two hidden
lists, and then sorting them in lexicographic order. Note that in practice, multiple tables may use the same names for their manifest data fields. To avoid confusion, an implementation should use ",TableName>,<FieldName>" instead of just a "<FieldName>" for each <fieldi> in the hidden list.

Definition 3.6 (TP-relation). A TP-relation over relational schema A and calendar τ, denoted r, is a multiset \(^2\) of TP-tuples over relational schema A and calendar τ.

A base TP-relation is a TP-relation which did not result from a query. In any base relation r the following should hold: for each TP-tuple \(tp = (d,\gamma) \in r\), (i) \(d.H = \text{EMPTY}\) and (ii) for each TP-case \((C_i, D_i, L_i, U_i, rS_i) \in \gamma\), \(C_i = D_i\).

We associate with each TP-relation a primary key. This key will be used when we describe the TPA’s semantics for projection (§6.8).

\(^2\)TP-relations are multisets instead of sets because they may contain two or more distinct copies of the same TP-tuple. We address this issue in more detail when we discuss compactness of TP-relations and compaction operations.

Recall that a primary key is a minimal set of fields which, taken collectively, allow us to uniquely identify a tuple in a relation [20]. In the worst case, a primary key may need to contain every manifest data field in a relation. In practice, well designed databases use tuple ids, transaction ids, SSNs, timestamps, etc. to help keep the primary keys small.

Definition 3.7 (TP-database). A Probabilistic Temporal Database (abbreviated TP-database) over calendar τ is a pair \((Base, MView)\) where Base is a set of base TP-relations over τ and MView is a set of non-base TP-relations over τ. □

In base relations of a TP-Database, the contents of the hidden field will be EMPTY (since no fields have been projected out). For intermediate relations, the hidden field holds values of the form "<field>:<value>" for fields which have been projected out. Although these values should be hidden from the user, we shall see that they are important in determining whether two TP-tuples refer to the same event or not. For simplicity, we require all TP-relations in a TP-database to use the same calendar. Throughout this paper, we assume that all TP-relations are in the same TP-database.

3.4 Semantics and consistency of TP-relations

We are now ready to define the formal semantics of TP-relations. In order to provide such a semantics, we will extend classical logic [33] to the case of TP-relations, by extending the concept of an interpretation in classical logic [33] to handle TP-relations. Before doing this, a preliminary definition is needed.

Definition 3.8 (data-identical TP-tuples). TP-tuples \(tp = (d,\gamma)\) and \(tp' = (d',\gamma')\) are data-identical iff \((d = d')\). Note that \(tp\) and \(tp'\) may come from different TP-relations as long as both TP-relations have the same schema. Also, note that \((d = d')\) only if \((d.H = d'.H)\). □
Recall that without loss of generality, we interpret TP-relations under the assumption that all data-identical TP-tuples refer to the same, unique event. If tp and tp' are data-identical, we assume that they provide complementary information for the same event. If tp and tp' are not data-identical, we assume that they refer to different events. Let $tp \in r$. Then $r[tp]$ denotes the multiset of all TP-tuples in r which are data-identical to tp. Since "data-identical" is a reflexive, symmetric, transitive relation on TP-tuples, it is also an equivalence relation on r where each $r[tp]$ corresponds to an equivalence class in this relation.

A TP-relation r is compact if for each data tuple d and each time point t there is at most one TP-tuple $tp = (d, \gamma) \in r$ where $t \in \text{sol}(C_1 \lor \ldots \lor C_n)$. Otherwise, as r contains at least two TP-tuples which refer to the same event at the same time, r is an uncompact TP-relation. Later, we will describe a variety of compaction operators which convert uncompact TP-relations into compact TP-relations by consolidating probabilistic information for each $r[tp] \subseteq r$ (cf., §6.3).

Intuitively, a TP-tuple $tp = (d, \gamma)$ is consistent if there exists a satisfying assignment of probabilities for each TP-case $\gamma_i \in \gamma$. This is given formal "teeth" through the following definition.

Definition 3.9 (TP-Interpretation). Let $A = (A_1, \ldots, A_k)$ be a relational schema, let τ be a calendar, and let $\text{dom}(A) = \text{dom}(A_1) \times \cdots \times \text{dom}(A_k)$ be the domain of A. Then a TP-interpretation over the pair A, τ is a function $I_{A,\tau} : \text{dom}(A) \times \text{Sr} \rightarrow [0,1]$ such that $(\forall d \in \text{dom}(A))(\sum_{t \in \text{Sr}} I_{A,\tau}(d, t) \leq 1)$. □

Let e be the event represented by data tuple d. Then $I_{A,\tau}(d, t) = p$ says that according to TP-interpretation $I_{A,\tau}$ the probability that e is true at time point t is p. Let D be a temporal constraint over τ. Then the probability assigned by $I_{A,\tau}$ to D, denoted $I_{A,\tau}(d, D)$, is equal to $\sum_{t \in \text{sol}(D)} I_{A,\tau}(D, t)$. This intuition may be used to explain what it means for a TP-interpretation to satisfy a TP-tuple.

Definition 3.10 (Satisfaction). Let d be a tuple in relational schema A and let $\gamma_i = (C_i, D_i, L_i, U_i, \delta_i)$ be a TP-case. Let $\omega = \sum_{t \in \text{sol}(D_i)} \delta(D_i, t)$. Then $I_{A,\tau}$ satisfies (d, γ_i), denoted $I_{A,\tau} \models (d, \gamma_i)$, iff the following conditions hold:
1. $L_i \cdot \omega \leq I_{A,\tau}(d, D_i) \leq U_i \cdot \omega$, i.e. the probability that $I_{A,\tau}$ assigns to D_i lies in the interval $[L_i, U_i]$.
2. $(\forall t \in \text{sol}(C_i))(I_{A,\tau}(d, D_i) \cdot \delta_i(D_i, t) \cdot \omega = I_{A,\tau}(d, t))$, i.e. $I_{A,\tau}$ distributes probabilities for each $t \in \text{sol}(C_i)$ according to δ_i.

TP-interpretation $I_{A,\tau}$ satisfies TP-tuple $tp = (d, \gamma) \ (I_{A,\tau} \models tp)$, iff $I_{A,\tau} \models (d, \gamma_i)$ for all $\gamma_i \in \gamma$. □

For example, let us reconsider the following TP-tuple.

<table>
<thead>
<tr>
<th>Item</th>
<th>Origin</th>
<th>Dest</th>
<th>H</th>
<th>C</th>
<th>D</th>
<th>L</th>
<th>U</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Rome</td>
<td>Vienna</td>
<td>(#)</td>
<td>day < 15 & month = 11 & year = 1996</td>
<td>0.5</td>
<td>0.6</td>
<td>u</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(#)</td>
<td>day ≥ 15 & month = 11 & year = 1996</td>
<td>0.4</td>
<td>0.4</td>
<td>u</td>
<td></td>
</tr>
</tbody>
</table>

Consider the TP-interpretation defined as follows:
$I((11, Rome, Vienna), (d, 11, 1996)) = 0.04$ when $d < 15$.
$I((11, Rome, Vienna), (d, 11, 1996)) = .4/16$ when $d > 15$.
$I((\text{item}, \text{origin}, \text{dest}), (d, m, y)) = 0$ otherwise.
This TP-interpretation satisfies the TP-tuple above because
1. \(I((I1, Rome, Vienna), \{ t | t.day < 15 \land t.month = 11 \land t.year = 1996 \}) = 0.04 \cdot 14 = 0.56 \)
 which lies between 0.5 and 0.6, and
2. \(I((I1, Rome, Vienna), \{ t | t.day > 15 \land t.month = 11 \land t.year = 1996 \}) = 0.4/16 \cdot 16 = 0.4 \).

Definition 3.11 (Consistency and Mutual Consistency). A TP-tuple \(tp \) is consistent iff there exists a TP-interpretation \(I_{A,T} \) such that \(I_{A,T} 1 = tp \). A TP-relation \(r \) is consistent iff \((\exists I_{A,T})(\forall tp \in r)(I_{A,T} 1 = tp)\). TP-relations \(r \) and \(r' \) are mutually consistent iff \((\exists I_{A,T})(\forall tp \in r)(I_{A,T} F tp) \land (\forall tp' \in r')(I_{A,T} F tp')\). Note that consistent TP-relations with different schemas must be mutually consistent.

Proposition 3. Checking consistency of a compact TP-relation is linear in the rank of the TP-relation.

Definition 4.1 (Annotated Relation for a TP-Tuple). Let \(tp = (d, \gamma) \) be a TP-tuple over relational schema \(A \) and calendar \(\tau \) where \(d = (d_1, \ldots , d_k) \). Suppose \(\gamma \) contains \(n \) TP-cases of the form \(\gamma_i = (C_i, D_i, L_i, U_i, \delta_i) \) \((1 \leq i \leq n)\) and suppose \(\tau \) consists of a linear hierarchy \(H \) containing \(m \) time units \(T_1 \subseteq \cdots \subseteq T_m \). Here, each \(t \in S_\tau \) will be of the form \(t = (v_1, \ldots , v_m) \).

Then the annotated relation for TP-tuple \(tp \) over calendar \(\tau \), denoted \(ANN(tp) \), is defined as \(\{(d, t, L_i, U_i) \mid t \in sol(C_i) \text{ for some } \gamma_i \in \gamma \text{ and } [L_i, U_i] = [L_i \cdot x, U_i \cdot x] \text{ where } x = \delta_i(D_i, t)\} \).
4.2 (Annotated Relation for a TP-Relation). Let r be a TP-relation over \mathcal{T} containing n TP-tuples t_1, \ldots, t_n. Then the annotated relation for TP-relation r over calendar τ, denoted $\text{ANN}(r)$, is defined as the multiset $(\text{ANN}(t_1) \cup \ldots \cup \text{ANN}(t_n))$ over \mathcal{T}, where \cup denotes multiset union operation.

It is clear see that $\text{ANN}(t)$ and $\text{ANN}(r)$ can often be large and impractical to physically instantiate. This is why we only use annotation for theoretical purposes such as illustrating a process or proving equivalences between query expressions. In our implementation, we never create annotated relations.

The table below contains an annotated relation $\text{ANN}(r)$ for a TP-relation r consisting of one TP-tuple $t = (d, \gamma)$, where $d = (\text{“D1”}, \text{EMPTY})$ and $\gamma = \{\gamma_1\}$.

<table>
<thead>
<tr>
<th>Data</th>
<th>C</th>
<th>D</th>
<th>L</th>
<th>U</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>(#)</td>
<td>$\text{day} \leq 4 \land \text{month} = 11 \land \text{year} = 1996$</td>
<td>0.4</td>
<td>0.8</td>
<td>u</td>
</tr>
</tbody>
</table>

$\text{ANN}(r)$:

<table>
<thead>
<tr>
<th>Data</th>
<th>H</th>
<th>Day</th>
<th>Month</th>
<th>Year</th>
<th>L_1</th>
<th>U_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>1</td>
<td>11</td>
<td>1996</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>2</td>
<td>11</td>
<td>1996</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>3</td>
<td>11</td>
<td>1996</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>4</td>
<td>11</td>
<td>1996</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

However if γ_1’s C_1 field was “$\text{day} \leq 3 \land \text{month} = 11 \land \text{year} = 1996$”, then $\text{ANN}(r)$ would no longer contain the last tuple shown above. In general, note that changing C_1 only affects the number of annotated tuples in $\text{ANN}(r)$, not the probabilities for the remaining time points.

Notice the “0.1” and “0.2” values in the probabilistic fields above. These values were determined by uniformly distributing the available probability $[0.4, 0.8]$ among the four annotated tuples in $\text{ANN}(r)$. We were only justified in making this uniformity assumption since $\delta_1 = “u”$. In general, TP-relations will only give us probability intervals for a range of time points, and determining (tight) probability intervals for each time point within that range requires us to apply a distribution function δ_1.

We associate with each annotated relation $\text{ann}r$ the primary key which is associated with r. This key will be used when we define the TATA’s projection operation (\S5.7).

Note. Any annotated tuple (d, t, L, U) can be trivially converted into a tp-tuple (d, γ) where $\gamma = \gamma_1$, $\gamma_1 = (C, D, L, U, \delta)$, with $\text{sol}(C) = \text{sol}(D) = \{t\}$ and $\delta = “u”$ (uniform). Therefore, any annotated relation $\text{ann}r$ has an associated trivial tp-relation r obtained by replacing each annotated tuple by its tp-conversion. 4.1 Semantics and consistency of annotated relations.
4.1 Semantics and consistency of annotated relations

Our semantics for annotated relations closely parallels our semantics for TP-relations (§3.4). Annotated tuples at = (d, t, L_t, U_t) and at' = (d', t', L'_t, U'_t) are called data-identical iff (d = d'). We interpret annotated relations under the assumption that all data-identical annotated tuples refer to the same event. If at and at' are not data-identical, we assume they refer to different events. Let d be a data tuple and let t be a time point. Then ANN(r)[d,t] denotes the equivalence class of the pair (d, t), i.e., the multiset of all at ∈ ANN(r) where (at.d = d ∧ at.t = t).

Suppose at = (d, t, L_t, U_t) ∈ ANN(r), at' = (d', t', L'_t, U'_t) ∈ ANN(r), and (d = d' ∧ t = t'). Here, since at, at' ∈ ANN(r) refer to the same event at the same point in time, ANN(r) is an uncompact annotated relation. If there are no pairs of annotated tuples at, at' ∈ ANN(r) where (d = d' ∧ t = t'), then ANN(r) is a compact annotated relation. Later, we will describe a variety of compaction operators which convert uncompact annotated relations into compact annotated relations (e.g., x5.1). The following theorem states that the concept of "compact relation" for TP-relations and annotated relations coincide.

Theorem 1. A TP-relation r is compact iff its annotated counterpart, ANN(r), is compact.

Definition 4.3 (Satisfaction of Annotated Tuples). Let d be a tuple in relational schema A, let t be a time point in S_t, and let [L, U] be a probability interval. Then a TP-interpretation I_{A,r} satisfies annotated tuple at = (d, t, L_t, U_t), denoted I_{A,r} ⊨ at, iff L_t ≤ I_{A,r}(d, t) ≤ U_t.

Definition 4.4 (Consistency of Annotated Relations). An annotated tuple at is consistent iff (∃I_{A,r})(I_{A,r} ⊨ at). An annotated relation ANN(r) is consistent iff (∃I_{A,r})(∀at ∈ ANN(r))(I_{A,r} ⊨ at). Annotated relations ANN(r) and ANN(r') are mutually consistent iff (∃I_{A,r})(∀at ∈ ANN(r))(I_{A,r} ⊨ at) ∧ (∀at' ∈ ANN(r'))(I_{A,r} ⊨ at').

The following theorem tells us that any TP-interpretation satisfying TP-relation r also satisfies its annotation. A corollary of this is that if r is a consistent TP-relation, then ANN(r) is also consistent.

Theorem 2. If I_{A,r} ⊨ r, then I_{A,r} ⊨ ANN(r).

Corollary 1. If a TP-relation r is consistent, so is ANN(r).

The converse of Theorem 2 is not true, i.e., it may be the case that a TP-interpretation satisfies ANN(r), but does not satisfy r. This is shown in the following example.
EXAMPLE 4.1 (SATISFACTION). Let \(r \) consist of one TP-tuple \((d, \gamma)\) where \(\gamma = \{(\#, (1 \sim 2), 0.4, 0.8, u)\}\). Then \(\text{ANN}(r) = \{at_1, at_2\} \) where \(at_1 = (d, 1, 0.2, 0.4) \) and \(at_2 = (d, 2, 0.2, 0.4) \).

Now consider the TP-interpretation \(I_{A,T} \) such that \(I_{A,T}(d, 1) = 0.3 \) and \(I_{A,T}(d, 2) = 0.4 \). Clearly, \(I_{A,T} \) satisfies \(\text{ANN}(r) \), but \(I_{A,T} \not\models r \) because every TP-interpretation \(J_{A,T} \) that satisfies \(r \) must have \(J_{A,T}(d, 1) = J_{A,T}(d, 2) \).

This occurs since the details of the distribution get lost when annotating a relation this is not surprising as annotated relations have no fields for including information about distributions. Instead, we can show that if \(r \) is compact, \((d, \gamma) \in r, \) and \((d, t, L_t, U_t) \in \text{ANN}(r)\), then there must be a TP-interpretation \(I_{A,T} \) of \(r \) such that \(I_{A,T}(d, t) = L_t \) (i.e., \((\forall (d, t, L_t, U_t) \in \text{ANN}(r))(\exists I_{A,T})(I_{A,T} = r \land I_{A,T}(d, t) = L_t) \)). A similar statement applies to \(U_t \). This means that the bounds contained in \(\text{ANN}(r) \) are tight, and hence, \(\text{ANN}(r) \) correctly captures the implied probability intervals for data tuple \(d \) at time \(t \).

However, while the converse of Theorem 2 is not true, the converse to the Corollary is.

Indeed,

Proposition 4. Given a tp-relation \(r \), if \(\text{ANN}(r) \) is consistent, then so is \(r \).

Returning back to the problem of reachability of the bounds we note that for lower bounds of compact TP-relations one can make a stronger claim than the one stated above.

Theorem 3. Let \(r \) be a compact TP-relation containing a TP-tuple \((d, \gamma)\), and suppose \((d, t, L_t, U_t) \in \text{ANN}(r)\). Then there is a TP-interpretation \(I_{A,T} \) satisfying \(r \) such that \(I_{A,T}(d, t) = L_t \).

Theorems 2 and 3 jointly tell us that as far as lower bounds are concerned, \(r \) and \(\text{ANN}(r) \) are equivalent when \(r \) is known to be compact. Later, we will describe mechanisms to make a TP-relation \(r \) compact.

Note that, unlike the VI statement in the example above, the Id statement of the theorem does not hold for upper bounds the reason for this is that in a TP-tuple, the upper bounds may often be loose (i.e., not tight). For instance, consider the following TP-tuple:

<table>
<thead>
<tr>
<th>Data</th>
<th>H</th>
<th>C</th>
<th>D</th>
<th>L</th>
<th>U</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>(#)</td>
<td>(5/1/1998)</td>
<td>0.6</td>
<td>1</td>
<td>(u)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(#)</td>
<td>(6/1/1998)</td>
<td>0.4</td>
<td>1</td>
<td>(u)</td>
<td></td>
</tr>
</tbody>
</table>

It is easy to see that the upper bounds of the TP-cases above can be tightened to 0.6 and 0.4 respectively. Hence, these upper bounds are "loose" and need to be tightened if a theorem similar to Theorem 3 is to hold.
DEFINITION 4.5 (tightening). Let $tp = (d, \gamma)$, $\gamma = \gamma_1 \ldots, \gamma_n$, where $\gamma_i = \langle C_i, D_i, U_i, L_i, \delta_i \rangle$ be a tp-tuple. A tightening of tp is a tp-tuple $tp' = (d, \gamma')$, $\gamma' = \gamma_1' \ldots, \gamma_n'$, $\gamma_i' = \langle C_i', D_i', U_i', L_i', \delta_i' \rangle$, such that

1. $\bigcup_{i=1}^n C_i = \bigcup_{i=1}^n C_i'$.
2. For all TP-interpretations $I_{A,\tau}, I_{A,\tau} \models (d, \gamma)$ iff $I_{A,\tau} \models (d, \gamma')$.
3. For all $t \in \bigcup_{i=1}^n C_i$, let $(d, t, L, U) \in \text{ANN}(tp)$ and $(d, t, L', U') \in \text{ANN}(tp')$. Then $L' = L$ and $U' \leq U$.

A TP-tuple (d, γ) is said to be tight iff there is no other TP-tuple (d, γ') such that: (i) (d, γ') is a tightening of (d, γ) and (ii) for all TP-interpretations $I_{A,\tau}$, $I_{A,\tau} \models (d, \gamma)$ iff $I_{A,\tau} \models (d, \gamma')$.

A TP-relation is tight iff every TP-tuple in it is tight.

THEOREM 4. Let r be a compact, tight, TP-relation containing a TP-tuple (d, γ), and suppose $(d, t, L_t, U_t) \in \text{ANN}(r)$. Then there is a TP-interpretation $I_{A,\tau}$ satisfying r such that $I_{A,\tau}(d, t) = U_t$.

Algorithm Tighten-TP-Tuple(tp):

Input: TP-tuple $tp = (d, \gamma)$ where $\gamma = \{\gamma_1, \ldots, \gamma_n\}$ and for all $1 \leq i \leq n$, $\gamma_i = \langle C_i, D_i, U_i, L_i, \delta_i \rangle$

Output: Tight TP-tuple tp'' which is a tightening of tp

Note: In this algorithm, let $O(D, C)$ be a “shortcut” for the following expression:

$$\sum_{t \in \text{sol}(C)} O(D, t)$$

01. $L := 0$; $U := 0$; // $[L, U]$ will hold the sum of the lower and upper bounds

02. for $i := 1$ to n do {

03. $L_i := O(D_i, C_i) \cdot L_i$; $L := L + L_i$;

04. $U_i := O(D_i, C_i) \cdot U_i$; $U := U + U_i$; }

05. if $U \leq 1.0$ then return $tp'' := tp$; // If $U \leq 1.0$, then tp was already tight

06. $\gamma'' = \emptyset$;

07. for $i := 1$ to n do {

08. if $\delta_i \neq u$ then {

09. foreach $t \in \text{sol}(C_i)$ do {

10. $L_t := O(D_i, t) \cdot L_t$; $U_t := \delta_i(D_i, t) \cdot U_t$; $U' := 1 - (L - L_t)$;

11. if $U' < U_t$ then $U_t := U'$; }

12. Add TP-case $(\langle # \rangle, (t), L_t, U_t, u)$ to γ''; }

13. else {

14. $m = |\text{sol}(D_i)|$; $L_i = \frac{L_i}{m}$; $U_i = \frac{U_i}{m}$;

15. $U'' := 1 - (L - L_i)$; $U'' := m \cdot \min(U_i, U'')$;

16. Add TP-case $(\langle C_i, D_i, U_i, U'' \rangle)$ to γ''; }
 }

17. return $tp'' := (d, \gamma'')$;

End-Algorithm

Theorems 3 and 4 jointly tell us that the conversion of a TP-relation r to annotated form preserves bounds when r is tight and compact. Every TP-relation can be tightened using the following algorithm:

4.2 Sample annotated relations

Let r consist of one TP-tuple which contains two TP-cases as shown below.
<table>
<thead>
<tr>
<th>Item</th>
<th>Origin</th>
<th>Dest</th>
<th>H</th>
<th>C</th>
<th>D</th>
<th>L</th>
<th>U</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rome</td>
<td>Paris</td>
<td>(#)</td>
<td>day ≤ 2 ∧ month = 8</td>
<td>year = 1997</td>
<td>0.5</td>
<td>0.7</td>
<td>Φ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(≠)</td>
<td>day ≥ 5 ∧ day ≤ 7 ∧ month = 8 ∧ year = 1997</td>
<td>0.3</td>
<td>0.6</td>
<td>Φ</td>
</tr>
</tbody>
</table>

Note that the variable Φ must be instantiated. If Φ = "u", ANN(r) will be

<table>
<thead>
<tr>
<th>Item</th>
<th>Origin</th>
<th>Dest</th>
<th>H</th>
<th>Day</th>
<th>Month</th>
<th>Year</th>
<th>Lt</th>
<th>Ut</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Rome</td>
<td>Paris</td>
<td>1</td>
<td>8</td>
<td>1997</td>
<td>0.25</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Rome</td>
<td>Paris</td>
<td>2</td>
<td>8</td>
<td>1997</td>
<td>0.25</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Rome</td>
<td>Paris</td>
<td>5</td>
<td>8</td>
<td>1997</td>
<td>0.10</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Rome</td>
<td>Paris</td>
<td>6</td>
<td>8</td>
<td>1997</td>
<td>0.10</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Rome</td>
<td>Paris</td>
<td>7</td>
<td>8</td>
<td>1997</td>
<td>0.10</td>
<td>0.20</td>
<td></td>
</tr>
</tbody>
</table>

where [Lt, Ut] = 1/2 • [0.5, 0.7] for the first two tuples and [Lt, Ut] = s • [0.3, 0.6] for the remaining tuples in ANN(r). However if Φ = "g", ANN(r) will be

<table>
<thead>
<tr>
<th>Item</th>
<th>Origin</th>
<th>Dest</th>
<th>H</th>
<th>Day</th>
<th>Month</th>
<th>Year</th>
<th>Lt</th>
<th>Ut</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Rome</td>
<td>Paris</td>
<td>1</td>
<td>8</td>
<td>1997</td>
<td>0.25</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Rome</td>
<td>Paris</td>
<td>2</td>
<td>8</td>
<td>1997</td>
<td>0.125</td>
<td>0.175</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Rome</td>
<td>Paris</td>
<td>5</td>
<td>8</td>
<td>1997</td>
<td>0.15</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Rome</td>
<td>Paris</td>
<td>6</td>
<td>8</td>
<td>1997</td>
<td>0.075</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Rome</td>
<td>Paris</td>
<td>7</td>
<td>8</td>
<td>1997</td>
<td>0.0375</td>
<td>0.075</td>
<td></td>
</tr>
</tbody>
</table>

where [Lt, Ut] = 1/2 • [0.5, 0.7], 1/4 • [0.5, 0.7], 1/2 • [0.3, 0.6], 1/4 • [0.3, 0.6], and 1/8 • [0.3, 0.6] for the first through fifth tuples of ANN(r) respectively. Notice that modifying Φ) (i.e., the distribution function δ) only affects the Lt and Ut fields of ANN(r).

5. THEORETICAL ANNOTATED TEMPORAL ALGEBRA

In this section, we define the Theoretical Annotated Temporal Algebra and provide definitions for compaction, intersection, union, selection, difference, cartesian product, projection, and join on annotated relations.

We know that every TP-relation can be converted into a (potentially very large) annotated relation. As annotated relations are explicit representations of TP-relations, the definition of the above operations on annotated relations can be explicitly defined and justified this is what we do in this section. Then, in Section 6, we will show how these operations can be implemented in the TP-Algebra in such a way that the TP-Algebra operations efficiently implement the annotated algebra operations on the implicit (smaller) TP-relations, rather than their larger annotated counterparts, this avoiding the need for explicit annotated relations altogether.

The definitions in this section will produce a new annotated relation ann", based on input from consistent annotated relations annr, and annr'. Oftentimes, these definitions will refer to annotated tuples at, at' which are assumed to be of the form at = (d, t, Lt, Ut) and at' = (d', t', L't, U't).

Note: Our examples illustrating the Theoretical Annotated Temporal Algebra and the TP-Algebra will be based on the relations shown in Figure 3.

5.1 Compaction of an annotated relation
The first operation we define will be compaction as this operator is needed to define other operators. Compaction is the TP analog of duplicate elimination in the relational algebra.

Definition 5.1 (Compaction of an annotated relation). A function \(\kappa \) from annotated relations to annotated relations is called a compaction operation if it satisfies the following axioms:

- Compactness: \(\kappa(\text{ann } r) \) is compact for all annotated relations \(\text{ann } r \).
- No Fooling Around (NFA): If \(\text{ann } r \) is compact, then \(\kappa(\text{ann } r) = \text{ann } r \).
- Conservativeness: If \(\text{at} = (d, t, L_t, U_t) \in \kappa(\text{ann } r) \), then \(\exists \text{at}' = (d, t, L_t', U_t') \in \text{ann } r \).

The Compactness axiom assures us that the result of a compaction operation will be a compact relation. The NFA axiom states that applying compaction operation to a compact relation should not change the relation. The Compactness and NFA axioms jointly guarantee that compaction operations are idempotent, i.e. \(\kappa(\kappa(\text{ann } r)) = \kappa(\text{ann } r) \). The Conservativeness axiom says that any information which appears in the result of a compaction has to originate from information in the initial relation; no information about "new" events, or events at "new" time points gets added during compaction.

It should be clear that there are many possible ways to compact a relation. One possible class of compaction strategies involves the use of a combination function (as defined in Section 2.5).

Definition 5.2 (\(\chi \)-compaction of an annotated relation). Let \(\chi \) be a combination function. Then the \(\chi \)-compaction of annotated relation \(\text{ann } r \), denoted \(\kappa_\chi(\text{ann } r) \), is defined as

\[
\kappa_\chi(\text{ann } r) = \{ \text{at} = (d, t, L_t, U_t) \mid [L_t, U_t] = \chi(\{[L_1^{(d,t)}, U_1^{(d,t)}], \ldots, [L_k^{(d,t)}, U_k^{(d,t)}]\}) \text{ where } \\
\text{ann } r[d, t] = \{a_1^{(d,t)}, \ldots, a_k^{(d,t)}\} \text{ and } a_i^{(d,t)} = (d, t, L_i^{(d,t)}, U_i^{(d,t)}).
\]

Intuitively, in combination function based compactions, \(X \) is applied to the multi-set of all \([L_i, U_i]\)s associated with \((d, t)\). The resulting \([L, U]\) then becomes the only probability interval associated with \((d, t)\). The following proposition states that an operation defined in this manner is indeed a compaction operation.

To simplify notation, whenever we have a combination function \(X \), instead of denoting the corresponding compaction operation \(\kappa_\chi(\text{ann } r) \), we will write \(\kappa_\chi \). This way, e.g., instead of \(\kappa \) we write \(\kappa_{\text{eq}} \). This rule will be also used for other operations.

Proposition 5. Let \(\chi \) be any combination function. Then \(\kappa_\chi \) is a compaction operation.

Theorem 5. If \(\text{at}' = (d, t, L_t', U_t') \in \text{ann } r \), then \(\exists \text{at} = (d, t, L_t, U_t) \in \kappa_\chi(\text{ann } r) \).

Theorem 5 indicates that every tuple in \(\text{ann } r \) leads to a corresponding tuple in compaction for combination function based compaction operations.

Another possible class of compaction strategies uses \(p \)-strategies (i.e., probabilistic conjunction or disjunction strategies as defined in Section 2.4). These compactions, denoted \(\kappa_p \), are defined in the same way as \(K_X(\text{ann } r) \) except we let \(\text{let } [L_t, U_t] = ([L_1^{(d,t)}, U_1^{(d,t)}] \bigodot_p \ldots \bigodot_p [L_k^{(d,t)}, U_k^{(d,t)}]) \) when \(p \) is a conjunctive \(p \)-strategy, and \(\text{let } [L_t, U_t] = ([L_1^{(d,t)}, U_1^{(d,t)}] \bigoplus_p \ldots \bigoplus_p [L_k^{(d,t)}, U_k^{(d,t)}]) \) when \(p \) is a disjunctive \(p \)-strategy.
Proposition 6. Let \(\rho \) be any \(p \)-strategy. Then \(\kappa_\rho(\text{ann}_r) \) is a compaction operation.

5.2 Intersection of two annotated relations

The intersection of annotated relations \(\text{ann}_r \) and \(\text{ann}_r' \) extracts information common to both relations. In our algebra, we break intersection into two suboperations: First, a multiset intersection will extract all tuples from both \(\text{ann}_r \) and \(\text{ann}_r' \) which contain "common information". Then, we will use one of our previously-defined compaction operators to compact the result of this multiset intersection. Finally, intersection will be defined as a combination of these suboperations. Note that intersection (and multiset intersection) is only defined when both relations have the same schema.

Definition 5.3 (Multiset Intersection of Two Annotated Relations). The multiset intersection of annotated relations \(\text{ann}_r \) and \(\text{ann}_r' \), denoted \(\text{ann}_r \cap \text{ann}_r' \), is defined as

\[
\text{ann}_r \cap \text{ann}_r' = \{ \text{at} \in \text{ann}_r \mid (\exists \text{at}' \in \text{ann}_r')(d = d' \land t = t') \} \cup \{ \text{at}' \in \text{ann}_r' \mid (\exists \text{at} \in \text{ann}_r)(d = d' \land t = t') \}.
\]

Intuitively, \(\text{ann}_r \cap \text{ann}_r' \) contains all \(\text{at} \in \text{ann}_r \) and all \(\text{at}' \in \text{ann}_r' \) where \(\text{at} \) and \(\text{at}' \) refer to the same event at the same point in time. Recall that "(\(\exists \text{at} \in \text{ann}_r \))" and "(\(\exists \text{at}' \in \text{ann}_r' \))" are shorthand for "(\(\exists (d,t,L_t,U_t) \in \text{ann}_r \))" and "(\(\exists (d',t',L_{t'},U_{t'}) \in \text{ann}_r' \))" respectively. For greater clarity and conciseness, our definitions will make use of this implicit notation. First table below shows \(\text{ann}_r \cap \text{ann}_r' = \text{ANN}(r_1) \cap \text{ANN}(r_2) \)

<table>
<thead>
<tr>
<th>Data</th>
<th>H</th>
<th>Day</th>
<th>Month</th>
<th>Year</th>
<th>(L_t)</th>
<th>(U_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>2</td>
<td>8</td>
<td>1997</td>
<td></td>
<td>0.16</td>
<td>0.22</td>
</tr>
<tr>
<td>D1</td>
<td>3</td>
<td>8</td>
<td>1997</td>
<td></td>
<td>0.08</td>
<td>0.11</td>
</tr>
<tr>
<td>D1</td>
<td>6</td>
<td>8</td>
<td>1997</td>
<td></td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>D1</td>
<td>7</td>
<td>8</td>
<td>1997</td>
<td></td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>D1</td>
<td>8</td>
<td>8</td>
<td>1997</td>
<td></td>
<td>0.10</td>
<td>0.20</td>
</tr>
</tbody>
</table>

\[
\text{ANN}(r_1) \cap \text{ANN}(r_2) = \kappa_{eq}(\text{ann}_r')
\]

<table>
<thead>
<tr>
<th>Data</th>
<th>H</th>
<th>Day</th>
<th>Month</th>
<th>Year</th>
<th>(L_t)</th>
<th>(U_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>2</td>
<td>8</td>
<td>1997</td>
<td></td>
<td>0.16</td>
<td>0.22</td>
</tr>
<tr>
<td>D1</td>
<td>3</td>
<td>8</td>
<td>1997</td>
<td></td>
<td>0.08</td>
<td>0.11</td>
</tr>
<tr>
<td>D1</td>
<td>6</td>
<td>8</td>
<td>1997</td>
<td></td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>D1</td>
<td>7</td>
<td>8</td>
<td>1997</td>
<td></td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>D1</td>
<td>8</td>
<td>8</td>
<td>1997</td>
<td></td>
<td>0.10</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Clearly, \(\text{ann}_r \cap \text{ann}_r' \) above is uncompacted. To obtain a compact annotated relation, we may use any \(\kappa_x \) compaction operator. Using this operator when defining intersection makes sense because \(r, r' \) may both contain data tuple \(d \) at some time point \(t \), but with different probabilities. In this case we are combining two different probabilities assigned to the same event by two different
DEFINITION 5.4 (INTERSECTION OF TWO ANNOTATED RELATIONS). The intersection of annotated relations \(\text{ann}_r\) and \(\text{ann}'_r\) under the \(\chi\) combination function, denoted \(\text{ann}_r \cap \chi \text{ann}'_r\), is defined as \(\kappa \chi (\text{ann}_r \cap \text{ann}'_r)\).

5.3 Union of two annotated relations

Just like intersection, the union of two annotated relations will be presented as a combination of two suboperations: multiset union, which combines the information from two relations together and compaction, which compacts the result. As always, union is only defined when both relations have the same schema.

DEFINITION 5.5 (MULTISET UNION OF TWO ANNOTATED RELATIONS). The multiset union of annotated relations \(\text{ann}_r\) and \(\text{ann}'_r\), denoted \(\text{ann}_r \cup \text{ann}'_r\), is defined as \(\text{ann}_r'' = \text{ann}_r \cup \text{ann}'_r\).

Intuitively, \(\text{ann}_r''\) will contain all \(\ominus\) \(\text{ann}_r\) and all \(\ominus\) \(\text{ann}'_r\). As in the case of intersection, \(\text{ann}_r''\) may over-specify probabilistic information. We can consolidate this information by using a \(\kappa\), compaction operator. The reason for using the operator \(\kappa\) instead of a conjunction strategy is exactly for the same reason that we used the \(\kappa\) compaction operator when defining intersection (see discussion preceding Definition 5.4).

DEFINITION 5.6 (UNION OF TWO ANNOTATED RELATIONS). The union of annotated relations \(\text{ann}_r\) and \(\text{ann}'_r\), under the \(\chi\) combination function, denoted \(\text{ann}_r \cup \chi \text{ann}'_r\), is defined as \(\kappa \chi (\text{ann}_r \cup \text{ann}'_r)\).

The tables below show the results of \(\text{ann}_r'' = \text{ANN} (r_1) \cup \text{ANN} (r_2)\) and \(\text{ANN} (r_1) \cup_{eq} \text{ANN}(r_2)\).
Note that although \(\text{ANN}(r_1) \) and \(\text{ANN}(r_2) \) are both consistent, \(\text{ANN}(r_1) \cup \text{ANN}(r_2) \) above is an inconsistent annotated relation (since for some data tuple \(d \), the sum of the \(L_t \) values exceeds 1.0). This occurs because \(\text{ANN}(r_1) \) and \(\text{ANN}(r_2) \) are not mutually consistent (Def. 4.4). In general, if consistent annotated relations \(\text{ANN}(r) \) and \(\text{ANN}(r') \) are also mutually consistent, then \(\text{ANN}(r) \cup \text{ANN}(r') \) will always be consistent.

5.4 Selection on an annotated relation

We represent a selection condition over calendar \(\tau \) by the symbol \(C \). If \(C \) is of the form \((F \text{ op } v)\) or \((t_1 \sim t_2)\), then \(C \) is an atomic condition over \(\tau \). Let \(C \) be an atomic condition, let \(T_1 \subseteq T_2 \subseteq \cdots \subseteq T_m \) be a linear hierarchy \(H \) of time units over \(\tau \), and suppose TP-relation \(r \) is over relational schema \(A = (A_1, \ldots, A_k) \). Then one of the following cases must hold:

- If \(F = A_i \) for some \(1 < i < k \), then \(C \) is a data condition.
- If \(F = T_j \) for some time unit \(T_j \) in \(H \) or if \(C \) is of the form \((t_1 \sim t_2)\), then \(C \) is a temporal condition.
- If \(F = "L" \) or \(F = "U" \), then \(C \) is a probabilistic condition.
- Otherwise, \(C \) is an inapplicable condition. In this case, \(o-C(r) \) and \(o-C(\text{ANN}(r)) \) are not defined. Notice that selections on the hidden field (i.e., \(F = A_k \)) are not permitted. Throughout this paper, we will assume that \(C \) is not an inapplicable condition.
DEFINITION 5.7 (SELECTION ON AN ANNOTATED RELATION; ATOMIC CONDITION). The selection of atomic condition \(\mathcal{C} \) on annotated relation \(\text{att} \), denoted \(\sigma_{\mathcal{C}}(\text{att}) \), is defined in the following way:

- If \(\mathcal{C} \) is a data condition, \(\sigma_{\mathcal{C}}(\text{att}) = \{ \text{at} \in \text{att} \mid d \text{ satisfies } \mathcal{C} \} \). In this case, our selection is based on the classical relational algebra.
- If \(\mathcal{C} \) is a temporal condition, \(\sigma_{\mathcal{C}}(\text{att}) = \{ \text{at} \in \text{att} \mid t \in \text{sol(\mathcal{C})} \} \).
- If \(\mathcal{C} \) is a probabilistic condition, \(\sigma_{\mathcal{C}}(\text{att}) = \{ \text{at} \in \text{att} \mid ([L, U] = [L_t, U_t]) \text{ satisfies } \mathcal{C} \} \).

For example if \(\mathcal{C} = (2/8/1997 \sim 7/8/1997) \), \(\sigma_{\mathcal{C}}(\text{ANN}(r_1)) \) and \(\sigma_{\mathcal{C}}(\text{ANN}(r_2)) \) will be

<table>
<thead>
<tr>
<th>Data</th>
<th>H</th>
<th>Day</th>
<th>Month</th>
<th>Year</th>
<th>(L_t)</th>
<th>(U_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>2</td>
<td>8</td>
<td>1997</td>
<td></td>
<td>0.16</td>
<td>0.22</td>
</tr>
<tr>
<td>D1</td>
<td>3</td>
<td>8</td>
<td>1997</td>
<td></td>
<td>0.08</td>
<td>0.11</td>
</tr>
<tr>
<td>D1</td>
<td>5</td>
<td>8</td>
<td>1997</td>
<td></td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>D1</td>
<td>6</td>
<td>8</td>
<td>1997</td>
<td></td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>D1</td>
<td>7</td>
<td>8</td>
<td>1997</td>
<td></td>
<td>0.10</td>
<td>0.20</td>
</tr>
</tbody>
</table>

but if \(\mathcal{C} = (L \neq 0.10) \), \(\sigma_{\mathcal{C}}(\text{ANN}(r_1)) \) and \(\sigma_{\mathcal{C}}(\text{ANN}(r_2)) \) will be

<table>
<thead>
<tr>
<th>Data</th>
<th>H</th>
<th>Day</th>
<th>Month</th>
<th>Year</th>
<th>(L_t)</th>
<th>(U_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>1</td>
<td>8</td>
<td>1997</td>
<td></td>
<td>0.32</td>
<td>0.44</td>
</tr>
<tr>
<td>D1</td>
<td>2</td>
<td>8</td>
<td>1997</td>
<td></td>
<td>0.16</td>
<td>0.22</td>
</tr>
<tr>
<td>D1</td>
<td>3</td>
<td>8</td>
<td>1997</td>
<td></td>
<td>0.08</td>
<td>0.11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data</th>
<th>H</th>
<th>Day</th>
<th>Month</th>
<th>Year</th>
<th>(L_t)</th>
<th>(U_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>3</td>
<td>8</td>
<td>1997</td>
<td></td>
<td>0.05</td>
<td>0.125</td>
</tr>
</tbody>
</table>

Later, we will describe how to perform selections with non-atomic selection conditions (§6.5).
5.5 Difference of two annotated relations

As in the classical relational algebra, difference is only defined when both relations have the same schema. There are many possible ways of defining difference, but we have chosen to base our definition on the intuition that if two relations \(r \) and \(r' \) represent the information that two different "agents" have about the same world, then \(r - r' \) should represent the information about the world that \(r \) has and \(r' \) does not.

Definition 5.8 (Difference of Two Annotated Relations). The difference \(\text{ann} r - \text{ann} r' \) of annotated relations \(\text{ann} r \) and \(\text{ann} r' \) is
\[
\{ \text{at} \in \text{ann} r \mid \forall \text{at}' \in \text{ann} r' \left(\text{at} \neq \text{at}' \lor t \neq t' \right) \}.
\]

Thus, \(\text{ann} r'' \) will not include \(\text{at} \in \text{ann} r \) if there exists an \(\text{at}' \in \text{ann} r' \) which refers to the same event at the same point in time. For example, \(\text{ANN}(r_1) - \text{ANN}(r_2) \) and \(\text{ANN}(r_2) - \text{ANN}(r_1) \) will be different.

<table>
<thead>
<tr>
<th>Data</th>
<th>H</th>
<th>Day</th>
<th>Month</th>
<th>Year</th>
<th>(L_t)</th>
<th>(U_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>1</td>
<td>8</td>
<td>1997</td>
<td></td>
<td>0.32</td>
<td>0.44</td>
</tr>
<tr>
<td>D1</td>
<td>5</td>
<td>8</td>
<td>1997</td>
<td></td>
<td>0.10</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Suppose \(\text{at}_1 = (d, t, 0.2, 0.4) \in \text{ann} r \) and \(\text{at}_2 = (d, t, 0.1) \in \text{ann} r' \). Then by definition, \(\text{ann} r'' \) will not contain \(\text{at}_1 \). Now suppose we removed from \(\text{ann} r' \) all annotated tuples where \([L', U'] = [0, 1] \). Here, \(\text{ann} r'' \) will contain \(\text{at}_1 \). Apparently, we cannot simply throw out tuples where \([L', U'] = [0, 1] \).

Intuitively, if we do not have an annotated tuple for data tuple \(d \) at time \(t \), then "we do not know anything about \((d, t) \)'s probability". In this case, \((d, t) \) is implicitly assigned a probability interval of \([0, 1]\). On the other hand, \(\text{at}_2 \) indicates that "we know that we do not know anything about \((d,t) \)'s probability". This distinction is subtle yet important; by keeping these two cases distinct, we allow both the closed world assumption (where \((d, t) \) is implicitly assigned a probability interval of \([0, 0]\)) and the open world assumption.

5.6 Cartesian product of two annotated relations

Each tuple in the result of a cartesian product reflects the conjunction of two events. Suppose that at time \(t \), events \(e_1 \) and \(e_2 \) have probability intervals \([L_1, U_1]\) and \([L_2, U_2]\) respectively. In order to compute the probability interval \([L, U]\) for the event \((e_1 \land e_2)\) at time \(t \), we must apply a probabilistic conjunction strategy \(a \), i.e., \([L, U] = [L_1, U_1] \land_a [L_2, U_2]\) (§2.4). This allows users to ask queries such as "Compute the cartesian product of annotated relations \(\text{ann} r \) and \(\text{ann} r' \) under the assumption that there is no information about dependencies between events in these relations."

Definition 5.9 (Cartesian Product of Two Annotated Relations). The cartesian product of annotated relations \(\text{ann} r \) and \(\text{ann} r' \) under the \(a \) probabilistic conjunction strategy, denoted \(\text{ann} r \times_a \text{ann} r' \), is defined as
\[
\{ (d'', t, L''_t, U''_t) \mid (\exists \text{at} \in \text{ann} r) \land (\exists \text{at}' \in \text{ann} r') \land (d'' = (P(d), P(d'), h'')) \land (h'' = (d.H \parallel d'.H)) \land (t = t') \land ([L''_t, U''_t] = [L_t, U_t] \land_a [L'_t, U'_t]) \}.
\]
Note that cartesian products only combine annotated tuples which refer to the same time point. It computes the combined data tuple d" by merging (i) manifest data fields from ann, (i.e., P (d)), (ii) manifest data fields from ann', (i.e., P(d')), and (iii) h" = d.H || d'.H (i.e., the hidden list concatenation of d.H and d'.H). It then computes the combined probability interval by applying user selected conjunction strategy a. This is highly appropriate because when computing Cartesian Products, we are looking at the probability that the concatenation of the two data tuples is in the (ordinary set theoretic) cartesian product of the two relations at a given instant of time. This is therefore a conjunctive event, and hence, the use of a conjunctive p-strategy when performing cartesian products.

For example,

<table>
<thead>
<tr>
<th>r_1.D</th>
<th>r_2.D</th>
<th>H</th>
<th>Day</th>
<th>Month</th>
<th>Year</th>
<th>L_t</th>
<th>U_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>D1</td>
<td>H</td>
<td>2</td>
<td>8</td>
<td>1997</td>
<td>0.00</td>
<td>0.22</td>
</tr>
<tr>
<td>D1</td>
<td>D1</td>
<td>H</td>
<td>3</td>
<td>8</td>
<td>1997</td>
<td>0.00</td>
<td>0.11</td>
</tr>
<tr>
<td>D1</td>
<td>D1</td>
<td>H</td>
<td>6</td>
<td>8</td>
<td>1997</td>
<td>0.00</td>
<td>0.20</td>
</tr>
<tr>
<td>D1</td>
<td>D1</td>
<td>H</td>
<td>7</td>
<td>8</td>
<td>1997</td>
<td>0.00</td>
<td>0.20</td>
</tr>
<tr>
<td>D1</td>
<td>D1</td>
<td>H</td>
<td>8</td>
<td>8</td>
<td>1997</td>
<td>0.00</td>
<td>0.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>r_1.D</th>
<th>r_2.D</th>
<th>H</th>
<th>Day</th>
<th>Month</th>
<th>Year</th>
<th>L_t</th>
<th>U_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>D1</td>
<td>H</td>
<td>2</td>
<td>8</td>
<td>1997</td>
<td>0.10</td>
<td>0.22</td>
</tr>
<tr>
<td>D1</td>
<td>D1</td>
<td>H</td>
<td>3</td>
<td>8</td>
<td>1997</td>
<td>0.05</td>
<td>0.11</td>
</tr>
<tr>
<td>D1</td>
<td>D1</td>
<td>H</td>
<td>6</td>
<td>8</td>
<td>1997</td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>D1</td>
<td>D1</td>
<td>H</td>
<td>7</td>
<td>8</td>
<td>1997</td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>D1</td>
<td>D1</td>
<td>H</td>
<td>8</td>
<td>8</td>
<td>1997</td>
<td>0.10</td>
<td>0.20</td>
</tr>
</tbody>
</table>

5.7 Projection on an annotated relation

A list F of fields is said to be projectable w.r.t. TP-relation r if (i) every field in F is a manifest data field of r, and (ii) F is non-empty. F is projectable w.r.t. annotated relation ANN(r) iff F is projectable w.r.t. r. It is important to note that hidden fields cannot be projected out.

Definition 5.10 (Projection on an annotated relation). Let F be a list of fields which are projectable w.r.t. ANN, and let “A_1, ..., A_n” be the (possibly empty) list of all manifest data fields which appear in the primary key of ANN, but do not appear in F. Then the projection of field list F on annotated relation ANN, denoted π_F(ANN(r)), is defined as

\[
π_F(ANN(r)) = \{ (d'', t, L_1, U_1) | (\exists a \in A) \land (d'' = (π_F(P(d)), h'')) \land (h'' = (d.H || “A_1:d.A_1, ..., A_n:d.A_n")) \}
\]

Here, π_F(P(d)) works in the same way as projection in the classical relational algebra except it does not remove duplicates and it gracefully ignores fields in F which do not appear in P(d)'s schema.

For example if F = "Data1" and if our primary key for ANN(r_3) was "Data1,Data2", then

\[
π_F(ANN(r_3)) = π_F(ANN(r_3)) \text{ will be...}
\]
Notice that if we did not have the hidden field h", then we would not be able to tell whether (D1) refers to event (D1,D2) or to event (D1,D3). In other words, the hidden field helps us to prevent loss of information. Now suppose that after a projection, we wanted (D1) to refer to all events where Data1 = D1. For the example above, this would mean that event (D1) should refer to the compound event ((D1,D2) ∨ (D1,D3)). This interpretation is not directly supported by our algebras because the disjunctive event above is not instantaneous.

To help reduce the size of the hidden field, projection only retains field-value pairs for fields which appear in the relation's primary key. Thus when the primary key is small, h" will also be small.

5.8 Join of two annotated relations

For simplicity, this paper will only consider the "natural join" operation.

Definition 5.11 (Join of two annotated relations). Let selection condition C be defined as
\((ann_r.L_1 = ann_r'.L_1) \land \ldots \land (ann_r.L_n = ann_r'.L_n)\) where "\(L_1 \ldots L_n\)" is the list of all manifest data fields which occur in the schema for both \(ann_r\) and \(ann'_r\). Then the join of annotated relations \(ann_r\) and \(ann'_r\) under the \(\alpha\) probabilistic conjunction strategy, denoted \(ann_r \bowtie_{\alpha} ann'_r\), is defined as
\(\pi_\mathcal{F}(\sigma_C(ann_r \times_{\alpha} ann'_r))\) where \(\mathcal{F}\) is the list of all manifest data fields which occur in the schema for either \(ann_r\) or \(ann'_r\) after removing duplicate field names. \(\square\)

For example, \(ann_r'' = ANN(r_3) \bowtie_{pc} ANN(r_4)\) will be

<table>
<thead>
<tr>
<th>Data1</th>
<th>H</th>
<th>Day</th>
<th>Month</th>
<th>Year</th>
<th>(L_t)</th>
<th>(U_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>D2</td>
<td>2</td>
<td>8</td>
<td>1997</td>
<td>0.10</td>
<td>0.40</td>
</tr>
<tr>
<td>D1</td>
<td>D3</td>
<td>3</td>
<td>8</td>
<td>1997</td>
<td>0.15</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Notice that all of the hidden fields in \(ann_r''\) above are EMPT. This occurs since in our example, \(F = \"Data1,Data2\"\) so when we perform a projection, the list of manifest data fields not appearing in F (i.e., the "A_1, ... , A_n" list in Definition 5.10) is empty.

Although our definition of join in this section only corresponds to a natural join, it can easily be extended to handle other types of join. For instance, an implementation which uses an SQL-like interface may allow users to explicitly specify appropriate values for C and F.

5.9 Granularity of operations in TATA.

Complex expressions in our algebra can be used to perform operations involving a number of different combination functions. For instance, a user who wants to take a join of two annotated relations \(ann_{r1}\) and \(ann_{r2}\) assuming independence on the first day of each month and positive correlation on all other days may do so by writing a complex query. First, he selects from each relation, all first days of the month, leading to relations \(ann_{r1}\) and \(ann_{r2}\) respectively. He also
6.1 (CORRECTLY IMPLEMENTS). Unary TPA operator op^T correctly implements the semantics for unary TATA operator op^A iff $\text{ANN}(\text{op}^T(r)) = \text{op}^A(\text{ANN}(r))$ for every TP-relation r. Furthermore, binary TPA operator op^T correctly implements the semantics for binary TATA operator op^A iff $\text{ANN}(r \text{ op}^T r') = \text{ANN}(r) \text{ op}^A \text{ ANN}(r')$ for every pair of TP-relations r, r'. □

Note that as usual, intersection, union, and difference are only defined when both TP-relations have the same schema, selections are only defined when C is not an inapplicable condition, and projections are only defined when field list F is projectable.
DEFINITION 6.2 (TP-COMPRESSION FUNCTION). A TP-compression function \(3(r) \) is a function which takes TP-relation \(r \) as input, and returns as output a TP-relation \(r'' \) where (i) \(N(r'') = N(r) \) and (ii) there exists a bijection between \(\text{ANN}(r) \) and \(\text{ANN}(r'') \) which maps each \((d, t, L_t, U_t) \in \text{ANN}(r) \) to a \((d, t, L_t', U_t') \in \text{ANN}(r'') \) such that \(L_t = U_t = U_t' \).

DEFINITION 6.3 (TP-COMPRESSION OF A TP-RELATION; SAME-DISTRIBUTION). The same-distribution TP-compression of TP-relation \(r \), denoted \(3_{sd}(r) \), is equal to the multiset \(S \) which can be constructed in the following way: Initially, let \(S = r \). Then for each \((d, t) \in S \) and for each pair of TP-cases \(\gamma_i = \langle C_i, D_i, L_i, U_i, \delta_i \rangle \) and \(\gamma_j = \langle C_j, D_j, L_j, U_j, \delta_j \rangle \) in \(r'' \) where \(\text{sol}(D_i) = \text{sol}(D_j) \), remove \(\gamma_i, \gamma_j \) from \(r'' \) and add TP-case \(\langle (C_i \lor C_j), D_i, L_i, U_i, \delta \rangle \) to \(r'' \).

We now develop a compaction algorithm, which constructs a compaction of a TP-relation. As in the case of TATA, it is possible (using the selection operator) to (i) split a relation into 2 or more parts, (ii) compact each part using a local (to that part) combination function, and (iii) take the unions of the results. Thus, compactions can be performed by applying different combination functions to different parts of a relation.

As in the case of TATA, there are many different compaction operations on TP-relations. Below, we present the TP analogs of \(\chi \)-compactions and p-strategy based compactions.

DEFINITION 6.7 (\(\chi \)-COMPATION OF A TP-RELATION). Let \(\chi \) be a combination function. Then the \(\chi \)-compaction of TP-relation \(r \), is any relation \(\kappa_\chi(r) \) such that \(\text{ANN}(\kappa_\chi(r)) = \{at = (d, t, L_t, U_t) | [L_t, U_t] = \chi([L_i^{(d,t)}, U_i^{(d,t)}], \ldots, [L_k^{(d,t)}, U_k^{(d,t)}])\} \) where

\(\text{ANN}(r)[d, t] = \{at_i^{(d,t)}, \ldots, at_k^{(d,t)}\} \) and \(at_i^{(d,t)} = (d, t, L_i^{(d,t)}, U_i^{(d,t)}) \).

The following lemma states that this operation is indeed a compaction operation.
Lemma 1. Let χ be a combination function. Then $\kappa_\chi(r)$ is a compaction operation.

Algorithm Compute-Compaction shown below provides a mechanism to efficiently compute compactions without resorting to annotation. This algorithm can perform compactions using either a combination function X or a p-strategy p. The boxed line in this algorithm shows exactly where a combination function or p-strategy is applied to compact data-identical tuples.

Theorem 7. Let χ be a combination function. Then algorithm Compute-Compaction(r, χ) correctly computes the $\kappa_\chi(r)$ compaction operation.

We define p-strategy based compactions of TP-relations in the same way as $\kappa_X(r)$ except we let $[L_a, U_a] = ([L_1^{(d,t)}, U_1^{(d,t)}] \otimes \ldots \otimes [L_k^{(d,t)}, U_k^{(d,t)}])$ and let $[L_a, U_a] = ([L_1^{(d,t)}, U_1^{(d,t)}] \oplus \ldots \oplus [L_k^{(d,t)}, U_k^{(d,t)}])$ when defining $K_\otimes^a(r)$ and $K_\otimes^a(r)$ respectively.

Lemma 2. Let ρ be a p-strategy. Then $\kappa_\rho(r)$ is a compaction operation.

As p-strategy based compaction of TP-relations is defined declaratively, we need an explicit algorithm (mentioned above) to compute it. The following result states the correctness of this algorithm.

Theorem 8. Let ρ be a (conjunctive or disjunctive) p-strategy. Then algorithm Compute-Compaction(r, ρ) correctly computes the $\kappa_\rho(r)$ compaction operation.

Thus far, we have separately defined compaction operators on annotated relations and on TP-relations. The following definition specifies when a compaction operator on the annotated side corresponds to a compaction operator on the TP-side.

Definition 6.8 (compatible pair of compactions). A pair $(\kappa^A(.), \kappa^T(.))$ of compaction operators is a compatible pair iff for every TP-relation r, $\kappa^A(\text{ANN}(r)) = \text{ANN}(\kappa^T(r))$, i.e., iff $\kappa^A \circ \text{ANN} = \kappa^T$. \qed
Algorithm Compute-Compaction(r, f):
Input: TP-relation r and combination function or p-strategy f
Output: TP-relation r'' = κ_f(r)
01. r'' := Ø; // Initialize the resulting relation
02. r' := r; // Obtain a working copy of the initial relation
03. For each (maximal) multiset S of data-identical TP-tuples in r
04. while (r' ≠ Ø) do {
05. Select a TP-tuple tp ∈ r';
06. S := r'[tp]; // Extract the next equivalence class from r'
07. r' := r' - S; // Remove S from r'
08. r'' := r'' ∪ S; // Add S to r''
09. r'' := r'' ∪ S; // Add S to r''
10. foreach γ_i ∈ r'' {
11. Add TP-case ((Gi, Di, Li, Ui, Oi)) to r'';
12. Add TP-tuple (d, u') to r'';}
13. return r'';
End-Algorithm

THEOREM 9. Let X be any combination function. Then (κ_X(ANN(r)), κ_X(r)) is a compatible pair.

THEOREM 10. Let p be any p-strategy. Then (κ_p(ANN(r)), κ_p(r)) is a compatible pair.

6.3 Intersection of two TP-relations

In this section, we show how we can correctly implement the intersection of two TP-relations. Intersection consists of two suboperations multiset intersection and combination function based compaction.

DEFINITION 6.9 (MULTISET INTERSECTION OF TWO TP-RELATIONS). The multiset intersection of TP-relations r and r', denoted r ∩ r', can be constructed in the following way. Initially, let r'' = Ø. Then for each tp = (d, γ) ∈ r and each tp' = (d', γ') ∈ r' where (d = d'),
1. Let Γ = Γ' = Ø.
2. For each γ_i ∈ γ and each γ_j' ∈ γ' where |sol(C_i ∩ C_j')| ≥ 1, add TP-case ((C_i ∩ C_j'), D_i, L_i, U_i, δ_i) to Γ and add TP-case ((C_i ∩ C_j'), D_j', L_j', U_j', δ_j') to Γ'. Note that (C_i ∩ C_j') is shared by both TP-cases.
3. If Γ ≠ Ø, add TP-tuples (d, Γ) and (d, Γ') to r''. Note that Γ ≠ Ø ⇒ Γ' ≠ Ø. Γ will be empty if there are no overlapping time points. □
Definition 6.10 (intersection of two TP-relations). The intersection of TP-relations r and r' under the χ combination function, denoted $r \cap_\chi r'$, is defined as $\kappa_\chi(r \cap r')$. □

As in the case of the TATA, we apply a κ_χ compaction operator to the result of a multiset intersection. Also, to keep the size of $r \cap_\chi r'$ manageable, we usually perform a TP-compression on the result of a compaction.

For example, $r'' = r_1 \cap r_2$ will be

<table>
<thead>
<tr>
<th>Data</th>
<th>H</th>
<th>C</th>
<th>D</th>
<th>L</th>
<th>U</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>(2/8/1997 ~ 3/8/1997)</td>
<td>(1/8/1997 ~ 3/8/1997)</td>
<td>0.64</td>
<td>0.88</td>
<td>g</td>
<td></td>
</tr>
</tbody>
</table>

and, $\Xi^{hy}(r \cap_\eq r') = \Xi^{hy}(\kappa_{\eq}(r''))$ will be

<table>
<thead>
<tr>
<th>Data</th>
<th>H</th>
<th>C</th>
<th>D</th>
<th>L</th>
<th>U</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>(#)</td>
<td>(2/8/1997 ~ 2/8/1997)</td>
<td>0.16</td>
<td>0.22</td>
<td>u</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(#)</td>
<td>(3/8/1997 ~ 3/8/1997)</td>
<td>0.08</td>
<td>0.11</td>
<td>u</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(#)</td>
<td>(6/8/1997 ~ 8/8/1997)</td>
<td>0.30</td>
<td>0.60</td>
<td>u</td>
<td></td>
</tr>
</tbody>
</table>

The following shows that our definition of intersection correctly implements the TATA semantics. This lets us completely avoid the construction of the (huge) annotated expansion while preserving the same semantics.

Theorem 11 (Correctness of intersection). $\text{ANN}(r \cap_\chi r') = \text{ANN}(r) \cap_\chi \text{ANN}(r')$.

6.4 Union of two TP-relations

In this section, we show how we can correctly implement the union of two TP-relations. Union consists of two suboperations — multiset union and combination function based compaction.

Definition 6.11 (multiset union of two TP-relations). The multiset union of TP-relations r and r', denoted $r \cup r'$, is defined as $r'' = r \cup_\chi r'$.

Intuitively, r'' will contain all $tp \in r$ and all $tp' \in r'$. For example, $r'' = r_1 \cup r_2$ will be

<table>
<thead>
<tr>
<th>Data</th>
<th>H</th>
<th>C</th>
<th>D</th>
<th>L</th>
<th>U</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>(#)</td>
<td>(1/8/1997 ~ 3/8/1997)</td>
<td>0.64</td>
<td>0.88</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(#)</td>
<td>(5/8/1997 ~ 8/8/1997)</td>
<td>0.40</td>
<td>0.80</td>
<td>u</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>(#)</td>
<td>(2/8/1997 ~ 3/8/1997)</td>
<td>0.20</td>
<td>0.50</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(#)</td>
<td>(6/8/1997 ~ 9/8/1997)</td>
<td>0.40</td>
<td>0.80</td>
<td>u</td>
<td></td>
</tr>
</tbody>
</table>

As in the case of the TATA, we apply a κ_χ compaction operator to the result of a multiset union.

Definition 6.12 (union of two TP-relations). The union of TP-relations r and r' under the χ combination function, denoted $r \cup_\chi r'$, is defined as $\kappa_\chi(r \cup r')$. □

For example, $\Xi^{hy}(r \cup_\eq r') = \Xi^{hy}(\kappa_{\eq}(r''))$ will be
Table 1: Data Examples

<table>
<thead>
<tr>
<th>Data</th>
<th>H</th>
<th>C</th>
<th>D</th>
<th>L</th>
<th>U</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>(1/8/1997)</td>
<td>(1/8/1997 ~ 3/8/1997)</td>
<td>0.64</td>
<td>0.88</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(#)</td>
<td>(2/8/1997 ~ 2/8/1997)</td>
<td>0.16</td>
<td>0.22</td>
<td>u</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(#)</td>
<td>(3/8/1997 ~ 3/8/1997)</td>
<td>0.08</td>
<td>0.11</td>
<td>u</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(#)</td>
<td>(5/8/1997 ~ 9/8/1997)</td>
<td>0.50</td>
<td>1.00</td>
<td>u</td>
<td></td>
</tr>
</tbody>
</table>

The following shows that our definition of union correctly implements the TATA semantics.

Theorem 12 (Correctness of union). $\text{ANN}(r \cup r') = \text{ANN}(r) \cup \text{ANN}(r')$

6.5 Selection on a TP-relation

In this section, we show how we can correctly implement selection on a TP-relation. The TP-filter operator defined below will help us handle selections of probabilistic conditions (x5.4) on TP-relations.

Definition 6.13. (TP-filter). Let $\gamma_i = \langle C_i, D_i, L_i, U_i, \delta_i \rangle$ be a TP-case, let $\mathcal{C} = (F \ op \ v)$ be a probabilistic condition, and let $x = L_i$ if $F = "L"$ or let $x = U_i$ otherwise. Then a **TP-filter** is a function which takes γ_i and \mathcal{C} as input, and returns as output a temporal constraint C_i'' where

1. $\text{sol}(C_i'') \subseteq \text{sol}(C_i)$
2. For each time point $t \in \text{sol}(C_i'')$, $(x_t \ op \ v)$ must be true when $x_t = \delta_i(D_i, t) \cdot x$
3. There is no temporal constraint C_i' where $\text{sol}(C_i') \supset \text{sol}(C_i'')$ and C_i' satisfies the previous cases.

Intuitively, a TP-filter returns a temporal constraint whose solution set consists of all time points $t \in \text{sol}(C_i)$ where $[L_t, U_t] = [L_i \cdot \delta_i(D_i, t), U_i \cdot \delta_i(D_i, t)]$ satisfies \mathcal{C}. If no $t \in \text{sol}(C_i)$ satisfies this condition, TP-filter(γ_i, \mathcal{C}) returns an inconsistent temporal constraint.

For example if $\gamma_i = \langle(\#), (5/8/1997 ~ 8/8/1997), 0.4, 0.8, g \rangle$ and $\mathcal{C} = (U > 0.15)$, TP-filter(γ_i, \mathcal{C}) will be $C_i'' = (5/8/1997 ~ 6/8/1997)$ since $(0.4 > 0.15)$ for $5/8/1997$ and $(0.2 > 0.15)$ for $6/8/1997$.

In general, $n = |\text{sol}(C_i)|$ may be a large number. With arbitrary distribution functions, this can be problematic since the TP-filter function may have to test all n time points. Fortunately, this problem can be alleviated by exploiting regularities in our distribution functions. For instance if $\delta_i = "u"$, then we only need to test one time point $t \in \text{sol}(C_i)$; if t should be in $\text{sol}(C_i'')$, then $C_i'' = C_i$ or or $C_i'' = 0$ otherwise. This "all or none" behavior occurs since each $t \in \text{sol}(C_i)$ will have the same probability value after distributing uniformly.

Implementations of TP-filters can also exploit regularities in the geometric PDF by searching $\text{sol}(C_i)$ in chronological (or reverse chronological) order and then ending the search after finding the first t which should not be in $\text{sol}(C_i'')$. The exact search method to use will, of course, depend on which op is present in \mathcal{C}. For instance if $\mathcal{C} = (\neq)$, it may be cheaper to let $C_i' = \text{TP-filter}(\gamma_i, \neg \mathcal{C})$ and then return $C_i'' = (C_i \land \neg C_i')$.

DEFINITION 6.14 (Selection on a TP-tuple; atomic condition). The selection of atomic condition \(C \) on TP-tuple \(tp = (d, \gamma) \), denoted \(\sigma_C(tp) \), can be constructed in the following way: Initially, let \(\gamma'' = \emptyset \).

- If \(C \) is a data condition, let \(\gamma'' = \gamma \) if \(d \) satisfies \(C \).
- If \(C \) is a temporal condition, then for each \(\gamma_i \in \gamma \) where \(C_i'' = (C_i \land C) \) is consistent, add TP-case \(\langle C_i'', D_i, L_i, U_i, \delta_i \rangle \) to \(\gamma'' \).
- If \(C \) is a probabilistic condition, then for each \(\gamma_i \in \gamma \) where \(C_i'' = TP-filter(\gamma_i, C) \) is consistent, add TP-case \(\langle C_i'', D_i, L_i, U_i, \delta_i \rangle \) to \(\gamma'' \).
 - If \(\gamma'' = \emptyset \) then \(\sigma_C(tp) = \emptyset \). Otherwise, \(\sigma_C(tp) = (d, \gamma'') \). □

DEFINITION 6.15 (Selection on a TP-relation; atomic condition). The selection of atomic condition \(C \) on TP-relation \(r = \{tp_1, \ldots, tp_n\} \), denoted \(\sigma_C(r) \), is defined as \(\sigma_C(tp_1) \cup \ldots \cup \sigma_C(tp_n) \). □

Note that for all \(tp_i, tp_j \in r \), \(\sigma_C(tp_i) \) does not affect the results of \(\sigma_C(tp_j) \) when computing \(\sigma_C(r) \).

For example if \(C = (2/8/1997 \rightarrow 3/8/1997) \), \(\sigma_C(r_1) \) will be

<table>
<thead>
<tr>
<th>Data</th>
<th>H</th>
<th>C</th>
<th>D</th>
<th>L</th>
<th>U</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td></td>
<td>(2/8/1997 \rightarrow 3/8/1997)</td>
<td>(1/8/1997 \rightarrow 3/8/1997)</td>
<td>0.64</td>
<td>0.88</td>
<td>g</td>
</tr>
</tbody>
</table>

and \(\sigma_C(r_2) \) will be

<table>
<thead>
<tr>
<th>Data</th>
<th>H</th>
<th>C</th>
<th>D</th>
<th>L</th>
<th>U</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td></td>
<td>(2/8/1997 \rightarrow 3/8/1997)</td>
<td>(2/8/1997 \rightarrow 3/8/1997)</td>
<td>0.20</td>
<td>0.50</td>
<td>g</td>
</tr>
</tbody>
</table>

but if \(C = (L \neq 0.10) \), \(\sigma_C(r_1) \) will be

<table>
<thead>
<tr>
<th>Data</th>
<th>H</th>
<th>C</th>
<th>D</th>
<th>L</th>
<th>U</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td></td>
<td>#</td>
<td>(1/8/1997 \rightarrow 3/8/1997)</td>
<td>0.64</td>
<td>0.88</td>
<td>g</td>
</tr>
</tbody>
</table>

and \(\sigma_C(r_2) \) will be

<table>
<thead>
<tr>
<th>Data</th>
<th>H</th>
<th>C</th>
<th>D</th>
<th>L</th>
<th>U</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td></td>
<td>(3/8/1997)</td>
<td>(2/8/1997 \rightarrow 3/8/1997)</td>
<td>0.20</td>
<td>0.50</td>
<td>g</td>
</tr>
</tbody>
</table>

We can extend selection to handle non-atomic selection conditions by using the following definition.
DEFINITION 6.16 (Selection on a TP-relation). The selection of condition \(C \) on a TP-relation \(r \), denoted \(\sigma_C(r) \), is defined inductively in the following way:

- If \(C \) is atomic, then \(r'' = \sigma_C(r) \) by way of our previous definition.
- If \(C \) is of the form \((C_1 \land C_2) \), then \(r'' = \sigma_{C_1}(\sigma_{C_2}(r)) \).
- If \(C \) is of the form \((C_1 \lor C_2) \), then \(r'' = \sigma_{C_1}(r) \cup_{eq} \sigma_{C_2}(r) \). (Note that as long as \(r \) is compact, it follows by the Identity axiom that irrespective of which combination function is used, we obtain the same results, i.e. “eq” in the above definition can be replaced by any other combination without the result being changed.)
- If \(C \) is of the form \(\neg C \), then
 * If \(C_1 \) is of the form \((C_2 \land C_3) \), \((C_2 \lor C_3) \), or \(\neg C_2 \), then \(r'' = \sigma_{C_1}(r) \) where \(C_4 = \neg C_2 \lor \neg C_3 \), \(C_4 = \neg C_2 \land \neg C_3 \), or \(C_4 = \neg C_2 \) respectively.
 * If \(C_1 \) is a data, temporal, or probabilistic condition, then \(r'' = \sigma_{C_1}(r) \) where \(C_4 \) is the atomic, logical negation of \(C_1 \).
 * Otherwise, \(C_1 \) is an inapplicable condition and so \(r'' \) is not defined.

To perform selections with non-atomic conditions on annotated relations, use the above definition except replace all instances of \(r \) and \(r'' \) with ANN(\(r \)) and ANN(\(r'' \)) respectively.

For example if \(C_1 = (2/8/1997 \sim 7/8/1997) \), \(C_2 = (L \neq 0.10) \), and \(C = (C_1 \land C_2) \), then \(\sigma_C(r_1) \) will be

<table>
<thead>
<tr>
<th>Data</th>
<th>H</th>
<th>C</th>
<th>D</th>
<th>L</th>
<th>U</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td></td>
<td>(2/8/1997 \sim 3/8/1997)</td>
<td>(1/8/1997 \sim 3/8/1997)</td>
<td>0.64</td>
<td>0.88</td>
<td>g</td>
</tr>
</tbody>
</table>

and \(\sigma_C(r_2) \) will be

<table>
<thead>
<tr>
<th>Data</th>
<th>H</th>
<th>C</th>
<th>D</th>
<th>L</th>
<th>U</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td></td>
<td>(3/8/1997)</td>
<td>(2/8/1997 \sim 3/8/1997)</td>
<td>0.20</td>
<td>0.50</td>
<td>g</td>
</tr>
</tbody>
</table>

The following table shows how one may generate queries (on a TP-relation \(r \)) which correspond to seven of J. F. Allen’s thirteen possible temporal relationships [1]. The six remaining possibilities correspond to the inverses of these original seven (the inverse of "equal" is identical to "equal" so it is not counted). Here, we ensure that \(r \) uses two TP-tuples for each continuous duration event \(e \). Specifically, suppose \(e \) can be described by data tuple \(d \) with relational schema \(A \). Then \(r \) is a TP-relation over relational schema \((A,\text{Kind}) \) where \(\text{dom}(\text{Kind}) = \{S, E\} \). \(r \) contains a TP-tuple \((d,"S",\gamma_S) \) for instantaneous event \(\text{st}(e) \), and a TP-tuple \((d,"E",\gamma_E) \) for instantaneous event \(\text{end}(e) \).
<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
<th>Query</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>e before (e_q)</td>
<td>(\text{end}(e) \leq \text{st}(e_q))</td>
<td>(\sigma_C(r))</td>
<td>(C = ((t_S \sim t_1) \land (\text{Kind} = E)))</td>
</tr>
<tr>
<td>e equal (e_q)</td>
<td>(\text{st}(e) = \text{st}(e_q) \land \text{end}(e) = \text{end}(e_q))</td>
<td>(\sigma_C(r) \cap \sigma_C(z))</td>
<td>(C_1 = ((t_1 \sim t_1) \land (\text{Kind} = S))) (C_2 = ((t_2 \sim t_2) \land (\text{Kind} = E)))</td>
</tr>
<tr>
<td>e meets (e_q)</td>
<td>(\text{st}(e) = \text{st}(e_q))</td>
<td>(\sigma_C(r))</td>
<td>(C = ((t_1 \sim t_1) \land (\text{Kind} = E)))</td>
</tr>
<tr>
<td>e overlaps (e_q)</td>
<td>(\text{st}(e) \leq \text{st}(e_q) \land \text{end}(e) \leq \text{end}(e_q))</td>
<td>(\sigma_C(r) \cap \sigma_C(z))</td>
<td>(C_1 = ((t_1 \sim t_1) \land (\text{Kind} = S))) (C_2 = ((t_2 \sim t_2) \land (\text{Kind} = E)))</td>
</tr>
<tr>
<td>e during (e_q)</td>
<td>(\text{st}(e) = \text{st}(e_q) \land \text{end}(e) \leq \text{end}(e_q))</td>
<td>(\sigma_C(r) \cap \sigma_C(z))</td>
<td>(C_1 = ((t_1 \sim t_1) \land (\text{Kind} = S))) (C_2 = ((t_2 \sim t_2) \land (\text{Kind} = E)))</td>
</tr>
<tr>
<td>e starts (e_q)</td>
<td>(\text{st}(e) = \text{st}(e_q) \land \text{end}(e) \leq \text{end}(e_q))</td>
<td>(\sigma_C(r) \cap \sigma_C(z))</td>
<td>(C_1 = ((t_1 \sim t_1) \land (\text{Kind} = S))) (C_2 = ((t_2 \sim t_2) \land (\text{Kind} = E)))</td>
</tr>
<tr>
<td>e finishes (e_q)</td>
<td>(\text{st}(e) \leq \text{st}(e_q) \land \text{end}(e) = \text{end}(e_q))</td>
<td>(\sigma_C(r) \cap \sigma_C(z))</td>
<td>(C_1 = ((t_1 \sim t_1) \land (\text{Kind} = S))) (C_2 = ((t_2 \sim t_2) \land (\text{Kind} = E)))</td>
</tr>
</tbody>
</table>

When executing these temporal queries, use the following rule: If \(\text{st}(e)\) or \(\text{end}(e)\) satisfies the selection condition, then the TP-tuples for both \(\text{st}(e)\) and \(\text{end}(e)\) should be returned. Thus, our queries will return TP-tuples for every event \(e\) which satisfies some relationship w.r.t. query event \(e_q\) where \(\text{st}(e_q) = t_1\) and \(\text{end}(e_q) = t_2\). Recall that \(t_S\) (\(t_E\)) denotes the earliest (latest) time point of a calendar.

Theorem 14 (Correctness of selection). \(\text{ANN}(\sigma_C(r)) = \sigma_C(\text{ANN}(r))\).

In this section, we show how we can correctly implement the difference of two TP-relations.

Definition 6.17 (Difference of two TP-relations). The difference of TP-relations \(r\) and \(r'\), denoted \(r - r'\), can be constructed in the following way: Initially, let \(r'' = r\). Then for each \(\text{tp} = (d, \gamma) \in r''\) and each \(\text{tp}' = (d', \gamma') \in r'\) where \((d = d')\),

1. Let \(\gamma'' = \emptyset\) and let \(C' = (C'_1 \lor \ldots \lor C'_{n'})\). Recall that \(\text{tp}'\) contains exactly \(n'\) TP-cases.
2. For each \(\gamma_i \in \gamma\) where \(C''_i = (C_i \land \lnot C')\) is consistent, add TP-case \((C''_i, D_i, L_i, U_i, \delta_i)\) to \(\gamma''\).
3. Remove \(\text{tp}\) from \(r''\). Then if \(\gamma'' \neq \emptyset\), add TP-tuple \((d, \gamma'')\) to \(r''\).

For example, \(r_1 - r_2\) and \(r_2 - r_1\) will be

<table>
<thead>
<tr>
<th>Data</th>
<th>H</th>
<th>C</th>
<th>D</th>
<th>L</th>
<th>U</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>(1/8/1997)</td>
<td>(1/8/1997 ~ 3/8/1997)</td>
<td>0.64</td>
<td>0.88</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5/8/1997)</td>
<td>(5/8/1997 ~ 8/8/1997)</td>
<td>0.40</td>
<td>0.80</td>
<td>u</td>
<td></td>
</tr>
</tbody>
</table>

and

<table>
<thead>
<tr>
<th>Data</th>
<th>H</th>
<th>C</th>
<th>D</th>
<th>L</th>
<th>U</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>(9/8/1997)</td>
<td>(6/8/1997 ~ 9/8/1997)</td>
<td>0.40</td>
<td>0.80</td>
<td>u</td>
<td></td>
</tr>
</tbody>
</table>

Theorem 15 (Correctness of difference). \(\text{ANN}(r - r') = \text{ANN}(r) - \text{ANN}(r')\)

6.7 Cartesian product of two TP-relations

As in the annotated case, that when taking the cartesian product of two relations, we must know the relationship between the events denoted by the tuples in the two relations because the
the result of the Cartesian Product will contain the probability of their conjunction. Thus, conjunction strategies parameterize the Cartesian Product operation.

Definition 6.18 (Cartesian Product of Two TP-relations). The cartesian product of TP-relations \(r \) and \(r' \) under the \(\alpha \) probabilistic conjunction strategy, denoted \(r \times_\alpha r' \), can be constructed in the following way: Initially, let \(r'' = \emptyset \). Then for each \(tp = (d, \gamma) \in r \) and each \(tp' = (d', \gamma') \in r' \),

1. Let \(\gamma'' = \emptyset \).
2. For each time point \(t \) where \(t \in \text{sol}(C_i) \) for some \(i \in \gamma \) and \(t \in \text{sol}(C_j') \) for some \(j' \in \gamma' \),
 - (a) Let \([L_i, U_i] = [L_i \cdot x_t, U_i \cdot x_t] \) where \(x_t = \delta_i(D, t) \).
 - (b) Let \([L_j, U_j'] = [L_j' \cdot x'_t, U_j' \cdot x'_t] \) where \(x'_t = \delta_j'(D, t) \).
 - (c) Let \([L_i'', U_j''] = ([L_i, U_i] \ominus_\alpha [L_j, U_j']) \).
 - (d) Add TP-case \(((\#), (t), L_i'', U_j'', u) \) to \(\gamma'' \).
3. If \(\gamma'' \neq \emptyset \), add TP-tuple \((d'', \gamma'') \) to \(r'' \) where \(d'' = (P(d), P(d'), h'') \) and \(h'' = (d.H \parallel d'.H) \). □

For example, \(\Xi^{h_y}(r_1 \times_ig r_2) \) will be

<table>
<thead>
<tr>
<th>(r_1.\text{Data})</th>
<th>(r_2.\text{Data})</th>
<th>(H)</th>
<th>(C)</th>
<th>(D)</th>
<th>(L)</th>
<th>(U)</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>D1</td>
<td>(#)</td>
<td>(2/8/1997 ~ 2/8/1997)</td>
<td>0.00</td>
<td>0.22</td>
<td>u</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>D1</td>
<td>(#)</td>
<td>(3/8/1997 ~ 3/8/1997)</td>
<td>0.00</td>
<td>0.11</td>
<td>u</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>D1</td>
<td>(#)</td>
<td>(6/8/1997 ~ 8/8/1997)</td>
<td>0.00</td>
<td>0.60</td>
<td>u</td>
<td></td>
</tr>
</tbody>
</table>

but \(\Xi^{h_y}(r_1 \times_{pc} r_2) \) will be

<table>
<thead>
<tr>
<th>(r_1.\text{Data})</th>
<th>(r_2.\text{Data})</th>
<th>(H)</th>
<th>(C)</th>
<th>(D)</th>
<th>(L)</th>
<th>(U)</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>D1</td>
<td>(#)</td>
<td>(2/8/1997 ~ 2/8/1997)</td>
<td>0.10</td>
<td>0.22</td>
<td>u</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>D1</td>
<td>(#)</td>
<td>(3/8/1997 ~ 3/8/1997)</td>
<td>0.05</td>
<td>0.11</td>
<td>u</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>D1</td>
<td>(#)</td>
<td>(6/8/1997 ~ 8/8/1997)</td>
<td>0.30</td>
<td>0.60</td>
<td>u</td>
<td></td>
</tr>
</tbody>
</table>

The use of a TP-compression operation when executing a Cartesian product operation is important because sometimes, Cartesian product can produce a large number of TP-cases when an existing tp-case gets broken into "pieces." TP-compressions prevent this from happening. The following shows that our definition of cartesian product correctly implements the TATA semantics.

Theorem 16 (Correctness of Cartesian Product). \(\text{ANN}(r \times_\alpha r') = \text{ANN}(r) \times_\alpha \text{ANN}(r') \).

6.8 Projection on a TP-relation
In this section, we show how we can correctly implement projection on a TP-relation.

Definition 6.19 (Projection on a TP-relation). Let \(F \) be a list of fields which are projectable w.r.t. \(r \) and let \(\langle A_1, \ldots, A_n \rangle \) be the (possibly empty) list of all manifest data fields which appear in the primary key of \(r \) but do not appear in \(F \). Then the projection of field list \(F \) on TP-relation \(r \), denoted \(\pi_F(r) \), can be constructed in the following way: Initially, let \(r'' = \emptyset \). Then for each \((d, \gamma) \in r \), add TP-tuple \((d', \gamma') \) to \(r'' \) where \(d'' = (\pi_F(P(d)), h'') \) and \(h'' = (d.H \parallel \langle A_1, d.A_1, \ldots, A_n.d.A_n \rangle) \). (Recall that the \(\pi_F(P(d)) \) operator was defined in section 5.7.) □
For example if $F = \text{"Data1"}$ and our primary key for r_3 was \text{"Data1,Data2"}, $r'' = \pi_F(r_3)$ will be

<table>
<thead>
<tr>
<th>Data1</th>
<th>H</th>
<th>C</th>
<th>D</th>
<th>L</th>
<th>U</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Data2:D2</td>
<td>(#)</td>
<td>2/8/1997 ~ 2/8/1997</td>
<td>0.20</td>
<td>0.40</td>
<td>u</td>
</tr>
<tr>
<td>D1</td>
<td>Data2:D3</td>
<td>(#)</td>
<td>2/8/1997 ~ 3/8/1997</td>
<td>0.60</td>
<td>0.80</td>
<td>g</td>
</tr>
</tbody>
</table>

THEOREM 17 (Correctness of Projection). $\text{ANN}(\pi_F(r)) = \pi_F(\text{ANN}(r))$.

6.9 Join of two TP-relations

In this section, we show how we can correctly implement the join of two TP-relations.

DEFINITION 6.20 (Join of two TP-relations). Let selection condition C be $((r.L_1 = r'.L_1) \land \ldots \land (r.L_n = r'.L_n))$ where \text{"L\ldots L"} is the list of all manifest data fields which occur in the schema for both r and r'. Then the join of TP-relations r and r' under the α probabilistic conjunction strategy, denoted $r \Join_{\alpha} r'$, is defined as $\pi_F(\sigma_C(r \times_{\alpha} r'))$ where F is the list of all manifest data fields which occur in the schema for either r or r' after removing duplicate field names. \square

<table>
<thead>
<tr>
<th>For example, $r_3 \Join_{pc} r_4$ will be</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data1</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>D1</td>
</tr>
<tr>
<td>D1</td>
</tr>
</tbody>
</table>

THEOREM 18 (Correctness of Join). $r \Join_{\alpha} r' = \text{ANN}(r) \Join_{\alpha} \text{ANN}(r')$.

7. IMPLEMENTATION AND EXPERIMENTS

All TPA operators described in this paper have been implemented under Borland C++ version 5.01. Our code can run on any 32 bit Windows platform (i.e., Win95, Win98, and WinNT). This code communicates with standard, relational databases by using the Borland Database Engine’s API (BDE version 3.0). Here, the same API can be used to interface with a variety of databases including Paradox, dBASE, Oracle, Microsoft SQL Server, InterBase, Sybase, and any ODBC (Open Database Connectivity) data source. Note however that the underlying, relational database should (i) be capable of storing 32 bit integers and (ii) be able to process basic SQL queries. A demonstration of this implementation can be accessed from the web by clicking on the “TP-Databases” link in the "http://bester.cs.umd.edu" page ~ our user interface is fully compatible with the Internet Explorer 4.0 browser.

7.1 Experiments

We conducted two sets of experiments. The first set studies the relative efficiency of TP-algebra operations when compared to TATA algebra operations. In addition, this set of experiments was designed to study how different distribution functions affected the efficiency of operations. The second set of experiments tested scalability of the TP-algebra operations. The
TATA algebra was implemented for these experiments by forcing TP-tuples to have only one TP-case where \(C = D \), \(|\text{sol}(D)| = 1\), and \(\delta = "u" \) (uniform distribution).

All our experiments were conducted by executing queries "as is." Once a query optimizer for TP-databases is built (which we are currently working on [7]), the timings reported should improve substantially. With hand-optimized versions of some of the queries, we noticed significant improvements in running time. However, due to space reasons, we have chosen to defer the important topic of query optimization and probabilistic indexes to a future paper [7]. *In some of the charts shown in Appendix A reflecting the results of the experiments, readers may sometimes see only two lines instead of eight, because the four lines denoting the TP-computations and the four lines denoting the TATA-computations are almost identical.*

7. 1.1 Comparing TATA vs. TP-Algebra. Our experiments were conducted as follows. We generated TP-relations containing nTuples TP-tuples where nTuples \(\in \{100, 500, 1000\} \). Each TP-tuple had one TP-case \(<C_i, D_i, L_i, U_i, \delta_i> \) where \(C_i = D_i = (t_1 \sim t_2) \), \(t_1 = \text{random}(\{t \in \text{sol}((1/1/1998) \sim (31/12/1998))\}) \), \(t_2 \) is the time point which occurs nTimePoints days after \(t_1 \). Probabilities were assigned randomly. We allowed different probability distributions (independence, geometric, binomial, or a mix of these three) in TP-relations. Using these relations, we calculated the (median of 3) computation times for each of the following operations:

Intersection and Union Computations

\(\Xi^h_y(r \cap eq r') \), \(\text{ANN}(r) \cap eq \text{ANN}(r') \), \(\Xi^u_y(r \cup eq r') \), and \(\text{ANN}(r) \cup eq \text{ANN}(r') \). Chart (a) in Appendix A shows that intersection takes time that is more or less linear in the number of tuples. Furthermore, as the number of TP-tuples increases, the savings rendered by using TP-tuples instead of annotated tuples increases significantly. Chart (b) in Appendix A shows that increasing the total number of time-points (i.e. increasing the effect of uncertainty) has no effect whatsoever on TP-tuples, but the effect on annotated tuples is very significant.

Charts (a) and (b) jointly show that as far as intersection is concerned, the distributions used have no significant impact on the efficiency of computing intersection. Similar results hold for union, difference and projection operations the reader interested in experimental data for these operations is referred to [9].

Selection Computations

\(\sigma_C(r) \) and \(\sigma_C(\text{ANN}(r)) \) for each type of selection condition \(C \) (i.e., data, temporal, and probabilistic).

We ran three types of experiments with selections involving conditions on data attributes (Charts (c) and (d)), temporal attributes (Charts (e) and (f)), and probabilistic attributes (Charts (g) and (h)), respectively.

When we held the average number of time points per TP-case constant to 16, and increased the number of tuples, we notice that the TP-algebra significantly outperforms the TATA algebra. Furthermore, as the number of data tuples increases, there is very little increase in time on the TP-side, in contrast to the much larger increase on the TATA side. The same phenomenon may be noted when the number of tuples is held constant, but the amount of uncertainty is increased.
An important point to note is that Charts (g) and (h) indicate that performing probabilistic selections on TP-databases that use uniform distributions is faster than on identical TP-databases that use other distributions.

Join Computations

$$\Xi^\text{hy}(r \Join_{\alpha} r')$$ and $$\text{ANN}(r) \Join_{\alpha} \text{ANN}(r')$$ for each conjunction strategy $$\alpha \in \{\text{ig}, \text{pc}, \text{nc}, \text{in}\}$$. We first studied what happens with join under the positive correlation conjunction strategy (Charts (i) and (j)). Subsequently, we studied what happens with join when we vary the conjunction strategy used. In the first case, we noticed that the performance of TP-join is affected relatively little when we increase number of tuples and/or the the amount of uncertainty. However, as seen in charts Charts (k) and (l), using negative correlation as the conjunction strategy is actually much more efficient than using the other strategies, both on the TP and the TATA side—a observation that we have not seen made before. (This is in interesting contrast to previous beliefs that using independence assumptions leads to greater efficiency). For instance, Chart (k) shows that when $$n_{\text{Tuples}} = 1 \times 10^3 = 1000$$, the computation time for the TATA algebra using $$\Join_{\text{nc}}$$ ($$\Join_{\text{pc}}$$) is 157 (2615) seconds while the TP-algebra always finishes under 19 seconds.

7.1.2 Scalability of TP-Algebra Operations.

We studied the performance of selection, and join as we increased the amount of uncertainty in the data. Charts (m) and (n) show what happens when we use a mix of distribution functions, and either 100 or 1000 TP-tuples per TP-relation, and vary the number of solutions to TP-cases over the set 4, 96, 5760 and 345, 600. *Due to the size of these numbers, the charts shown use a log-scale.* Chart (m) shows the results of performing both selects and joins when we are looking at the case of 100 TP-tuples.

As the reader can see, temporal selections are almost completely unaffected by the amount of uncertainty both in the case of 100 TP-tuples and 1000 TP-tuples (where the time taken stays constant). However, probabilistic selects are expensive to compute (almost as expensive as joins), because they require that the distribution function be applied to all time points in a TP-case. Notice that even when we have 345,600 time-points inside each of these 100 tuples (making up a "flat relation" of size 34,560,000), it takes only about 60 seconds to evaluate the probabilistic select. When we have 345,600 time-points inside each of the 1000 TP-tuples shown in Chart (n) (making a flat relation of size 3.5 billion approximately), we see that the time taken is about 125 seconds, reflecting a doubling in the time, though the data increased in size by a factor of 10. We feel this is quite efficient.

Our framework is also quite efficient for computing TP-joins. As can be seen from Chart (m), when we compute a join of two relations consisting of 100 TP-tuples each and 345,600 time-points inside each of these 100 TP-tuples, the join takes about 75 seconds a bit more expensive than a probabilistic select, but not too bad. When we use a 1000 TP-tuples (and the same 345,600 time-points inside each of these 1000 TP-tuples), the join takes about 580 seconds a five fold increase when the data tuples in the two joined relations were both increased ten fold.
8. RELATED WORK

8.1 Comparison with Dyreson and Snodgrass

Dyreson and Snodgrass [11] were one of the first to model temporal uncertainty using probabilities by proposing the concept of an indeterminate instant. Intuitively, an indeterminate instant is an interval of time-points with an associated probability distribution. They propose an extension of SQL that supports (i) specifying which temporal attributes are indeterminate, (ii) correlation credibility which allows a query to use uncertainty to modify temporal data for example, by using an EXPECTED value correlation credibility, the query will return a determinate relation that retains the most probable time point for the event, (iii) ordering plausibility which is an integer between 1 and 100 where 1 denotes that any possible answer to the query is desired while 100 denotes that only a definite answer is desired, and (iv) specifying that certain temporal intervals are indeterminate. Dyreson and Snodgrass [11] develop a semantics for their version of SQL. In addition, they show how to compute probabilities of temporal relationships such as "event el occurs before event ez," *event el occurs at the same time as event ez," etc., and provide efficient data structures to represent probability mass functions.

Our framework may be viewed as an improvement over the Dyreson-Snodgrass framework in the following ways. (i) First, [11] presents a version of SQL for temporally indeterminate databases, while we present an algebra and prove that all our algebraic operations are correct. Both are clearly needed for a database that supports probabilities over temporal attributes. (ii) The base relations in [11] may be viewed as special cases of TP-relations where the C and D fields are atomic time-interval constraints. In contrast, our framework allows C and D to be arbitrary (atomic and non-atomic) temporal constraints and so TP-relations can be much more succinct than the base relations used in [11]. (iii) In [11], no explicit lower/upper bounds are considered; all probabilities used are point probabilities. This is a special case of our framework, as point probabilities can be represented by intervals with matching lower and upper bounds. Recall that in 1854 [4], Boole noticed that we must use probability intervals whenever we are ignorant of the relationship between events. (iv) In [11], all PDFs are assumed to be complete, while we allow both complete and incomplete PDFs. In fact, we noticed for the first time that determinate PDFs (all complete PDFs are determinate) guarantee linear time consistency checks for TP-databases. (v) In [11], all indeterminate events are assumed to be independent. This assumption is valid for many applications, and invalid for others. We allow users to specify in their query what the relationship between events is. Thus, independence can be used in our framework when appropriate, and other dependencies can be used when deemed appropriate. (vi) Our framework supports a host of operations compaction methods, combination functions, compression functions, and tightening) not considered elsewhere.

Conversely, there are some things that can be expressed in the Dyreson-Snodgrass framework [11] which we do not handle for example, in the current paper, we have assumed tuples have only one indeterminate temporal attribute while [11] allows more than one. Extending the framework to accommodate this is no problem (in fact, we are building an
application to track land deeds in Vienna, Austria where there is considerable temporal uncertainty involving many fields) but does make the presentation of the framework more complex. Furthermore, we have no analog of correlation credibility or ordering plausibility. Our experiments complement those of [11] in that we examine how different distributions fundamentally affect the efficiency of the algebraic operations. Note that distribution functions can be stored according to the methods described in [11].

8.2 Relationship with work in Probabilistic Databases

Though there is extensive work on probabilistic databases, there is very little work that merges probabilistic reasoning with time. Kiessling et al.'s DUCK system [19; 39; 31] provides an elegant, logical, axiomatic theory for rule based uncertainty. Ng and Subrahmanian [27; 29] have provided a probabilistic semantics for deductive databases they assume absolute ignorance, and furthermore, assume that rules are present in the system. Lakshmanan and Sadri [25] show how selected probabilistic strategies can be used to extend the previous probabilistic models. Lakshmanan and Shiri [26; 32] have shown how deductive databases may be parametrized through the use of conjunction and disjunction strategies, an approach also followed by Dekhtyar and Subrahmanian [8].

Barbara et al. [3] develop a point probabilistic data model and propose probabilistic operators. In contrast, we allow interval probabilities which permit margins of error in the probability data. In addition, when performing joins, they assume that Bayes' rule applies (and hence, as they admit up front, they make the assumption that all events are independent). Also, as they point out, unfortunately their definition leads to a "lossy" join. Cavallo and Pittarelli [6]'s probabilistic relational database model uses probabilistic projection and join operations, but the other relational algebra operations are not specified.

An important paper on the topic is by Dey and Sarkar [10] who propose an elegant INF approach to handling probabilistic databases. They support (i) having uncertainty about some objects but certain information about others, (ii) first normal form which is easy to understand and use, (iii) elegant new operations like conditionalization. The INF representation used by them is a special case of the annotated representation in this paper as pointed out by Dyreson and Snodgrass [11], this representation is not suitable for directly representing temporal indeterminacy. Many of our operators generalize theirs for instance, their notion of union clusters together all data-identical tuples and takes their max, difference clusters together all data-identical tuples and subtracts probability values, and their notion of projection clusters together all data-identical tuples and takes the sum of the tuples' probabilities (or 1, whichever is smaller) to be the probability. These computations are probabilistically legitimate only under some assumptions on the dependencies between the events involved. Our notion of combination functions generalize these substantially. In addition, their notion of join only applies under an independence assumption, which we do not require. Similarly, our notion of compaction operations may be viewed as extensions of the two coalesce operations proposed by them we propose whole families of coalesce operations in contrast, and our algebra uses such operations...
as parameters. Dey and Sarkar [10] propose some operations such as condition alization and Nth-Moment that have no analogs in our paper, and deserve further study.

This paper builds on top of the ProbView system for probabilistic databases[23]. ProbView extends the classical relational algebra by allowing users to specify in their query, what probabilistic strategy (or strategies) should be used to parameterize the query. ProbView removed the independence assumption from previous works. However, ProbView has no notion of time, and it was noted by Snodgrass [35] that though ProbView scaled up well to massive numbers of tuples, it did not scale up well when massive amounts of uncertainty are present as is the case with temporal probabilistic databases, where saying that an event sometime between Jan 1-4 yields a total of 4 x 24 x 60 x 60 = 345,600 seconds. Thus, if our temporal database uses seconds as it lowest level of temporal granularity, this gives rise to 345, 600 cases to represent just one statement something that would quickly overwhelm ProbView. As the reader can see and as our experiments indicate, TPdatabases were specifically designed to eliminate this problem.

8.3 Relationship with work in Temporal Databases

Snodgrass was one of the first to model indeterminate instances in his doctoral dissertation [34] he proposed the use of a model based on three valued logic. Dutta [15] and Dubois and Prade [13] later used a fuzzy logic based approach to handle generalized temporal events events that may occur multiple times.

Gadia [17] proposes an elegant model to handle incomplete temporal information as well. He models values that are completely known, values that are unknown but are known to have occurred, values that are known if they have occurred, and values that are unknown even if they occurred. However, he makes no use of probabilistic information.

Koubarakis [21] proposes the use of constraints for representing event occurrences. His framework allows stating the facts that event el occurred between 8 and 11 AM, and that event ez occurs after 12pm. From this, we may conclude that event ez occurs after el our framework can support this conclusion as well. However, inside our TP-tuples, we cannot state that event ez occurs after el something we can do in a query, but which Koubarakis [21] can explicitly encode in his tuples.

Another important body of work is that of Brusoni et al. [5] who developed a system called LaTeR. LaTeR restricts constraints to conjunctions of linear inequalities, as does Koubarakis' work. LaTeR makes a compromise when tuples are inserted, it builds a constraint network (which increases insertion time), but this pays o because at query time, queries can be efficiently processed. We can benefit from this strategy in our work as constraint networks are main memory data structures, an adaptation to disk-based structures would greatly enhance scalability. We will report on such e orts in part II of this series of papers [7].
9. CONCLUSIONS

There are a large variety of applications where there is uncertainty about when certain real-world events occurred. Such applications range from shipping and transportation applications, where extensive statistical data is available about shipping times for packages from one location to another, to data mining and time series applications where predictions about when certain stock market activity may occur is inherently uncertain. A variety of other important applications involving uncertainty about when events occur have been identified by Dyreson and Snodgrass in [11].

The only previous work whose explicit goal was to incorporate uncertainty into temporal databases is due to Dyreson and Snodgrass [11]. In this paper, we choose a philosophically different approach to incorporating probabilistic temporal reasoning in relational databases instead of adding probabilities to temporal databases, we instead add time to probabilistic databases. Our approach allows us to make the following important contributions over and above the important work of Dyreson and Snodgrass [11].

- We propose what is, to our knowledge, the first extension of the relational algebra that integrates both probabilities and time. This nicely complements the probabilistic temporal SQL language designed by Dyreson and Snodgrass [11].
- Second, our framework removes several assumptions made in previous work. First, our framework allows users to specify in their (algebraic) queries, what dependencies (if any) they assume between indeterminate instances. No conditional independence assumptions are required unless desired by the user. Instead, the user can parameterize his query with a variety of other probabilistic assumptions. Second, we allow the database to associate partial distributions with uncertain data. This is certainly very practical. Most statistical sampling methods do not provide total distributions, but distributions with associated margins of error. Third, by introducing the TP-Algebra, we show how the PDM (Probabilistic Data Model) model can be modified to support temporal indeterminacy, even if there might be several million elements in a set of possible chronons. This was an important open problem raised by Snodgrass in [41].
- We propose two algebras in this paper. The TATA-Algebra is intended for purely theoretical purposes. As the TATA-Algebra explicitly specifies the probability of an event occurring at any given time point, it leads to unacceptably large relations. However, the explicit specification allows us to easily specify how the relational operations should be defined, i.e. what their behavior should be so as to be "probabilistically and temporally kosher."

The TP-Algebra on the other hand is an implementation oriented algebra. First, TP-relations are very small compared to annotated relations. Second, for every operation op defined on the TATA-Algebra, we show how to define an analogous operation that directly manipulates the succinct TP-relations. We show that these TP-operations are all correct in the sense that they correctly implement the TATA-Algebra operations. Thus, there is no need to implement the
TATA Algebra because the TP-Algebra can realize it in a sound, complete, and much more efficient manner.

- We provide a host of new algebraic operations that have not been introduced before. These include a variety of compaction operators, compression operators, combination operators, and a tightening operator.
- We have conducted experiments on the feasibility of our approach by building a prototype TP-Algebra system on top of ODBC. Our experiments show that the distributions that are used definitely impact the performance of the system. TPrelations are shown to be far more scalable than their annotated counterparts.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewer for a number of very helpful comments.

REFERENCES

[26] V.S. Lakshmanan and N. Shiri. (1997) A Parametric Approach with Deductive Databases with Uncertainty, accepted for publication in IEEE Transactions on Knowledge and Data Engineering.

for Quantitative Rule Set Logic Programming, Logic Programming Research Group

Advanced Database Systems, Morgan Kaufman.
APPENDIX
A. APPENDIX: EXPERIMENTAL RESULTS

Intersection when nTimePoints = 16

Intersection when nTuples = 1000

Selection (data condition) when nTimePoints = 16

Selection (data condition) when nTuples = 1000
A performance for varying chronons; nTuples = 100, delta = mix

time (Log 10 bases)

1.5 ---f----+---f----+

nTimePoint (log scale)

1.5

---+-/-/-/-

TPA performance for varying chronons; nTuples = 1000, delta = mix
time (log scale)

1.5 ---f-------,,Lf---

nTimePoint (log scale)

5.4
Figure 3: Example Base TP and Annotated Relations