
THE THREE-LINE MAGNETIC HYPERFINE SPECTRUM OF 57Fe 

Nonnan A. BLUM 
Applied Physics Laboratory. Johns Hopkins University. Laurel. MD 20723. USA 

and 

Richard B. FRANKEL 
Department ofPhysics. California Polytechnic State University. San Luis Obispo. CA 93407. USA 

Longitudinal magnetization of a 57CO in iron metal foil source and an iron metal foil� 
absorber in a uniform external magnetic field results in a simple three-line magnetic hyperfine� 
absorption spectrum. Measurement of the spectral splitting as a function of applied magnetic� 
field yields the 57Fe excited- and ground-state g-factors.� 

In their landmark paper on hyperfine interactions in Mossbauer spectra, Polarized 
Spectra and Hyperfine Structure in 57Fe, Hanna et al. [1] used 57Co di ffused into an iron 
metal foil as a source of 14.4 keV radiation and an iron metal foil as the absorber. The 
source and absorber foils were either unmagnetized, or magnetized in the plane of the 
foils by small pennanent magnets. In the latter case, the magnetization directions of the 
source and absorber foils were either parallel or perpendicular to each other, but were 
always perpendicular to the gamm-ray transmission direction (transverse polarization). 
Thus, the 57Fe hyperfine magnetix fields in the source and absorber foils were either 
unaligned, or aligned parallel or perpendicular to each other, and the gamma-ray 
radiation was either unpolarized or linearly polarized. These experimental situations 
resulted in as many as eleven resolved lines in the Mossbauer spectrum [1]. We should 
note that even in the unmagnetized case, the iron domains tend to lie in the plane of the 
foils, perpendicular to the gamma-ray direction, but have no preferred magnetization 
direction in the plane. 

One case not covered in the Hanna et al. paper [1] is where both source and 
absorber iron foils are magnetized parallel to each other, and parallel to the gamma-ray 
transmission direction (longitudinal polarization). As noted by Frauenfelder [2], this is 
more difficult to achieve experimentally because of the large demagnetizing field of 
21.8 kOe in a thin iron metal foil magnetized perpendicular to the plane of the foil. In 
practice, external magnetic fields of the order of 30 kOe are required to overcome the 
demagnetizing field and to rotate the iron domains perpendicular to the foils [3]. This 
situation results in a simple three-line spectrum [3,4] (fig. 1) with theoretical relative 
intensities 3 : 10 : 3. The origin of the spectrum is sketched in fig. 2 [3]. If the source and 
absorber were not both iron metal and had different hyperfine fields, a more complex 
spectrum with up to eight lines would have been obtained [4] (see fig. 3). 
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Fig. 1. Experimental absorption spectrum for a source of 
57Co in an iro metal foil and an iron metal foil absorber, 
both situated in a 133 kOe external magnetic field (from [3]). 
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Fig. 2. Absorption spectrum stick diagram for collinear, longitudinal magnetic fields 
at the nucleus Hn with the same intensity and sign in source and absorber. Resonances 
occur when a source transition overlaps an absorber transition with the same value of 
Am. Three lines result as shown, with the most intense line at zero velocity. Transitions 
B and E of the six-line source spectrum are not observed in longitudinal polarization. 
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Fig. 3. Correlation diagram showing the line positions of an 
absorption spectrum for collinear, longitudinal magnetic fields as a 
function of the ratio of the magnetic field intensifies at the nucleus in 
source and absorber H l and H 2, respectively. The vertical axis is 
scaled for H 2 331 kOe From [4]). Negative ratios correspond to 
magnetic fields at the nucleus of opposite sign in source and absorber. 

As discussed by Foner  et al. [3], the three-line specturm can be used to determine 
the magnet ic  hyperf ine  field at the nucleus and the 57Fe 14.4 keV excited state and ground 

state g-fac tors  gl and go if one measures the splitting of  the outer  lines as a function o f  
applied magnet ic  field. The total magnetic  field at the nucleus is given by 

Hn v{Eo/2(go + gl)#Nc},  (1) 

where E0 is 14.4 keV, #N is the nuclear  magneton,  c is the veloci ty  o f  light, and v is the 
splitting in veloci ty  units between the outer lines of  the spectrum. I f v  i smeasured  
in mm/s,  Hn 26.7v kOe. H n is a sum of  several terms, including the magnet ic  hyperf ine  

field Hhf, 
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H n H ~  + HDM H0, (2) 

where HDM is the demagnetizing field (21.8 kOe) and Ho is the applied magnetic field. 
From eq. (1), we can write 

dv/dd-lo - 2 ( g l  + gO)#N(C/Eo)[1 dHDM/dHo]. (3) 

For applied magnetic fields above 30 kOe, dHDM/dHo 0. Thus, Foner et al. [3] used 
measurements o fv  at values of H0 between 30 and 133 kOe to give gl + go 0.281 + 0.003. 
From the usual six-line spectrum of iron metal with a single-line source, go/g~ 

1.750 + 0.004 [5]. Thus, go 0.179 + 0.002, giving#0 0.0894 + 0.0001 #N,Whichis 
consistent with the value of  0.09024 + 0.00007 #N obtained by electron-nuclear double 
resonance measurements [6]. 
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