I/Q IMBALANCE OF TWO-PATH LADDER FILTERS

Peter Kiss and Vladimir Prodanov

Department of Wireless Circuits Research, Agere Systems
555 Union Blvd., Allentown, PA 18109, kpeter@agere.com

ABSTRACT: The frequency-(in)dependent I/Q imbalance of analog filters is a significant contributor to the tight noise budget of high-performance wireless applications, such as 802.11a wireless LANs. This paper proposes a “frequency-dependent” statistical I/Q-imbalance analysis method for two-path filters, which can be configured for both low-IF and zero-IF architectures. A 7-pole complex band-pass ladder filter is analyzed, and it shows large image rejection ratio (rms IMR > 43.7 dB for 3σ). The same filter, but reconfigured as a pair of real low-pass filters, achieved about 13-dB less IMR. These results suggest a low-IF architectural choice to combat the I/Q imbalance of two-path filters.

1. MOTIVATION

Single-sideband modulation has been a popular choice for modern communication systems. Low-IF and zero-IF architectures offer the potential of highly-integrated transceivers [1]. However, the mismatch errors of the mixers, local oscillator, analog filters and data converters limit the achievable image rejection ratio (IMR) [1]. Wide-band wireless applications, such as 802.11a wireless LANs [2], require antenna-referred noise figure as low as 6 dB and signal-to-noise-and-distortion ratio of about 26 dB for fading channels. Therefore, an overall IMR of 35–40 dB should be met in the receiver (RX) chain over a large bandwidth of 17 MHz. A low-IF transmitter (TX) would need a total IMR in excess of 40–45 dB.

The I/Q-mismatch contribution of the analog filters might be significant to a tight noise budget. Although little can be done about IC-technology matching data besides careful layout, the issue can be handled by making an appropriate architectural choice. This paper shows that complex band-pass filters [3–8] (CBPF) and a pair of real low-pass filters [9, 10] (RLPFF), used in low-IF and zero-IF transceivers [1], respectively, behave differently in the presence of circuit-element mismatch. A two-path 7th-order ladder filter prototype is presented in Sec. 2, and its I/Q imbalance is analyzed in Secs. 3 and 4. Discussions will precede the Conclusion.

2. TWO-PATH LADDER Prototype

As an illustrative example, a 7th-order CBPF has been designed. A 0.5-dB pass-band ripple all-pole Chebyshev trans-
For example, if a complex positive-frequency tone at \(\omega_0 \) undergoes an imperfect two-path filtering operation, then the complex output will contain, besides the desired component at \(\omega_0 \), a leakage component at \(-\omega_0 \) (Fig. 2). Similarly, a complex input tone at \(-\omega_0 \) will leak into \(\omega_0 \). Note that this distortion occurs independently from the leakage caused by the mixers, local oscillator and data converters. In practical situation all imperfections add [1].

Since the image rejection ratio, defined in dB as

\[
IMR(\omega) = 20 \log_{10} \left(\frac{H_{cm}(\omega)}{H_{df}(\omega)} \right),
\]

is a function of frequency, it is convenient to calculate for pass-band frequencies (\(\omega \in BW \)) its rms average [8]

\[
IMR_{rms} = 10 \log_{10} \left(\frac{1}{BW} \int_{\omega \in BW} \left(\frac{H_{cm}(\omega)}{H_{df}(\omega)} \right)^2 d\omega \right) \text{ [dB]}
\]

and its minimum \(IMR_{\text{min}} = \min_{\omega \in BW} \{ IMR(\omega) \} \) values. In general, \(IMR_{rms} \) is a measure of the image (blocker) rejection in low-IF RX and of self distortion in zero-IF RX/TX. On the other hand, the value \(IMR_{\text{min}} \) is significant in meeting the mask specifications in low-IF TX. Also, the difference between \(IMR_{rms} \) and \(IMR_{\text{min}} \) is a measure of the frequency (in)dependency of \(IMR(\omega) \). When \(IMR(\omega) \) is significantly small and frequency dependent, then the necessary I/Q calibration, e.g., [11], becomes expensive.

3.1. Complex BPF example

The \(IMR \) of a two-path filter is limited by matching between the circuit elements which implement the location of its poles and zeros, in this case, the transconductors \(G_m \) and capacitors \(C \). To simulate this effect all circuit elements (Fig. 1) were perturbed by a normally-distributed mismatch of 1% (3\(\sigma \) value); the errors were assumed to be uncorrelated. One scenario of CBPF is shown in Fig. 3.

The simulations were performed using a black-box approach. In this method a perfect quadrature complex signal, i.e., \(x_c(t) = A \cos(\omega_0 t) + j A \sin(\omega_0 t) \), was applied to the input of the filter. The spectrum of the resulting complex output \(y_c(t) \) was measured at \(\omega_0 \) and \(-\omega_0 \), providing the values for \(H_{cm}(\omega_0) \) and \(H_{df}(-\omega_0) \), respectively (Fig. 2). The experiment was performed for the range of frequencies of interest, i.e., \(-20 \) to \(20 \) MHz.

Note that a more reliable estimate of the \(IMR \) can be done at circuit level by Monte-Carlo runs, which extract the matching properties of all circuit elements (including biasing) from technology data. Here the results of system-level simulations are given, which provide a first-order approximation of the achievable \(IMR \) and a good insight into two-path filters’ behavior. However, when the authors applied this Matlab method to the filter reported in [12], the simulated \(IMR(\omega) \) results closely matched the measured ones.

3.2. Real LPF example

Next, a pair of RLPFs was simulated (Fig. 3). This two-path filter is exactly the same (including the mismatches) as the one used as a CBPF, except the coupling transconductors \(gc \) were disabled. Therefore, the center frequency dropped

\[
\frac{x_1 + x_2}{2} \rightarrow Y_c \quad \frac{-x_1 + x_2}{2} \rightarrow X_c
\]

Figure 2: Imperfect filtering of a complex positive-frequency (left) and negative-frequency (right) input tone.
from 10 MHz to DC. Since the leakage is determined by the matching of two real low-pass filters, \(IMR(\omega) \) becomes an even function of \(\omega \), while the leakage is asymmetrical in \(\omega \) for CBPF (Fig. 3). Note that the “image” is the signal itself in zero-IF architectures.

The \(IMR_{\text{rms}} \) and \(IMR_{\text{min}} \) values are 54.8 dB and 52.1 dB for CBPF, respectively, but they drop by about 20 dB to 35.6 dB and 26.1 dB for RLPF, respectively (Fig. 3). Taking into account the difference between \(IMR_{\text{rms}} \) and \(IMR_{\text{min}} \), \(IMR(\omega) \) of the RLPF varies with about 7 dB more than \(IMR(\omega) \) of the CBPF. However, these are just partial results. In order to draw general conclusions, statistical analysis should be carried out — presented next.

4. STATISTICAL ANALYSIS

The experiment described in Sec. 3 was repeated for 2000 mismatch states (i.e., 2000 trials or 2000 realizations of the random mismatch process) and the results were processed statistically. First, \(IMR(\omega) \) is investigated as a function of frequency. The \(IMR(\omega) \) curves resulted from the 2000 trials are shown in Fig. 4 on top of each other forming a gray “background.” The \(IMR(\omega) \) curves were obtained using 112 complex test tones. Therefore, the \(IMR(\omega) \) curves can be “sliced” into 112 frequency bins; each of them contains 2000 statistical \(IMR \) values. The histogram of each frequency bin was calculated, thus the median (50%), 1\(\sigma \) (65.87%) and 3\(\sigma \) (99.74%) yield values were determined and plotted on Fig. 4. The distributions were not exactly Gaussian, so the ‘median’ was considered a more accurate average than the ‘mean.’

4.1. Qualitative evaluation

It can be observed from Fig. 4 that the CBPF and RLPF statistical \(IMR(\omega) \) curves look quite different. It can be concluded by inspection that the two types of filters cause fundamentally different I/Q imbalances in the presence of same circuit-element mismatch.

While RLPF have a statistically frequency-dependent \(IMR(\omega) \), CBPF exhibit a predominantly “flat” statistical \(IMR(\omega) \) in function of \(\omega \). For CBPF, however, there is a deteriorative bend in the \(IMR(\omega) \) curve as the frequency approaches the pass band. Simulations show that this bend straightens out when the IF increases (e.g., from 10 MHz to 20 MHz). However, using a higher IF is impractical for 802.11a applications due to blocker specifications [2].

Fig. 5 shows the frequency response of a CBPF and a pair of RLPFs. The gray area indicates the potential location of the image, which may interfere with the desired signal due to limited \(IMR \). It is interesting to compare the shape of the group delay in the image band with the statistical \(IMR(\omega) \) curves presented in Fig. 4. Inspection indicates a high correlation between the two.

The bend in the CBPF's \(IMR(\omega) \) curve (Fig. 4), therefore, is due to the small phase variations in the upper (close to DC) portion of the image band. It seems that the gain imbalances average out to a frequency-independent I/Q error.

Are the ripples of the RLPF’s \(IMR(\omega) \) curve (Fig. 4) caused by the high pass-band (= image-band) phase sensitivity? Additional analysis showed that both phase and gain
imbances contribute to $IMR(\omega)$. More precisely, phase errors dominate the IMR near the edges of the pass/image band, but gain errors are the dominant IMR contributor around DC, i.e., at low frequencies. The “bumpy” behavior of the $IMR(\omega)$ can be explained by the increased sensitivity of the complex transfer function in the vicinity of the poles.

4.2. Quantitative comparison

The 2000 $IMR(\omega)$ curves showed in Fig. 4 allow determining the yield of such filters. For CBPF IMR_{rms} and IMR_{min} for 3σ certainty (99.74% yield) are 43.7 dB and 35.1 dB, respectively (Fig. 6). These values are encouraging, since they may fit well into a low-IF 802.11a RX noise budget. In other words, by using such a CBPF the required I/Q calibration for the RX may be relaxed to a frequency-independent calibration to correct the errors of the front end (i.e., mainly gain errors in the mixers, and phase errors in the local oscillators [1]).

In case of RLPF, the IMR_{rms} distribution is getting wider and it is shifted towards lower values (Fig. 6). The IMR_{rms} and IMR_{min} for 3σ certainty are 30.9 dB and 22.1 dB, respectively. Unfortunately, the IMR offered by the pair of RLPFs requires frequency-dependent calibration for a zero-IF 802.11a RX.

5. DISCUSSION

The previous analysis shows that the CBPFs have better and less frequency-dependent $IMR(\omega)$. In complex filters [3–6, 8] the image is gradually filtered while passing through it. The overall leakage of a complex filter is given by a “leaking-filtering” iterative process [8, 13]. Therefore, the I/Q mismatch of the first stage(s) matter more than of the last stage(s). However, in case of a pair of real filters the image is “cancelled” at the global output only, since there is no interaction between the I-path and Q-path internal nodes. Therefore, the I/Q mismatch of each stage equally matters, since the image is not attenuated “internally.”

Complex low-pass filters were proposed for zero-IF transceivers in [13]. The I/Q leakage mechanism in band-pass and low-pass complex filters is the same. However, band-pass complex filters better reject the image than their low-pass counterpart since they operate at a higher IF than DC. Therefore, their I/Q imbalance is lower.

6. CONCLUSION

In this paper a “frequency-dependent” statistical analysis was proposed which revealed that $IMR(\omega)$ resembles the shape of the group delay. Also, it showed a predominantly “flat” complex band-pass filter, while the statistical $IMR(\omega)$ is highly dependent on ω for a pair of real low-pass filters. As an numerical example, a system-level Monte-Carlo analysis was carried out for a 7-pole 17-MHz bandwidth 10-MHz IF complex band-pass ladder filter prototype. It showed large image rejection ($IMR_{\text{rms}} > 43.7$ dB for 3σ). The same filter, but reconfigured as a pair of real low-pass filters, achieved about 13-dB less rms and min IMR. Therefore, the I/Q imbalance of two-path filters is significantly lower in low-IF than zero-IF architectures. In conclusion, the presented complex band-pass ladder filter eliminates the frequency-dependent I/Q calibration needs in low-IF 802.11a wireless LAN receivers.

7. REFERENCES

Figure 6: Histograms and yield curves for CBPF and RLPF.