Improved Biquad Structures Using Double-Output Transconductance Blocks
for Tunable Continuous-Time Filters
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Abstract. A family of g, — C biquad structures is derived. These biquads require only a pair of grounded capacitors
and three transconductors. It is shown that a pair of complex zeros can be realized simply by replicating the output
stage of the transconductance block, thereby constructing a second output current that is proportional to the original
output current. Although these biquad structures are very compact, they allow independent programming of the
filter’s center frequency and Q. IC simulations and measurements are presented using a fifth-order tunable filter as

an example.
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1. Introduction

In general there are two analog filter synthesis tech-
nigues: the passive prototype-based technique and the
biquad-based technique. Biquads are preferred when
the desired filter transfer function has finite zeros. In
the last decade many different g, — C biquad struc-
tures for monolithic filter implementation have been
reported [2], [5], [1]. These biquads are all based on
realizing a pair of poles using a set of integrators con-
nected with feedback; the transmission zeros are then
obtained by injecting weighted signals into the loop.
As discussed in [5], there are two ways of achieving
these zeros without disturbing the location of the two
poles:

1. By coupling the input voltage to an appropriate
node (or set of nodes). In many cases this pro-
cedure results in a structure that contains floating
capacitors and hence requires input buffering.

2. By feeding additional current (generated using an
additional transconductor) into a node with some
fixed impedance connected to ground. Using this
approach one can design highly flexible biquads
([1]1, [4]) that use only grounded capacitors and
hence do not require input buffering. Unfortu-
nately, such biquads employ many (7-8) transcon-
ductance blocks, which can dissipate excessive
power and require large chip area.

In the next section we present two biquad struc-
tures which employ only three transconductors and two
grounded capacitors, hence conserving both power dis-
sipation and chip area. In Section 3 we discuss the ef-
fect of the transconductance block nonidealities on the
performance. In Section 4 we give measured results of
a fifth-order filter that was designed using these biquad
structures.

2. Derivation of the Biquad Structures

Consider the simple structure shown in Fig. 1. The
transfer functions Vy/ Vi, and V,/ Vi, are given by:
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The poles of this circuit are thus given by:
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A pair of zeros can be realized by adding an ex-
tra feedforward path; this can be done conveniently
by simply adding an extra proportional output to each
transconductance block, as shown in Fig. 2.



Fig. 2. gm — C biquad structure that realizes a pair of transmission
Zeros.
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Fig. 3. Using asingle-output transconductor as a summer: the circuit
and its small signal equivalent.

The core of the Fig. 2 biquad, shown within the dot-
ted lines, is simply the lowpass structure given in Fig. 1.
The second outputs (labeled g;,, and g;,,—these will be
explained shortly), along with transconductance block
Om3, are used to realize the zeros by summing currents
i; and i3, converting them into a voltage and adding
this voltage to V,. These operations are illustrated in
Fig. 3.

To derive the transfer function of this biquad we can
write, using Fig. 3,
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Incorporating (1) and (2) into (5), we have the following
filter transfer function:
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where Kiy = gmi/g5;, 1 =1, 2.

The double-output transconductance blocks shown
in Fig. 2 are realized by an additional output stage
as illustrated in Fig. 4. Fig. 4(a) shows a conven-
tional single-output transconductor. Fig. 4(b) shows
a double-output transconductor with gy and gy, of
the same sign; notice that the ratio gm /gy, = (WA
Fig. 4(c) shows a double-output transconductor with
gm and gy, of opposite sign which is a result of chang-
ing the diode connection from transistor My in Fig. 4(b)
to transistor M, and moving output current i/, to the
drain of M.

From the transfer function given in (6) we can derive
the wg and Q of the quadratic function in the numerator
and the denominator:

For the denominator,
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Note that if k, is controlled independently from the
other transconductances (by varying g;,,), Qn can be
varied while keeping wqn fixed.

By interchanging the identity of the input and output
terminals of the Fig. 2 biquad, as shown in Fig. 5, it
is straightforward to show that (1), (2) and (5) will
still hold, but with Vi, and V,; interchanged. Thus
the transfer function of the Fig. 5 circuit will be the
reciprocal of the transfer function given in (6). In this
filter, the center frequency and filter Q (determined by
the poles) will be given by (8).

Since in the Fig. 5 structure the core two-integrator
loop formed by gm1, gmz2, C1 and C, determines the ze-
ros of its transfer function, it is convenient to break this
feedback in the various ways shown in Fig. 6 to realize
the following different types of transfer functions:
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Fig. 4. (a) Single-output transconductor; (b) and (c) Double-output transconductors.



Fig. 5. gm — C biquad structure reciprocal to the one in Fig. 2.
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Notice that the structure in Fig. 6(c) realizes a high pass
filter whose loss at low frequencies neither depends on
subtraction of signal currents nor requires the use of a
floating capacitor. Another g, — C topology with this
same desirable property was first reported in [5].

A further simplification of the biquads presented
here is possible. Due to the way the two basic struc-
tures are implemented (see equation (4)), the currents
I1,, 11, 15, and I;_ can be directly injected into the
output stage of the third transconductor (e.g. Fig. 7)
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Fig. 6. Additional structures derived by breaking a feedback loop in
Fig. 5 circuit.

without the need for extra current mirrors, thereby
making transistors M; and M, in the double-output
structure (Fig. 4(b) and 4(c)) unnecessary. Hence, we
conclude that only two transistors must be added to a
single-output transconductor to create a double-output
transconductor suitable for implementation of the pro-
posed biquad structures, thus further simplifying the
circuitry and reducing the output noise.
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Fig. 8. Block diagram of inverse Gaussian filter.
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Fig. 9. ldeal and measured magnitude frequency response of filter.



Table 1. Transfer function magnitudes at zero frequency.
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3. Effect of Nonidealities on the Performance of
the Proposed Structures

Some of the factors limiting the performance of the pro-
posed structures, and that of any g, —C filter ingeneral,
are the parameters of the individual transconductance
blocks, including: (A) nonzero output admittance; (B)
nonzero input admittance; and (C) phase error due to
nondominant poles. We will give some results con-
cerning the effect of each of these nonidealities.

A. Nonzero Output Admittance:

The most significant effect of the nonzero output con-
ductance of the transconductance blocks is on the low
frequency behavior of the biquads, since most of the
transconductance blocks have a capacitor connected to
the output. In order to analyze the effect of the nonzero
output conductances on the low frequency behavior,
the substitution sC; — g can be made in each of
the transfer functions given in the previous section. A
listing of the magnitude, in terms of the of each of the
8i = Qoi/Omi (i.e., 1/8; is the intrinsic gain of the ith
transconductance block), of these transfer functions at
s = 0 is given in Table 1. We assumed that §; < 1 in
order to simplify these expressions.

We now consider the effect of output capacitance at
each transconductance block. Notice that in all circuits
in Fig. 2, Fig. 5 and Fig. 6, there is already a capacitor
connected at nodes V; and V,. Hence any additional
parasitic capacitance present at these nodes from the
transconductance block outputs will only shift the poles
and zeros slightly. On the other hand, any capacitance

C3 connected to the output of gms will contribute a
parasitic pole at s = —gm3/Csz. However, it can be
shown that the desired poles and zeros of the Fig. 2
circuit are not affected by the presence of this nonzero
output capacitance. Unfortunately, this property is not
shared by the Fig. 5 and Fig. 6 biquads.

B. Nonzero Input Admittance:

All of the biquads discussed in the previous section
(with the exception of the highpass and notch filters)
should give a magnitude that approaches zero for suf-
ficiently high frequency. However, if the capacitances
that appear across the input terminals of the transcon-
ductance blocks are taken into account, then a number
of capacitive loops are formed, giving rise to capacitive
coupling between the outputs and input. This results in
the injection of the input signal into the output nodes at
high frequencies, thus creating additional zeros in the
transfer functions. As a consequence of these zeros,
flattening will be observed at higher frequencies. (As
discussed next, however, the transconductance blocks
contribute a set of nondominant poles; hence, this flat-
tening will be observed only over a finite range of fre-
quencies.)

C. Nondominant Poles:

All transconductance blocks contribute extra poles due
to internal parasitic capacitances. It is discussed in [3]
and [6] that in g, — C filters, the small phase shift that
these extra poles contribute can result in a large error
in the overall transfer function. However, since the
biquads presented here consist of only three transcon-
ductance blocks, this error is kept at a minimum.

4. Measured Results

A fifth-order band-limited inverse Gaussian filter using
the biquad structure in Fig. 2 was designed and fabri-
cated using the MOSIS 2 — p Orbit Analog Process.
The normalized transfer function of the filter, whose
block diagram is shown in Fig. 8 is given by:

968.38 — 854.03s2 + 1752.25s*

945 + 2268s + 2419.252
+1451.55% + 497.7s* + 79.6s°

H(s) = (16)

The poles and zeros are arranged in such a way that
in the normalized frequency range w = 0 — 1.15 its
amplitude response provides equiripple approximation
of an inverse Gaussian while having linear (Bassel-
Thompson) phase response. This transfer function can



be implemented using either two biquad structures and
a lossy integrator or lwo Fig. 2 biquads, one of which
is loaded with a capacitor as shown in Fig. 8. Fig. 9
shows both the ideal (taken directly from (16, with ap-
propriate frequency scaling) and measured magnitude
frequency response. The effect of the nonidealities
discussed in the previous section are evident here. The
additional loss in the measured response comes from
the nonzero output conductance of the transconduc-
tance blocks. The measured rolloff at high frequencies
in the measured response is less than the ideal response
due tn the capacitive coupling of the input capacitance
of the transconductance hlocks.

5. Conclusion

The derivation of g,, — C biguad topologies which use
two output transconductors has been presented. It has
been shown that these biquads retain many of the ad-
vantages of biquads, including flexibility in specify-
ing various filter parameters, while allowing a very
compact design, Measured results showing the per-
formance of a 5-th order monolithic inverse Gaussian
filter based on the proposed topology were included.
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