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Abstract 
The mining of textual artifacts is requisite for many important activities in software 

engineering: tracing of requirements; retrieval of components from a repository; location of 
manpage text for an area of question, etc. Many such activities leave the “final word” to the 
analyst – have the relevant items been retrieved? are there other items that should have been 
retrieved? When analysts become a part of the text mining process, their decisions on the 
relevance of retrieved elements impact the final outcome of the activity. In this paper, we 
undertook a pilot study to examine the impact of analyst decisions on the final outcome of a task. 

1. Introduction 
One of the distinguishing features of data mining versus, for example, similar database tasks, 

is the fact that knowledge acquired from mining need not be exact. In fact, it may, in part, be 
inaccurate. Methods for typical data mining tasks, such as classification, discovery of association 
rules, and retrieval of relevant information, do their best to produce the most accurate results. 
However, the accuracy is subject to the internal properties of the method, as well as the quality 
and complexity of the artifacts (data) under consideration. 

In the field of Software Engineering, we can see two distinct and well-defined ways in which 
data mining, information retrieval, and machine learning methods are applied. The first direction 
is the exploratory study of existing artifacts of software development: document hierarchies, 
code repositories, bug report databases, etc., for the purpose of learning new, “interesting” 
information about the underlying patterns. Research of this sort is tolerant to the varying 
accuracy of data mining methods: while certain subtleties of some datasets might be missed, the 
most general patterns will, most likely, be discovered in analysis. 

The second direction is the application of data mining ('Here and elsewhere in the paper we 
use the term “data mining” in its broadest sense, including certain related activities and 
methodologies from machine learning, natural language processing, and information retrieval in 
its scope)techniques to different processes in the software lifecycle with the purpose of 
automating and improving performance on the tasks involved. Potential benefits of such 
automation are significant. Data mining techniques are typically applicable to some of the most 
labor-intensive tasks, and are capable of speeding up the performance on them by orders of 
magnitude. At the same time, such applications of data mining methods are not very error-
tolerant: undetected inaccuracies that creep into the results of data mining procedures may beget 
new inaccuracies in the later stages of development, thus producing a snowball effect. 

To be able to obtain the benefits of applying data mining methods to specific tasks (good 
accuracy, fast), without the drawbacks (inaccuracies are very costly), a human analyst must 
always assess and possibly correct the results of the automated methods. The process of 
involving data mining methods in task execution during the software development lifecycle is 
described in Figure 1. A specific task is assigned to an analyst. The analyst has software to help 
execute the task. The analyst consults the software, obtains preliminary results, and provides the 
software with feedback. At some point, the analyst decides that the obtained answer is correct 
and outputs the final results of the task. 



 

 
 

 
 

 

 
 

 
 

 

As the goal of introduction of data mining methods is improvement of the process, we are 
naturally concerned with the results produced by the automated tool. However, we observe that 
the only result that is seen by others is generated by the analyst! Therefore, we can only 
succeed if the final result, prepared by a human analyst, is good. In general, this is not equivalent 
to producing good results automatically. 

We view this process from the point of view of the developers of the automated tool. 
Traditionally, the success of a data mining tool is measured by the accuracy of its results. 
However, in the process described in Figure 1, the ultimate concern lies with the accuracy of the 
final, analyst-generated output. This output is affected by a number of factors, including the 
accuracy of the automated tool. But is better accuracy of the tool equivalent to better accuracy of 
the analyst? And are there any other factors that play a role in analyst decision-making? Level of 
expertise? Trust of the software? 

In order to claim success of the software, we must study not only the quality of the software 
output, but also what the analysts do with it. The ultimate success of the software is then 
determined by the quality of the final output. 

What we have done. We have performed a pilot study on how human analysts work with 
machine-generated data. Our study was conducted using the task of IV&V requirements tracing 
[2, 3, 1] on a relatively small dataset. While the study was too small in size (only three analysts 
participated) to draw any far-reaching conclusions, its results (in all cases, the quality of the 
results decreased) suggest that we are looking at the right problem. The pilot study is discussed 
in Section 4 of the paper. 

What we are planning to do. In Section 3 we outline the framework for a large scale 
experiment measuring the work of analysts with computer-generated data. Our goal is to 
determine the “regions” of precision-recall (see Section 2) space representing the quality 
computer-generated answer sets that allow human analysts to produce final results of high 
quality. We are also interested in studying what external factors affect analyst interaction with 
computer-generated artifacts. 

We begin by briefly outlining our research on the use of Information Retrieval (IR) methods 
for candidate link generation in requirements tracing tasks, and by describing how we came 
across the problem discussed in this paper. 

2. Motivation: Humans Matter! 
We first came across the issue of the quality of analyst evaluation of computer-generated 

results during our preliminary experiments with the application of information retrieval (IR) to 
requirements tracing [2]. At its core, requirements tracing boils down to comparing the content of 
pairs of high- and low-level requirements anddetermining whether they are similar/relevant to 
each other. We hypothesized that IR methods, that basically do the same thing, can be applied 
successfully to tracing. 

We had implemented two IR methods and wanted to compare the results these methods 
produced with the results obtained by a senior analyst working with a familiar advanced 
requirements tracing tool (SuperTrace Plus). The complete results of that experiment can be 
found in [2]. The analyst received a tracing task (19 high-level and 50 low-level requirements, 41 
true links from the MODIS [5],[4] documentation) and performed it in two steps. First, he used 
SuperTracePlus (STP) [6], a requirements tracing tool developed by Science Applications 
International Corporation (SAIC), to obtain a list of candidate links. The analyst then used the 
candidate trace generated by STP as a starting point and examined each link in detail. He 



 

 

 
 

 

removed from the trace links that he deemed unnecessary and also introduced some new links 
(wherever he felt that a link was missing). In Table 1, we have summarized this part of the 
experiment (all data comes from [2]). 

As can be seen from the table, the analyst improved the precision of the final trace. However, 
the analyst significantly lowered the recall (precision is defined as the number of correct answers 
returned divided). Using a recall-vs.-precision plot, we can illustrate the shift in these key 
measures of the quality of the trace from STP to the analyst (see Figure 2). In this experiment, 
the senior analyst had a high level of familiarity with SuperTracePlus, however, he was not very 
familiar with the MODIS project (beyond the dataset that we provided). 

While a single point of anecdotal evidence is insufficient for any conclusions, it prompted us 
to consider the implications of the analyst’s work with the software on the final results. 

3. Large Scale Study 
As mentioned in Section 1, when data mining tools are used directly in the software lifecycle 

process, rather than for after-the-fact analysis, high accuracy of the outcome must be ensured. 
Human analysts play the role of inspectors, examining the output of the tools and correcting it 
where necessary. The result of their work is passed along to the next tasks. 

We ask ourselves a question: in the presence of mining tools, what factors affect the result 
produced by the analyst? 

Right now, we only have a partial answer. Clearly, there are some overall factors that affect 
the quality of the analyst work, with or without software: analyst expertise with the task, level of 
domain expertise, and even such mundane and hard-to-control factors such as boredom with the 
task. However, in the presence of mining software designed to provide good approximations fast, 
there are other factors. The accuracy of the tool must play a role. Also, the degree of the analyst’s 
familiarity with the tool and the degree of analyst trust in the results of the tool play a role. 

However, simply stating that there is a dependence is not enough - as the exact character of 
such dependence is not obvious. For example, we would like to hypothesize that the quality of 
the tool results (measured in terms of precision and recall) affect the quality of analyst results in 
a monotonic way: better recall-precision of the tool yields better recall-precision of the final 
result. However, we note that if the precision and recall of the tool are very low (e.g., around 
10% each), the analyst has “nowhere to go but up.” At the same time, when the precision and 
recall of the tool are very high (e.g., around 95%), the analyst has almost “nowhere to go but 
down. ” Should we observe such results, how do we interpret them and what conclusions do we 
draw for the tool? Should we be “watering down” the results of an accurate tool, to ensure that 
an analyst will not decrease the precision and recall? 

The goal of the large scale study we plan to undertake is to discover the patterns of analyst 
behavior when working with the results of data mining tools during the software lifecycle and to 
establish the factors that affect it and the nature of their effects. 

The key factor we are looking at in the first stage is software accuracy, that we represent via 
the precision-recall pair of measures. The space of all possible accuracy results is thus a two-
dimensional unit square as shown in Figure 3. For both precision and recall, we establish the 
regions where the values are low, medium, and high (3There is a certain assymetry between recall 
and precision in this respect. We assume that precision is high if it is above 60%, and is low 
when it is under 33%. However, the recall is high when its value is above 70-75%, and is low 
when it is below 45%). The nine regions are shown in Figure 3. 



 
 

 

 

 
 
 
 

Our experiment consists of offering senior analysts, who have experience with requirements 
tracing, a computer-generated candidate trace with a preset accuracy from one of the nine 
regions. The analyst would then be asked to check the candidate trace and submit, in its place, 
the final trace. We will measure the accuracy of the final trace and note the shift from the original 
(such as in Figure 2). 

Our goal is to establish under which levels/conditions of the software, analyst expertise, and 
analyst attitude towards software, the resulting output improves (significantly) upon the 
computer-generated candidate trace. Such discovery has two implications on the software and the 
process. We must ensure that the mining tool delivers results in the accuracy range that allows 
the analysts to improve it. We must also strive to create the right conditions for the analysts to 
work with the data. 

4. First Steps 
In our preliminary study, our goal is to investigate the feasibility of our hypothesis, that the 

accuracy of computer-generated candidate traces affects the accuracy of traces produced by the 
analysts. We also want to understand if a more detailed study is needed. 

For the pilot study, we used the final version of the MODIS dataset described in [2, 3]. It 
contains 19 high-level requirements, 49 low-level requirements, and 41 true links between them. 
Using the output of one of our IR methods as the base, we generated candidate traces for a 
number of sampled points from the precision-recall space described in Section 3, including the 
three candidate traces (also shown in Figure 3) with the following parameters (4Altogether, we 
have generated six different candidate traces and distributed them to six analysts. However, only 
three analysts have completed their work at this time.): 

T1: Precision=60%; Recall=40%; 
T3: Precision=20%; Recall=90%; 
T4: Precision=80%; Recall=30%  

[(Because we had 41 true links in the dataset, for some values of recall and 
precision, we had to take the nearest achievable point (e.g., 12 true links in 
the trace, equal to 29.2% recall, was used for the 30% recall point)] 

The candidate traces were distributed to experienced analysts with tracing experience 
(manually or with a tool). The abridged version of the instructions provided to the analysts is 
shown in Figure 4. 

Each analyst was provided with one of the trace sets described above. They were given a 
one-week period to perform the work, but were not given any time constraints (i.e., they could 
spend as many hours on the task as they desired). The analysts were asked to return their answer 
sets (all chose to return softcopies in various formats), a brief description of the process 
employed during the experiment (to determine conformance), and a brief log of activities. From 
each answer set we have collected the following information: Or-Pr, Or-Rec, original recall and 
precision; Pr, Rec, precision and recall achieved by the analyst; Rmv, Rmv-Tr, total number of 
links and number of true links removed and Add, Add-Tr, total number of links and number of 
true links added by the analyst; Delta-Pr, Delta-Rec, the change in precision and recall, and 
Time, the time spent on the task. Table 2 and Figure 5 summarize the results of the pilot study. 



 

 

 

 

 
 

  

 

 

 

 

 

5. Conclusions and Future Work 
As stated in Section 1, we are aware of some shortcomings of IR and text mining methods, 

such as that they admit inaccurate results. This is why, when used in tasks within the software 
lifecycle, an analyst needs to inspect computer-generated results to prevent the snowball effect. 

It is clear from our anecdotal study that there are factors at work influencing analyst decision 
making, and, hence, the final results. For example, examining Table 2, we can see that analysts 
who were given trace sets with low recall took longer to complete the task (25 - 50% longer). 
They did not necessarily produce any “worse” final results than the analyst with a high recall 
trace set (note that the analyst who had the high recall trace set ended with recall that was 24.4% 
lower). This observation is particularly interesting because the analyst with that trace set, T3 
(recall of 90% and precision of 20%), had a large amount of false positives to go through. That 
means many more candidate links had to be examined. One would think that such an arduous 
process would result in worse results than an analyst who did not have to ’wade through’ many 
false positives. But in this very small study, that was not the case. 

In the pilot study, the analysts did not exhibit a pattern of improving the results of the 
candidate traces “no matter what.” That would have rendered our questions moot. On the 
contrary, analyst behavior consistently shifted the answers towards the vicinity of the line (see 
Figure 5). This was evident if recall was higher than the line to begin with, or if it was lower 

than the line to begin with. 
It is clear, then, that we must undertake a larger, controlled experiment, as described in 

Section 3. This must be done to ensure that we account for important factors that may influence 
analyst decisions, such as expertise, familiarity with/trust in the software, domain knowledge, 
etc. . . At the same time, we must factor out some extraneous variables, such as environmental 
issues (e.g., ambient noise), etc. 
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