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Abstract 

 
Traffic signal control is an effective way to regulate 

traffic flow to avoid conflict and reduce congestion. 
The ACO (Ant Colony) algorithm is an optimization 
technique based on swarm intelligence. This research 
investigates the application of ACO to traffic signal 
control problem. The decentralized, collective, 
stochastic, and self-organization properties of this 
algorithm fit well with the nature of traffic networks. 
Computer simulation results show that this method 
outperforms the conventional fully actuated control, 
especially under the condition of high traffic demand.  
 
 
1. Introduction 
 

With the ever-increasing traffic demand, congestion 
has become a serious problem in many major cities 
around the world. ATMS (advanced traffic 
management system) is a systematic effort toward the 
design of an integrated transportation system with new 
technologies. By regulating the traffic demand at each 
intersection in the network, the goal is to avoid traffic 
conflicts and shorten the queue length at a stop line. 

At a signalized intersection, traffic signals typically 
operate in one of three different control modes, 
namely, pre-timed control, semi-actuated control and 
fully actuated control. Pre-timed control is an open-
loop control strategy, in which all the control 
parameters are fixed and pre-set off-line. It is easy to 
implement and is well suited for predictable traffic 
patterns. In actuated control, the control signal is 
adjusted in accordance with real-time traffic demand 
obtained from detectors. In general, actuated control 
performs better than the pre-timed control. 

Traffic signal control problem has been studied by 
many researchers over years. Some major conventional 
traffic signal control systems, such as TRANSYT 
(traffic network study tool) [1], SCOOT (split, cycle 
and offset optimization technique) [2], and SCATS 
(Sydney coordinated adaptive traffic system) [3], select 

the best pre-calculated off-line timing plan based the 
current traffic conditions on the road. Some latest 
developments on traffic signal control employ artificial 
intelligence technology, such as neural networks [4] 
and fuzzy logic [5]. Algorithms using Petri nets [6] and 
Markov decision control [7] have also been 
investigated in recent years. 

Ant colony algorithm is a meta-heuristic approach 
for solving computationally hard combinatorial 
optimization (CO) problems [8] [9] [11]. Inspired by 
the behavior of the ants in real world, ant colony 
algorithm is a multi-agent system, in which each single 
agent is called an artificial ant. It is one of the most 
successful examples of swarm intelligent systems and 
has been applied to solve many different types of 
problems, including the classical traveling salesman 
problem, path planning and network routing. 

In nature, when searching for food, real ants may 
wander randomly until they find food. As an ant 
returns to the colony with food, it deposits pheromone, 
a chemical used for communication. These pheromone 
trails guide other ants as they continue their search for 
food. As more pheromone is deposited, the ants’ paths 
become less random and are biased toward the paths 
with higher pheromone concentration. 

In the ant colony algorithm, artificial ants search the 
solution space probabilistically to create candidate 
solutions. These candidate solutions are then evaluated 
and updated, based on the pheromone associated with 
each one of them. It should be noticed that over time, 
certain amount of pheromone concentration may 
evaporate. Finally, the one with the highest value of 
pheromone is considered to be the optimal solution of 
the problem. 

In this research, a new approach to find the optimal 
signal timing plan for a traffic intersection is 
investigated using ant colony optimization algorithm. 
Rolling horizon algorithm is also employed to achieve 
real-time adaptive control. Computer simulation results 
indicates that this new approach is more efficient than 
traditional fully actuated control, especially under the 
conditions of high, but not saturated, traffic demand. 
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2. The dynamic model of a traffic 
intersection 
 

Modeling traffic dynamics and optimizing the 
control signals are two interrelated problems. Consider 
a typical four-lagged isolated traffic intersection with 
four external approaches, as shown in Fig. 1. For the 
sake of simplicity, only through movements are 
considered. The traffic flows move along two 
directions (east/west or north/south) and thus only two 
sets of traffic control signals (green for east/west or 
green for north/south) are considered. 
 

 
 

Fig. 1. A typical traffic intersection 
 
At a given time t, the queue length on movement i 

can be denoted as )t(q i , where i represents the index 
of a movement. Thus, the queue length at the whole 
intersection can be denoted as: 

[ ])t(q),t(q),t(q),t(q)t(q 4321=  (1) 
Similarly, the number of vehicles leaving 

movement i during a time interval ( 21 t,t ) can be 

denoted as )t,t(qi
out 21 . It is a function of the signal 

choice and the queue length at 1t . When )t,t(u 21  = 
green, we have: 

−
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     (2) 
where hw is the headway between vehicles as they 
leave the intersection, )t,t(u 21  is the signal during 
the time interval ( 21 t,t ) and )(Int ⋅  gives the integer 
part of the input. Obviously, when )t,t(u 21  = red, 

=)t,t(qi
out 21 0. 
The number of cars arriving during a time interval 

( 21 t,t ) can be denoted as )t,t(qin 21 . It has been 
supported by the results of many field tests that under 
most circumstances, the arrival of vehicles for the 
external movements follows the Poisson distribution 
[9].  Therefore, 

!n
e)t()n(P

tn Δ−Δ=
λλ

  (3) 

where n is a positive integer for number of arrivals, λ  
is the average vehicle arrival rate in vehicles per hour 
and tΔ  is the duration of time period. 

From the above, the dynamic equation of traffic 
flow can be described as: 

)t(q)t(q)t(q)t(q outin −+−= 1  (4) 
 
3. The ant colony optimization algorithm 
 

The principle of swarm intelligence is based on the 
studies of social interactions between biological insects 
in nature. In contrast to the global, centralized 
traditional approach, it offers an alternative way to 
design an intelligent system based on the collective, 
decentralized behavior of many self-organized sub-
systems. 

A swarm intelligent system typically contains a 
population of simple agents which only interact locally 
with each other and the environment. That means, each 
individual agent in the system only follows simple 
rules and may not have the knowledge of the overall 
system. However, the local interactions between such 
agents can lead to the emergence of a very 
sophisticated and complicated group behavior. Some of 
the examples of biological swarm intelligent systems 
include ant colonies, bird flocking, fish schooling, 
bacterial growth, etc. 

The ant colony optimization (ACO) algorithm was 
first developed by M. Dorigo in 1992 in his Ph. D. 
dissertation. It is a meta-heuristic approach for solving 
computationally hard combinatorial optimization (CO) 
problems; in other words, it is an “approximate” 
algorithm which can be used to obtain “good enough 
solutions” in a reasonable amount of computation time 
[9]. Inspired by the foraging behavior of the biological 
ants in real world, artificial ants are introduced and 
employed as a novel computational intelligence tool. In 
fact, it is a stochastic search algorithm based on a 
parameterized probabilistic model called the 
pheromone model. 

Consider a solution space in which each node 
represents a possible solution for an optimization 
problem. The major steps of ACO can be summarized 
as follows: 

1) Initialization. The pheromone values on each 
node are set to a constant value. 

2) Solution construction. Each ant begins on a start 
node and moves to one of its neighboring node based 
on the pheromone values. In general, ants move from 
node i to node j with the following probability (also 
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called the proportional rule, or the transition 
probability): 

∉
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where iN  is the set of the neighborhood nodes of i 
that an ant has not visited yet, which includes all 
possible nodes that an ant can move to when at node i. 

ijτ  is the pheromone value between node i and j; and 

ijη  represents the heuristic information (which is 
available a priori – for example, in the famous 
traveling salesman problem, the reciprocal of the 
distance between two different cities i and j is usually 
chosen to be ijη ). The values of α  and β  are usually 
application dependent; they weigh the importance of 
the pheromone and heuristic values, respectively. Note 
that there are potentially many different ways of 
choosing the transition probabilities; however, Eq. (5) 
was introduced in the first ACO algorithms, and is still 
used most often in ACO literature nowadays mainly 
due to this historical reason [9]. 

3) Update pheromone. Pheromone update can be 
implemented in different ways, depending on the 
specific algorithm being studied; but they all follow a 
general form. Over time, pheromone evaporates: 

ijij )( τρτ −← 1     (6) 

where ( ]10,∈ρ  is the evaporation rate. The 
pheromone on some of the paths is then updated by: 

ijijij τττ Δ+←     (7) 

where ijτΔ , the pheromone update, is determined by 
the specific algorithm. 

4) The above solution construction and pheromone 
update procedures (i.e., step 2 and 3) are repeated until 
a stop criterion is met. 

ACO has been successfully applied to solve many 
different types of problems, including the classical 
traveling salesman problem, task assignment, path 
planning and routing in telecommunication network, 
etc. Many different ACO algorithms have been 
proposed, including the original Ant System algorithm 
(AS), Elitist Ant System, and MAX-MIN Ant System 
(MMAS). In fact, the initialization and solution 
construction procedures are the same for different 
ACO algorithms; only the ways to update pheromone 
(i.e., step 3) are different. In this research, we consider 
two different ACO algorithms, namely, the Ant System 
(AS) and the Elitist Ant System (EAS) algorithm. 

In the Ant System algorithm, after all m ants have 
constructed their own solutions and the pheromones on 
all edges/arcs evaporate based on Eq. (6), the 
pheromones are updated by: 

=

Δ+←
m

k

k
ijijij

1

τττ     (8) 

where k
ijτΔ , the pheromone deposited by ant k when 

moving from i to j, is defined by: 

k
k
ij C

1=Δτ      (9) 

where kC  is the associated cost or reward. Otherwise 
(i.e., ant k doesn’t move to node j from node i), there is 
no pheromone deposit, i.e., 0=Δ k

ijτ . 
In Elitist Ant System (also called elitist strategy for 

ant system) algorithm, extra weight is given to the 
best-so-far solution. As in the Ant System algorithm, 
pheromone evaporate first (Eq. (6)), then can be 
updated by: 

bs
ij

m

k

k
ijijij e ττττ Δ+Δ+←

=1

   (10) 

where e is a weighting parameter. The additional term 
bs
ijτΔ  reinforces the best-so-far solution and can be 

defined as the following (if ant k moves from i to j): 

bs
bs
ij C

1=Δτ      (11) 

where bsC  is the total cost/reward (from the start of 
the algorithm) associated with the best-so-far solution 
(including the transition from i to j). This term can also 
be viewed as the pheromone deposited by an additional 
ant called the best-so-far ant. 
 
4. Traffic signal optimization using ant 
colony algorithm 
 

A typical optimization problem is defined on 
),f,S( Ω , where S is the set of candidate solutions 

(or the search space),  f is the objective function, and 
Ω  is a set of constraints. The goal is to find a globally 
optimal solution Ss* ∈  such that f is maximized or 
minimized. 

One of the most important goals of traffic signal 
control is to minimize vehicle waiting time at 
intersections. In this research, the amount of 
pheromone deposited by artificial ant is directly related 
with this performance criterion. As we know, the green 
time duration for each signal phase can be any value 
bounded between a minimum and a maximum value 
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(called the minimum green and maximum green time). 
The ACO algorithm determines the optimal green time 
duration to minimize the total vehicle waiting time, 
which includes the actual waiting time of the vehicles 
already in the current queue, and the estimated waiting 
time of vehicles that may just arrive during this time 
duration. 

The inputs of the ACO controller include the current 
traffic queue (available from sensor measurements) 
and a prediction of vehicle waiting time; the output of 
ACO controller is the optimal signal switching time (or 
optimal time duration of the signal phase). The 
prediction of future arrivals and the associated waiting 
time are critical to the controller and are discussed in 
detail below. 

Let’s consider the situation when the length of a 
green signal is )tt( 12 − , where 1t  is the starting time, 
and greenmax_greenmin_ t)tt(t ≤−≤ 12 . Let q be the 

queue length (number of vehicles) at time 1t , and 
0≠q . As shown in Fig.1, only through traffic 

movements are considered here; thus the green signal 
for movement 1 and 3 implies the red signal for 
movements 2 and 4, and vice versa. 

When all vehicles in the initial queue are released, 
that is, when hw)q()tt( 112 −≥− , the total expected 
waiting time for a traffic movement under green signal 
(from 1t  to 2t ) can be written as: 

=)t,t(J green 211 2
1 hw)q(q −

+ )att( n

q

n

−
=1

1  

+
( )

2
1 2hw)q( −λ

 

+
( ) ( )[ ]

2
111 hwhw)q(hw)q( −−− λλ

 

     (12) 
where nat  is the arrival time of vehicle n. The first 
and second terms are the total waiting time of the 
initial queue, the third term is the expected waiting 
time of vehicles that arrive during the time interval 
( 21 t,t ) when the initial vehicles are released, and the 
fourth term is the expected time that takes to release 
these new arrivals in ( 21 t,t ). 

When hw)q()tt( 112 −<− , not all the vehicles in 
the initial queue can be released. The total expected 
waiting time for this case is: 

=)t,t(J green 212 2
1 hw)q(q outout −

+ )att( n

q

n

−
=1

1  

+
2

2
12

12
)tt(

)tt)(qq( out
−+−− λ

  

     (13) 
The first term is the waiting time of the released 

vehicles in ( 21 t,t ), the second term is the waiting time 
of the initial queue before 1t , the third term is the 
waiting time of the initial vehicles not being released in 
( 21 t,t ), and the fourth term is the expected waiting 
time of estimated arrivals in ( 21 t,t ).  

During the red phase, no vehicle can be released; in 
addition, )tt( 12 −λ  vehicles are expected to arrive. 
Therefore, the total queue at 2t  becomes 

)tt(q 12 −+ λ . The expected total waiting time is: 

)tt(q)t,t(J red 1221 −= + )att( n

q

n

−
=1

1  

  + 
2

2
12 )tt( −λ

  (14) 

The first and second terms are the waiting time of 
the initial queue, and the third term is the expected 
waiting time for new vehicle arrivals in ( 21 t,t ).  

For a traffic intersection as shown in Fig. 1, a 
complete signal cycle contains two signals and can be 
written as 21 TTT += . For example, if 1T  is the time 
duration of the green signal for movement 1 and 3 (and 
red signal for movement 2 and 4), then 2T  should be 
the time duration of the red signal for movement 1 and 
3 (and green signal for movement 2 and 4). To 
minimize the vehicle waiting time during the entire 
signal cycle, both 1T  and 2T  are determined by the 
ACO algorithm at the beginning of each signal cycle. 
Note that 1T  and 2T  are actually determined based on 
the estimated delay for each movement. Due to the 
random nature of traffic flow, this estimation may not 
be accurate and needs to be updated whenever it is 
possible. Therefore, in this research, a rolling horizon 
approach is employed. After one signal phase is 
implemented, all the queues at intersection are checked 
by sensors and all the information is updated to 
generate a better estimation for the next signal phase. 
In this case, for each signal cycle, the ACO algorithm 
is called twice to find the optimum signal length for 
each of the two phases. 
 
5. Simulation results 
 

The proposed algorithm is tested and compared with 
the conventional fully actuated control by computer 
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simulation. In fully actuated control algorithm, both 
the cycle length and the green time for every phase of 
the intersection can be varied. At every time step, the 
fully actuated controller checks whether an arrival has 
occurred on any lane of the intersection. If an arrival 
has occurred, then the phase is given an extension if it 
has a green indication. If the phase does not have a 
green, a call is registered for that phase. To determine 
the signal indication of next phase, all the calls need to 
be taken into account. The phase sequence of fully 
actuated control is fixed; however, certain phases in the 
cycle may be skipped if there is no demand detected by 
detectors. 

It is assumed that the intersection is “clear” when 
the simulation starts (i.e., zero initial conditions, or no 
queue at the beginning), and each traffic movement is 
independent. It is also assumed that the number of 
vehicles at the intersection is known, i.e., video-camera 
type detectors are available at the intersection. We 
choose the maximum and minimum green time to be 
50 seconds and 5 seconds, respectively. Both arrival 
and departure headway are 2 seconds. Loss time 
(human reaction time) is 0 second; and all red phase 
time is 3 seconds. With Poisson arrival pattern, the test 
is performed on different vehicle arrival rate, from 200 
(vehicles per hour per movement) to 800 (vehicles per 
hour per movement). The results are shown in Fig. 2, 
where the x-axis shows the vehicle arrival rate and y-
axis represents the average delay (seconds per vehicle 
per movement). Two different ACO algorithms are 
considered, i.e., the Ant System (represented by 
squares in the plot) and the Elite Ant System 
(represented by diamonds in the plot). The average 
delay of fully actuated control is shown in triangle. It is 
shown that fully actuated control performs well when 
the traffic demand is light (i.e., arrival rate at 200 – 600 
vehicles per hour per movement); however, both ACO 
algorithms yield better results when the traffic demand 
is heavy (i.e., arrival rate at 700 and 800 vehicles per 
hour per movement). 
 
6. Conclusion 
 

ACO (Ant Colony) algorithm is a new optimization 
technique based on swarm intelligence. In this paper, 
two different ACO algorithms are applied to control 
signals at traffic intersection to reduce the vehicle 
waiting time. Initial test results show this method 
outperforms the conventional fully actuated control 
under the situation of high traffic demand.  Further 

evaluation and testing on this approach will be 
performed. 
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Fig. 2. Computer simulation results 
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