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ABSTRACT 

An adaptive controller based on multi-layer feed-forward neural network is developed for real-time 
voltage regulation of a class of PSFB (phase-shifted full-bridge) DC-DC converters. The controller has the 
unique advantages of nonlinear mapping and adaptive learning. and performs well over a wide range of 
input voltages and output load currents. The controller is implemented and tested in hardware using a 
OSP (digital signal processor) board. Experimental results show that it outperforms conventional 
controllers in both line regulation and load regulation. 

Keywords: 
Neural network controller, DC-DC volrage converter, Neural network hardware 

1. Introduction 

A DC-DC converter is an integral part of many electrical 
devices. especially in portable electronic equipment that requires 
low-voltagejlow-power operation and high reliability. Pulse­
width modulation (PWM) is often employed to control the DC 
output voltage by modulating the duty cycle via electronic 
switching circuits. To improve the power efficiency. many 
different switching circuit topologies [2.3.5.6.10.16) have been 
proposed. including phase-shifted zero-voltage switching full­
bridge (PSFB) converters. Unlike other topologies which may 
require additional active circuit components or variable operating 
frequencies. PSFB employs a soft-switching technology called 
zero-voltage-switching (ZVS) that is especially suitable for the 
advanced MOSFETs (metal oxide semiconductor field-effect 
transistors) implementation [5.6.16). 

To keep the output of a DC-DC converter stable. an appropriate 
control signal should be applied. In conventional controller 
design, it is assumed that all the circuit components are ideal 
with no performance degradation and power loss; and the circuit 
is operated at a stable bias point so that it can be modeled by a set 
of linear equations [4.17). However. in practice. the switching 
network is highly nonlinear and an accurate mathematical model 
is very difficult to obtain. In addition. the supply voltage and load 
current may also fluctuate over a wide range. Thus. real-time 

adaptive control becomes necessary to achieve proper system 
performance. 

Recently. artificial neural networks (ANN) have been applied to 
improve the performance of DC-DC converters to dynamical 
system changes [8.15). However. no prior work has yet been 
reported to control a PSFB converter using a neural network 
approach. 

In this paper. a controller design employing a multi-layer feed­
forward neural network is investigated. A Matlab Simulink" 
model is developed to generate the data set; and the neural 
network is trained off-line using a back-propagation algorithm. 
A network pruning algorithm is also applied to determine the 
appropriate size of the controller. Finally, the proposed neural 
network controller for a PSFB DC-DC converter is implemented on 
a DSP (digital signal processor) evaluation board. To accommodate 
variations in system dynamics and parameters while maintaining 
fast response. an on-line training routine is included to fine-tune 
the weights of the neural network controller in real-time. 
Satisfactory experimental results are obtained to show that 
this neural network controller can provide improved performance 
over conventional controllers in both line regulation and load 
regulation. 

2. Modeling and simulation 

2.1. Tile neural network controller for PSFB DC-DC converter 

The conventional approach to control the output voltage of a 
DC-DC converter is to modulate the duty cycle of gate control 
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Fig. 1. Basic configuration of a typical PSFB DC–DC converter. 

signals (i.e., the ratio of time when the signal is at the ‘‘high’’ level 
versus its period) in a switching network. The basic configuration 
of a typical PSFB DC–DC converter is shown in Fig. 1. The circuit 
consists of four power switches (Q1, Q2, Q3, and Q4), a transformer 
(TX1), and an output stage. The power switches act as the gate for 
currents to flow from the source Vdc to the load. The timing signals 
for each switch to turn on and off are provided by the driver 
circuit. The high frequency transformer (TX1) provides isolation 
and steps down the input voltage to slightly above an appropriate 
output voltage level. Note that there is a small inductor (Lr ) 
connected in series with the transformer to ensure proper 
resonant frequency for the soft switching. The output stage 
consists of two diodes (D01 and D02) to convert AC pulse signals 
out of the transformer into DC pulses. The LC filter (L0 and C0) 
cleans up the DC signal further to yield a DC voltage with 
acceptable ripple at the load. Based on circuit analysis, the duty 
cycle and timing scheme to drive the four switching MOSFETs (Q1, 
Q2, Q3, and Q4) is highly nonlinear [1,16] and leads to a very 
complicated controller design using conventional approaches. 

In this research, a multi-layer feed-forward artificial neural 
network is employed to achieve real-time adaptive control. Since 
the duty cycle is a nonlinear function of input voltage Vin and load 
current I0 [11,12], they are chosen to be the inputs of the neural 
network. In practice, Vin and I0 may fluctuate over a wide range. 
The converter output voltage should be kept at a constant; 
otherwise, the control signal should be changed and a different 
duty cycle should be applied. Thus, we choose the output voltage 
change as another input to the neural network. The output of the 
neural network controller is the duty cycle F, a positive real 
number bounded between 0 and 1: 

0rFr1 ð1Þ 

The nonlinear sigmoid function 
function for each neuron: 

is chosen as the activation 

f ðxÞ ¼ 1 ð2Þ 
1þe�ax 

where a is a constant parameter (a40). Fig. 2 shows an input– 
output diagram of the neural network controller. 
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Fig. 2. The neural network controller. 

2.2. The neural network pruning algorithm 

It is well known that a multi-layer feed-forward neural 
network of an appropriate size can approximate any nonlinear 
function to a desired accuracy after it is fully trained [7,14]. 
However, before such a neural network can be employed, an 
optimal configuration (i.e., number of layers, number of neurons 
in each layer) should be pre-determined, especially in the real-
time environment where speed is crucial. 

In this research, a sensitivity based neural network pruning 
approach [9,13,18] is employed to determine an optimal neural 
network controller configuration. Sensitivity is a performance 
measure which indicates the contribution of each individual 
weight/node to the overall neural network performance. The 
sensitivity of a global error function J( � ) with respect to each 
weight, sij, can be defined as the following [13]: 

f sij ¼ Jðwij ¼ 0Þ � Jðwij ¼wijÞ ¼ Jðwithout wijÞ � Jðwith wijÞ ð3Þ 

where wij is the weight/connection of the neural network from 
fnode i to j; w is the final value of weight after training; and J( � ) is  ij 

the RMSE (root mean square error) of NN output. In [9], it is 
shown that for the back-propagation algorithm, Eq. (3) can be 
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where Z is the learning rate (usually in the range between 0 and 1. 
In this simulation, Z is chosen to be 0.5); Dwij is the weight 
update; and N is either the number of training patterns for each 
NN weight update (if bench training is employed), or N=1 (for on­
line training). 

Once a neural network is trained to achieve the input/output 
mapping with desired accuracy, the sensitivity calculation based 
on Eq. (4) can be activated. If the sensitivity of a particular weight 
is smaller than a pre-set threshold, this weight is insignificant and 
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can be deleted. Furthermore, a neuron can be removed when the 
sensitivities of all the weights related with this neuron are below 
the threshold: 

( 
0 if jŝ ijjot 

wij ¼ ð5Þ 
wij if jŝ ijjZt 

A Matlab Simulinks model is developed to train the neural 
network off-line [11]. To determine the optimal size for the neural 
network controller, we start with a three layer feed-forward 
neural network which has one hidden layer with 10 neurons. The 
network weights are initialized at random with uniform distribu­
tion over the interval [�1, 1]. The total number of weights is 51, 
including the bias term of each hidden neuron and the output 
neuron. The training performance is shown in Fig. 3, which 
illustrates that the RMSE decreases with training epochs. After 

Th
e 

R
M

S
 v

al
ue

 o
f T

ra
in

in
g 

E
rr

or
 

500 training cycles (using the back-propagation algorithm), an 
RMSE of 0.0119 is obtained. 

The network pruning algorithm is applied to reduce the size of 
neural network. The choice of the threshold value for sensitivity is 
generally application dependent and based on a trial-and-error 
process. The sensitivity value used in this simulation is 0.03 for all 
the weights, which is also the median of all the sensitivities of the 
network. After removing 22 weights with smaller sensitivities, the 
RMSE of the reduced network output is increased to 0.0257. To 
improve the performance of the pruned neural network, training 
is continued further. After another 500 training epochs, the RMSE 
is reduced to 0.0096, as shown in Fig. 4. Note that the neural 
network dimension is reduced dramatically by 43.14% (from 51 to 
29 weights) while still maintaining similar performance. 
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Fig. 3. The RMS of output error vs. training epochs. 
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Fig. 4. The RMS of output error vs. training epochs. 
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Fig. 5. The system block diagram. 

3. Experimental results 

The proposed neural network controller is implemented on a 
Texas Instruments DSP (digital signal processor) evaluation board 
(eZdsps F2812) to control a commercially available phase-shifted 
zero-voltage-switching DC–DC converter module (UCC3895EVM­
001). The on-board digital signal processor TMS320F2812 is a 32­
bit CPU with 150 MIPS (million instructions per second) operating 
speed; and the neural controller is programmed in C language. 
The PSFB DC–DC converter board has a nominal input voltage of 
48 V and a nominal output voltage of 3.3 V, with a built-in 
conventional analog controller (UCC3895). 

The overall system block diagram is shown in Fig. 5. To test the 
performance of neural network controller, the on-board 
conventional controller (UCC3895) is removed and replaced 
with the neuro-controller. The input voltage, output voltage, and 
load current of the DC–DC converter are connected to the ADC 
(analog to digital converter) input channels of the DSP module. 
Note that the power circuit is driven by 400 KHz PWM signals; 
thus the raw output voltage signal can be quite noisy, especially 
during the switch turn-on and turn-off time. To reduce switching 
noise, multiple samples are taken to obtain the time averaged 
inputs. The neural network controller output is connected to the 
power circuit through the DAC (digital to analog converter) output 
channel of the DSP board and the jumpers on the power circuit 
module. Because the neural network is trained off-line (see 
Section 2), the converter output voltage is systematically lower 
than the desired value. This is due to our ideal Simulink model 

50 100 150 200 250 300 350 400 450 500 



 

 

 

 

which does not take into account parasitic voltage drops and 
power consumptions, as well as the value variations of circuit 
components. Therefore, on-line training is implemented to fine-
tune the weights of the neural network. With this correction, the 
performance of the neural network controller is significantly 
improved. 

In the back-propagation algorithm, the gradient of the output 
error function with respect to each weight should be calculated. In 
the DC–DC converter, PWM (pulse-width modulation) is em­
ployed to control the output voltage by adjusting the duty cycle of 
square waves. Note that the duty cycle, i.e., the output of the 
neural network controller, is not monitored directly from the 
circuit; one only monitors the output voltage of the DC converter. 
And in fact, our control objective is to keep the output stable 
under various input voltage and load current conditions. That is, 
the following objective function is minimized: 

N X 
E ¼ 1 ½V0ðnÞ � VNNðnÞ�2	 ð6Þ0N 

n ¼ 1 

where V0ðnÞ represent the desired output of the DC converter, 
VNN 
0 ðnÞ represents the output voltage with the neural network 

controller. 
To design the neural network controller more efficiently, the 

difference between the current output voltage of the power circuit 
and the desired value is monitored and compared with a preset 
threshold. The control signal (i.e., duty cycle) is unchanged if this 
deviation is less than the threshold. When it is larger than the 
threshold, the neural network controller is activated and a new 
duty cycle is applied to the circuit. If the DC–DC converter output 
is still not satisfactory, then on-line training is performed and the 
neural network weights are adjusted to minimize the voltage 
deviation. 

The neural network controller is tested over a range of different 
input voltages with full load, as shown in Fig. 6, where the y-axis 
represents the deviation of the output voltage (with respect to the 
nominal value) and the x-axis represents the input voltage. The 
ability of a power circuit to maintain a constant output voltage 
under various input conditions is called line regulation. In Fig. 6, 
the solid line represents the voltage deviation with neural 
network controller while the dashed line represents the results 
using the on-board built-in analog controller. For most cases, the 
output voltage controlled by the neural network is more stable 
than the one controlled by the conventional controller; in other 
words, the neural network controller achieves better line 
regulation, especially at lower input voltages. 
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Fig. 6. Output voltage deviation vs. input voltage (at load current 15 A). 
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Fig. 7. Output voltage deviation vs. load current (at nominal input). 

Load regulation is a measure of the ability of the power 
circuit to maintain its output constant when the load current 
changes. The experimental results are shown in Fig. 7, where 
the y-axis represents the deviation of the output voltage (with 
respect to the nominal value) and the x-axis represents the load 
current. Similar to Fig. 6, the solid line represents the voltage 
deviation with neural network controller while the dashed line 
represents the results with the conventional controller. The input 
voltage is at 48 V (nominal value). The neural network controller 
also achieves better load regulation, especially at high load 
currents. 

4. Conclusions 

A neural network controller for a class of PSFB DC–DC 
converters is designed, implemented and tested on a digital 
signal processor evaluation board. To determine the appropriate 
dimension of this neural network controller, sensitivity analysis is 
applied and a network pruning algorithm is employed. Our 
experimental results show that real-time adaptive control is 
achieved under various input and load conditions; and the neural 
network controller outperforms a conventional controller in terms 
of both line regulation and load regulation. More research works 
will be performed to optimize the software to further speed up the 
response of neural network controller. 
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