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Abstract

Statistical modeling of traffic crashes has been of interest to researchers for decades. Over the most recent decade many crash models have
accounted for extra-variation in crash counts—variation over and above that accounted for by the Poisson density. The extra-variation — or dispersion
— is theorized to capture unaccounted for variation in crashes across sites. The majority of studies have assumed fixed dispersion parameters in
over-dispersed crash models—tantamount to assuming that unaccounted for variation is proportional to the expected crash count. Miaou and
Lord [Miaou, S.P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes
versus empirical Bayes methods. Transport. Res. Rec. 1840, 31-40] challenged the fixed dispersion parameter assumption, and examined various
dispersion parameter relationships when modeling urban signalized intersection accidents in Toronto. They suggested that further work is needed
to determine the appropriateness of the findings for rural as well as other intersection types, to corroborate their findings, and to explore alternative
dispersion functions.

This study builds upon the work of Miaou and Lord, with exploration of additional dispersion functions, the use of an independent data set,
and presents an opportunity to corroborate their findings. Data from Georgia are used in this study. A Bayesian modeling approach with non-
informative priors is adopted, using sampling-based estimation via Markov Chain Monte Carlo (MCMC) and the Gibbs sampler. A total of eight
model specifications were developed; four of them employed traffic flows as explanatory factors in mean structure while the remainder of them
included geometric factors in addition to major and minor road traffic flows. The models were compared and contrasted using the significance
of coefficients, standard deviance, chi-square goodness-of-fit, and deviance information criteria (DIC) statistics. The findings indicate that the
modeling of the dispersion parameter, which essentially explains the extra-variance structure, depends greatly on how the mean structure is
modeled. In the presence of a well-defined mean function, the extra-variance structure generally becomes insignificant, i.e. the variance structure
is a simple function of the mean. It appears that extra-variation is a function of covariates when the mean structure (expected crash count) is poorly
specified and suffers from omitted variables. In contrast, when sufficient explanatory variables are used to model the mean (expected crash count),
extra-Poisson variation is not significantly related to these variables. If these results are generalizable, they suggest that model specification may
be improved by testing extra-variation functions for significance. They also suggest that known influences of expected crash counts are likely to
be different than factors that might help to explain unaccounted for variation in crashes across sites.
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1. Introduction and background

dent occurrence and so the models typically used are stochastic

Research on highway and traffic safety has been of great models including a disturbance or error term.

interest to engineers and planners for decades. Major factors
known to affect safety are driver characteristics, vehicle fea-
tures, exposure to risk (traffic volumes), traffic control, weather
conditions, and roadway design characteristics. To predict the
safety of transportation system traffic engineers model crash rate
or frequency as a function of the above mentioned factors. Of
course these measurable factors do not completely explain acci-

Ideally, the mathematical relationship between crashes and
various explanatory factors is specified correctly so as to reveal
the underlying effects on safety and to enable useful insights into
the underlying crash process. A significant proportion of past
studies have been focused on modeling accidents at roadway
intersections, due primarily to the relative share of accidents at
intersections. While the majority of these studies report on urban



signalized intersections, there is considerable work on rural and
unsignalized intersections as well. Relatively early work on this
topic is reported by Chapman (1972), Satterthwaite (1981), and
Hauer et al. (1988). Further development and continuation of
the previous crash modeling research is reported by Bonneson
and McCoy (1993), Belanger (1994), Maher and Summersgill
(1996), Persaud and Nguyen (1998), Lord and Persaud (2000),
Wang and Nihan (2004), Persaud et al. (2002), and Miaou and
Lord (2003). A main focus of prior studies has been to identify
a defensible statistical relationship between crash counts and
exposure. Researchers not only considered the effect of total
traffic flow, but have also accounted for various turning move-
ments, pedestrian flows, and even bicycle flows in some cases to
model different crash outcomes. Statistical modeling of crashes
remains a significant area of ongoing research.

During the past decade or so researchers have begun to
extensively use the negative binomial (NB) model for mod-
eling crashes. The NB model arises mathematically (and
conveniently) by assuming that unobserved crash heterogene-
ity (variation) across sites (intersections, road segments, etc.)
is gamma distributed, while crashes within sites are Poisson
distributed (Washington et al., 2003). The Poisson, Poisson-
Gamma (NB), and other related models are collectively called
generalized linear models (GLM). In the majority of NB model-
ing, covariates are used to forecast the Poisson mean, while the
gamma heterogeneity is assumed constant. The functional form
of the NB model is as follows:

i = exp(BX;)exp(e;) (D

where w; is the Poisson mean, X;’s are the vector of various
covariates that include geometric characteristics and exposure,
B’s the vector of unknown fixed-effect parameters and exp(e;)
is the gamma distributed error with mean 1 and variance 1/«
(where « is the inverse dispersion parameter and « is greater
than 0). This negative binomial formulation provides flexible
properties where mean =Poisson mean or exp(f8X;) and vari-
ance =exp(BX;)[1 +exp(BX;)/a], a simple function of mean.
While GLM employs a simple variance structure as a function
of the mean structure, statisticians like Dey et al. (1997) com-
mented that in some applications, heterogeneity in the sample is
too great to be explained by the simple variance function implicit
in the GLM. This is particularly important in the presence of
important omitted variable that influence the mean structure.
To deal with this issue they performed a Bayesian modeling
with ship-accident count data, previously used by other statisti-
cians (McCullagh and Nelder, 1983) using GLM and found that
the variance function has a particular structure. While model-
ing traffic crash-flow relationship for intersections, Miaou and
Lord (2003) also challenged the assumption of fixed dispersion
parameter. Due to complexity and interaction of traffic flow in
and around intersections, they suspected that the unmodeled
heterogeneity of the mean of crash counts would be spatially
structured. This means that the variance of NB model is not
a simple function of mean as explained before but contains a
dispersion function that depends on site-specific characteristics
such as major and minor road traffic flows. Following this the

dispersion function they suggested is as follows:

no+ ki +n2kF2; +n3ko;
o = exp 2)

Fi

where F1 and F; are respectively major and minor road flow
and n’s are the vector of covariates. This leads to the modeling
of gamma heterogeneity in terms of included covariates which
will be discussed later in more detail.

While modeling urban intersection crashes using this func-
tional form for variance structure, Miaou and Lord (2003) found
animprovement in model estimation. In addition they mentioned
that treatment of dispersion parameter as a fixed parameter can
seriously undermine the goodness of the estimate for individ-
ual sites by up to about 35%. Further, they suggested that more
work is needed to determine the appropriateness of the findings
for rural as well as other intersection types, to corroborate their
findings, and to explore alternative dispersion functions.

This study builds upon the work of Miaou and Lord (2003),
with exploration of additional dispersion functions, the use of
an independent data set from rural intersections of Georgia,
and an opportunity to corroborate findings. In addition to the
exposure data, information about geometric design and light-
ing conditions of the intersections are considered in this study.
A Bayesian modeling approach with non-informative prior is
adopted over the classical methodology to check the structure
of gamma heterogeneity. While the intent of using Bayesian
methodology over the classical methods is never to show any
superiority of a Bayesian approach, it is still important to point
out some key reasons as to why it was preferred over the clas-
sical framework. As correctly specified by Dey et al. (1997),
a Bayesian estimation method using non-informative prior is
something where we let the data decide the inference. Hence,
this is an approximate likelihood-based inference but with more
reliable estimates of variability for small sample sizes. Hence, it
can be concluded that for large sample sizes this inference will
be closer to that of maximum likelihood and for smaller sam-
ples this estimate of variability should be more appropriate than
asymptotic estimates from maximum likelihood. In the follow-
ing sections, discussion about the Bayesian modeling approach
with sampling-based estimation and Markov Chain Monte Carlo
(MCMC) techniques, such as the Gibbs sampler are given first.
This is then followed by the methodology of the study and
the goodness-of-fit criteria used. Finally, summary of the study
findings and conclusions are presented.

2. Bayesian modeling approach

While the Bayesian statistical analysis have been widely used
in the field of health science and social sciences, the application
in the field of transportation engineering is few if not absent
(Hauer, 1992; Heydecker and Wu, 2001; and Miaou and Lord,
2003). Although the argument about the superiority between the
Bayesian and classical method existed for decades, this study
chose to use the Bayesian approach for some specific reasons
as described in the following paragraphs. Also, brief descrip-
tions about the Bayesian method along with Markov Chain



Monte Carlo (MCMC) technique and Gibbs sampling are given
here.

As described by Congdon (2003), the determination of
parameters in the traditional classical estimation processes is
aimed at finding a single optimum estimate using asymptotic
normality based on large samples, at a particular confidence
interval around its mode, whereas the Bayesian estimation deter-
mines posterior density for each parameter under consideration.
This density estimation is the product of a process where a long
run or a series of long runs of samples are taken from the poste-
rior density based on the prior information about the parameter
as well as the data. As a result a Bayesian modeling approach
provides a considerable interpretive advantage because posterior
estimates reflect the probabilities that the analyst is primarily
interested in, the probability of the null hypothesis being true
(called a posterior credible interval or credible set) (Washington
etal., 2005). In contrast, classical confidence intervals on param-
eter estimates provide the probability of observing data given
that a parameter(s) takes on a specific value. “Bayesians” argue
that this distinction provides a considerable philosophical and
practical advantage over classical estimation methods.

Instead of the difference in approach, the classical maximum
likelihood estimation (MLE) and Bayesian analysis are closely
related. As mentioned before, inference in MLE is based on the
likelihood of the data alone, whereas in Bayesian models, the
likelihood of the observed data x given parameters 6, is used
to modify the prior beliefs (6), with the updated knowledge
summarized in a posterior density 7(6]x). An example using a
linear regression model with form:

Yk = Bo + Brxk 3)

in which a prior experience or evidence-based research may pro-
vide analyst with information regarding the expected values of
some or all of the B values. However, in the absence of exist-
ing knowledge, it is difficult to form a so-called “informative
prior” and the application of non-informative or flat prior comes
into play. For example, if we consider the slope parameter of
the regression equation is distributed such that 81 ~ N(u,7), and
both w and t are known, then a lower value of T would indicate
a higher variance of the distribution, i.e. a lower precision of the
coefficient estimate, while larger values of T would be associated
with very low variance which would be indicated as informative
prior. In contrast a large value of o =1/7, is considered for a
non-informative or diffuse prior. However, as mentioned in Sec-
tion 1, even using non-informative prior we would get a better
estimate compared to MLE in case of small sample sizes due to
the limitation of the asymptotic normality assumption of MLE.
Also as described by experts like Congdon (2003), in case of dis-
crete outcomes, a sampling-based approach to estimation can be
beneficial to screen out marginally important predictors, or in
comparing between non-nested models. Hence, with the prior
knowledge about the distribution of the parameter, 7 (6), as well
as the data x we get the posterior information in a Bayesian
framework as

m(0]x) o f(x|0)m(6) “

In this context, it is worth mentioning that for the prior informa-
tion in Bayesian analysis, the location of the parameter (mean
and mode) and the precision (the reciprocal of variance) of the
prior are more critical than its actual shape in terms of conveying
prior information (Walsh, 2004). The shape of the prior distribu-
tion is often chosen to facilitate calculation of the prior through
the use of conjugate priors for the posterior distribution. How-
ever, in the absence of conjugate priors, much difficulty arises
in terms of summarizing the marginal posterior of a particular
parameter of 0, if the dimension of 6 is really large. In that case
it is necessary to integrate out the joint distribution of Eq. (4),
excluding the one parameter of particular interest. While cal-
culation of such an integral was computationally demanding in
the past, with today’s desktop computer, the sampling of the
posterior distribution using a Markov Chain and Monte Carlo
technique becomes relatively easy.

Markov Chain Monte Carlo (MCMC) methods are used
to repeatedly sample from the joint posterior distribution. A
Markov chain operates in discrete time intervals to produce a
sequence of evolving random variables, with the probability
of transition dependent on its current time. Chains are gener-
ated from a transition kernel, a conditional probability density
function. The resulting chains enjoy very strong stability with
desirable properties (Washington et al., 2005). In particular, a
stationary probability distribution exists by construction of the
chain and convergence to the limiting or stationary distribution
occurs almost surely, or after the chain converges.

The Gibbs sampler is an application of the MCMC process
that allows the user to generate random variables indirectly from
the marginal density function without actually computing the
density itself (Casella and George, 1992). The key to the Gibbs
sampler is that only univariate conditional distributions are con-
sidered: the distribution when all of the random variables but one
is assigned fixed values (Walsh, 2004). Thus, one simulates n
random variables sequentially from the n univariate conditionals
rather than generating a single n dimensional vector in a single
pass using the full joint distribution. The general principal of the
Gibbs sampler as given by Robert and Casella (1997), involves
successive sampling from the complete conditional densities:

fOklx, 01,02, ...,60k41,...,0p) 5)
which condition both the data and the other parameters. The
Gibbs sequence converges to a stationary distribution that is
independent of starting values and it converges to a station-
ary sampling distribution of the posterior density (Congdon,
2003). Greater details of the MCMC and Gibbs sampling can

be obtained from Norris (1997), Robert and Casella (1997) and
Casella and George (1992).

3. Methodology and analytical approach

Extensive work by researchers like Joshua and Garber (1990),
Miaou et al. (1992), Miaou and Lum (1993a,b) established that
accident phenomenon is best expressed by count models such as
Poisson regression process. The Poisson process with parameter



[ is given as

exp(— )i}

Pr(ni|pi) = p
i!

(6)
where Pr(n;|u;) is the probability of n accidents occurring at
intersection i and p; is the expected number of accidents at inter-
section i. Now if X; is a vector of covariates which describes the
geometric, traffic control and regulatory characteristics of an
intersection 7, and B is a vector of estimable coefficients, then p
can be estimated by the equation:

Inp; = BX; (7

This functional form of Poisson process assumes that all the
covariates in X; are sufficient in explaining the mean and variance
of crash occurrence. However, this is a limitation of Poisson
model as also described by Cox (1983) and Dean and Lawless
(1989), that the variance of the data is constrained to be equal
to the mean, i.e.:

var(n;) = E(n;) = (®)

In case of rare events like traffic accident variance is significantly
greater than mean which is well known as over-dispersion in
accident modeling field. Hence, to deal with this problem of
extra-variation, researchers proposed the inclusion of a gamma-
distributed error term in the parent Poisson model such that:

Inp; = BX; +é& 9

As explained in Section 1, the exp(g;) is gamma distributed and
takes the unobserved heterogeneity of the Poisson mean into
account. The unobserved heterogeneity is caused by various fac-
tors such as model misspecification, unavailability of important
but immeasurable covariates, as well as omission of relevant but
measurable factors. These factors can result in over-dispersed
count models where a substantial portion of the mean is not cap-
tured by included covariates and instead is captured through the
gamma distributed error term and the over-dispersion parameter.
This dispersion parameter is proportional to model uncertainty
and is aptly used in the calculation of overall model fit and stan-
dard errors of estimated parameters and confidence intervals. To
better understand the importance of the over-dispersion param-
eter in model assessment is a prime motivation for this study.
Whether the over-dispersion parameter is fixed or variable plays
an important role in this assessment.

To examine the structure of gamma heterogeneity, it is first
necessary to check the mean structure. This includes both the
functional form of the mean and the covariates considered. Till
date, researchers postulated many functional forms that differ by
the type of covariates included and the form of variable transfor-
mation. While for intersection crash models almost all studies
considered the traffic volume from major and minor road, other
studies took the effect of geometric factors in addition to the
exposure variables to develop the mean structure. For exam-
ple, Bauer and Harwood (2000), Vogt and Bared (1998), Oh et
al. (2003), Lyon et al. (2003) considered geometric factors in
addition to traffic volume. In all of these studies they adopted
a logarithmic transformation of the major road and minor road

traffic flow along with a linear effect of common geometric fac-
tors. A similar functional form has been adopted by interactive
highway safety design model (IHSDM) as well. For the pur-
pose of this research different transformation of traffic volume
variables were tested. However, the logarithmic transformation
resulted in improved model fit. Also, this form ensures that: (1)
in the absence of traffic there are no expected crashes and (2) a
nonlinear relationship describes the relationship between traffic
flow and accidents. Guided by prior research the structure of the
mean for this study is

Inp; = Bo + B1log(F1) + B2 log(Fr) + B X (10)

where F'1 and F, are respectively major and minor road flow, X;’s
are j different types of geometric properties of the intersection
and B’s are the vector of covariates. As mentioned before, this
study compares and contrasts the findings from Miaou and Lord
(2003), so some possible relationship between dispersion param-
eter and the traffic flows are considered here. The following
section describes the Bayesian approach of model specification
and estimation.

3.1. Bayesian framework of the model

The Bayesian framework to obtain the NB model for accident
observation has been described by Hauer (1992) and Heydecker
and Wu (2001). While these studies use an empirical Bayesian
method to obtain the posterior mean of the crash occurrences, a
similar concept has been utilized but using a full Bayes method to
find the posterior mean of the coefficient estimates for the mean
as well as variance structure of the NB model. By following this
procedure, the NB model in Eq. (1) is rewritten as

Hi = ViA; (11

where p; is the Poisson parameter but is assumed to be random,
v; = exp(BX;) and A; =exp(e;). The model specifies that A; is
gamma distributed with a mean of the distribution =1 and vari-
ance = 1/a, i.e. with shape parameter =scale parameter for the
distribution such that

Ai ~ T, a;) (12)

To test the variance structure, four different functional form
of the dispersion parameter « are investigated. The models are
given below:

e Model 1 considers a fixed dispersion parameter so that the
Eq. (2) can be written as log o; = 1.

e In model 2, in addition to the fixed parameter major road
traffic volumes are considered so that:

loga; = n1 + n2 (log F1,; — mean(log F1))

e Inmodel 3, the effect of both major road and minor road traffic
volumes are taken into account:

loga; = 11 + 2 (log F1 ; — mean(log Fi))
+ n2(log F» ; — mean(log F>))



e In model 4, in addition to the model 3 parameters, a major
and minor road volume interaction term as proposed by Miaou
and Lord (2003) is considered and given as

loga; = 0y + na(log Fy,; — mean(log F1))
+ n3(log F>; — mean(log F>)) + n4(log(F2,;/ Fi ;)
— mean(log(F2,;/ F1)))

where F| and F, are major and minor road traffic volumes. In
models 2, 3 and 4 the term mean(log F) is addititive to capture
the absolute deviation of the traffic volume of a particular site
from the mean traffic volumes of all sites considered in the
study.

3.2. Goodness-of-fit

Much has been written on MCMC convergence issues via
MCMC sampling techniques. In this section first the model
convergence criteria used in this study is described followed
by some of the goodness of fit measures used for model
selection. A total of five different measures of goodness of
fit are computed to select the most parsimonious model and
these are: mean deviance, chi-square measure, sum of model
deviance, R2-like measure of fit and deviance information
criteria. The Bayesian modeling was conducted and goodness-
of-fit estimates was obtained using the WinBUGS modeling
software.

3.2.1. Model convergence

Model convergence is concerned with the time of producing
sequence of draws from the posterior distribution. This is par-
ticularly important because (1) it ensures that the posterior has
been ‘found’ and (2) it indicates when sampling of parameters
should begin. A common methodology to check the convergence
is by tracking the Gelman-Rubin convergence statistic as mod-
ified by Brooks and Gelman (1998). A Gelman—Rubin statistic
under 1.2 indicates approximate convergence and it is used to
assess when convergence occurred.

3.2.2. Chi-square measure

Another measure of goodness of fit is the y>-statistic dis-
tributed with the degrees of freedom equal to the difference in
the numbers of coefficients in the restricted and unrestricted
models. The x?-statistic that is based on standardized residuals,
is given as

)2
3 [("’V(n’gl) ] (13)

3.2.3. Sum of model deviance

Theoretically, if the sum of model deviance, or G2, is equal
to zero, then the model is regarded to have a perfect fit. This is a
theoretical lower bound because the observed values are integer
values and the predicted values are continuous (Washington et

al., 2003). The G? statistic is given by
n n:
6> =23 nin () (14)
-1 i

The model with the lowest G? value is therefore regarded as the
model with the better fit.

3.2.4. R%-like measure of fit

As aresult of heteroscedasticity in the regression and the non-
linearity of the conditional mean the R? value used in ordinary
least squares linear regression is not available. Based on stan-
dardized residuals a similar statistic can be calculated where the
residual sum of squares forms the numerator and the total sum
of squares forms the denominator (Washington et al., 2003):

N — 2
izl = i)/ il

— — 2
Sl = )/+/m]
In Eqgs. (13)-(15) n; is the observed number and u; is the
expected number of accidents occurring at intersection I, fi;

is the predicted expected value and 7 is the average observed
number of accident.

RP=1-

s5)

3.2.5. Deviance information criteria

Another criterion for assessing model goodness of fit
is deviance information criteria or DIC as proposed by
Spiegelhalter et al. (2002). DIC is a generalized and the Bayesian
version of Akaike’s information criterion (AIC), and is a penal-
ized fit measure (larger parameter models are penalized). The
DIC for model m are calculated as follows:

DICm = Am + dem (16)

where Ay, = —2log Ly, also known as “Dbar”, represents the
posterior mean of the deviance of un-standardized model while
Ly, is the mean of the model log likelihood; dep,, also known
as “pD” can be calculated as follows dem = Ay, — A(y|6) and
represents the penalty for the number of effective model param-
eters. The term A(y|6) is also known as “Dhat”, which is a point
estimate of deviance obtained by substituting in the posterior
means 6 of 6. The model that provides the best short-term pre-
dictions will have the lowest DIC value. It is also important to
keep in mind that DIC values can only be compared between
models that were developed using the same set of data although
the models need not be nested.

4. Description of the data

Accident data for this study were obtained from rural inter-
sections in 38 counties in the state of Georgia for the years 1996
and 1997. Road characteristic (RC) files, aerial photographs, and
geographic information system (GIS) roadmaps were used to
find various geometric characteristics of the intersections. Dig-
ital Orthophotography Quarter-Quadrangles (DOQQs) aerial
photos were used from 1994 and 2000 to extract information
regarding intersection angle and degree of horizontal curvature
of selected intersections by overlapping with GIS roadmaps. A



Table 1
Variable list used in this study

Variables Definition

Dependent variables

TOTACC Number of total crashes

Independent variables

AADTMAI (Fy) AADT on major road

AADTMIN (F3) AADT on minor road

MDWDMAIJ Median width on major road in feet

MDWDMIN Median width on minor road in feet

SHLWDMAJ Shoulder width on major road in feet

SHLWDMIN Shoulder width on minor road in feet

SIGNAL Intersection type (0 if non-signalized
intersection, 1 if signalized intersection)

RTLMAJ Right-turn lane indicator (1 if at least one
right-turn lane on the major road, O otherwise)

LTLMAJ Left-turn lane indicator (1 if at least one left-turn
lane on the major road, O otherwise)

RTLMIN Right-turn lane indicator (1 if at least one
right-turn lane on the minor road, 0 otherwise)

LTLMIN Left-turn lane indicator (1 if at least one left-turn
lane on the minor road, 0 otherwise)

HZRATMAIJ Roadside hazard rating on major road (from 1,
least hazardous case, to 7, most hazardous case)

HZRATMIN Roadside hazard rating on minor road

DRWYMAJ Number of driveways on major road within
250 ft of the intersection center

DRWYMIN Number of driveways on minor road within
250 ft of the intersection center

LIGHTMAJ Lighting indicator (1 if lighting exists on the
major road, O otherwise)

LIGHTMIN Lighting indicator (1 if lighting exists on the
minor road, 0 otherwise)

TERNMAJ Terrain on major road (0 =flat, 1 =rolling,
2 =mountainous)

TERNMIN Terrain on minor road (0 =flat, 1 =rolling,
2 =mountainous)

SPDLIMAJ Speed limit on major road in mph

SPDLIMIN Speed limit on minor road in mph

SDMAJ Sight distance on major road in feet

SDMIN Sight distance on minor road in feet

VIMAJ/VIMIN Sum of absolute change of grade in percent per
hundred feet for each curve on major road or
minor road within 250 ft of the intersection
center, divided by the number of such curves

HAU Intersection angle variable in degrees

description of various independent variables used in the analysis
is provided in Table 1.

The data included 165 rural intersections on two-lane roads:
51 were signalized and 114 non-signalized. The sample included
a total of 837 accidents (345 at non-signalized and 492 at sig-
nalized intersections). Intersection crashes were defined as any
accident that occurred at the intersection or occurred within
250 ft (76 m) from the intersection on either the major or the
minor road. For the purpose of this study total crashes rather
than crash outcomes are used to find the overall effect.

5. Results and discussion

For the purpose of analysis all the eight models are estimated
using three chains taken to 100,000 iterations. The convergence

Table 2
Estimation results for total crashes using classical maximum likelihood method
(negative binomial regression model)

Variables Estimated t-Statistic p-Value
coefficient

Constant —4.4552 —6.490 0.0000
AADTMAI (Fy) 0.4356 5.974 0.0000
AADTMIN (F>) 0.3196 3.692 0.0002
MDWDMAJ —0.0757 —3.006 0.0026
RTLMAJ 0.7408 3.330 0.0009
DRWYMAJ 0.1168 3.015 0.0026
LIGHTMAJ —0.4785 —2.326 0.0200
A (dispersion parameter) 0.4139 5.064 0.0000

Number of observations 165

Log-likelihood at zero —464.54

Log-likelihood at convergence —394.52

02 0.15

in all of these models was obtained after 4000 iterations and this
convergence is assured by checking the Gelman—Rubin statis-
tics as mentioned in Section 3.2.1. Consequently, the samples
for posterior analysis have been taken after 4000 burn-ins. The
priors for regression coefficients of mean as well as variance
structure are taken as N(0,0.001) in WINBUGS modeling soft-
ware where 0.001 is the precision of the normal distribution
which indicates that the variance is high, i.e. they are non-
informative or flat priors.

The results from this analysis are compared with a likelihood-
based estimation done by Kim et al. (2006) using the same
dataset but following a classical estimation approach and is given
in Table 2. The results from the four models where traffic vol-
ume and geometric design factors are considered in the mean
function are given in Table 3.

From the model findings (Table 3) it is clear that over-
dispersion is significant with « significantly greater than 1. In
terms of the coefficient estimates, the results from four mod-
eling strategies did not have much variation which shows a
similar trend as that of previous researches (Miaou and Lord,
2003; Maher and Summersgill, 1996). However, there is a dif-
ference in parameter estimates between the best fitted model (i.e.
Model 1) from Bayesian analysis and that from maximum like-
lihood estimate, but it is less than 2%. This could be attributed
to the small size of data that violate the implicit assumption of
asymptotic normality of the maximum likelihood estimate of
regression coefficients.

A closer comparison between these two models based on pos-
terior credible intervals and model parameters shows that in all
the four models the coefficient estimates for the constant as well
as other predictors are very similar to that of classical estimate
except for beta5, which identifies the effect of major road right
turn lane on crash occurrence. The estimation of this variable
in the Bayesian framework is about 0.55, whereas the same in
maximum likelihood estimate is 0.74, which clearly indicates
an enhanced effect of the right turn lane. To check the variance
structure and the parameterization of «, the significance and
the estimations of 1y, 12, n3 and n4 from the four models are
compared. The hypothesis that « is a function of flow is very
weakly supported as 12, 13 and n4s are consistently found not



Table 3

Bayesian estimation results from four different models for total crashes

Model 4

Model 3

Model 2

Model 1

Variables

Median (2.5-97.5%)

S.D.

Mean
—5.047
0.4316
0.304

Median (2.5-97.5%) Mean S.D. Median (2.5-97.5%) Mean S.D. Median (2.5-97.5%)

S.D.

Mean

—5.028 (—6.593, —3.602)

0.4293 (0.2701, 0.6113)

0.7524
0.0851

—4.277 (=5.618, —2.928)
0.4158 (0.2248, 0.5835)
0.3154 (0.158, 0.4842)

0.6453
0.0978
0.0853
0.0237
0.1237

—5.028
0.4163
0.3193

—4.721 (—6.453, —3.696)
0.3973 (0.2326, 0.5500)

0.6719
0.0845

—4.819
0.3899
0.3213

—4.893 (—6.234, —3.798)
0.4279 (0.2962, 0.552)

0.6002
0.0652

—4.941
0.4309
0.2909

Constant

AADTMAI (F})

0.0614  0.3011 (0.1894, 0.4295)

0.0236
0.1293
0.0398
0.2023
18.93

0.0827 0.3182(0.1517, 0.4843)

0.0248
0.1357

AADTMIN (F>) 0.0764  0.2955 (0.1253, 0.4435)
0.0229

MDWDMAIJ
RTLMAJ

—0.0750 (—0.1221, —0.0282)

0.5557 (0.2992, 0.8053)
0.1273 (0.0492, 0.2075)

—0.0755

0.5536
0.1276

—0.0775 (—0.1245, —0.0309)

0.5615 (0.3076, 0.8292)

—0.0783

0.5612
0.1298

—0.0788 (—0.1265, —0.0300)

0.5791 (0.3052, 0.8473)

—0.0786

0.5775
0.1242

—0.0767 (—0.1214, —0.0314)

—0.0768

0.5803
0.1195

0.1254  0.5773 (0.3204, 0.823)

0.0403

0.1982
18.24
14.46
60.54

0.0399  0.1274 (0.0488, 0.2064)

0.2051
18.8
17.51
60.6

0.0399  0.1236 (0.0447, 0.2026)

0.2065
19.55

0.1194 (0.0417, 0.1194)

DRWYMAJ
LIGHTMAJ

Deviance

—0.4685 (—0.842, —0.0487)

160.8 (126.4, 200.5)
76.97 (52.78, 121.1)

—0.4624
161.5

—0.4612 (—0.8432, —0.0578)

161.0 (126.8, 200.3)
77.44 (53.3,120.7)

—0.4526

161.7

—0.4314 (—0.8254, —0.0217)

164.1 (128.9, 205.5)
80.01 (54.43, 132.8)

—0.4274

164.9
83.34
182.7

—0.4528 (—0.8373, —0.0652)

158.7 (125.5, 196.9)
74.49 (52.26, 108.6)

—0.4421

159.4
76.02

18.23
60.83

79.52
179.4

79.86
180.2

19.96
61.04

Chi-square

179.8 (62.74, 300.0) 179.1 (61.32,299.3)

182.2 (63.87, 303.3)
0.1937 (0.1745, 0.213)

0.9389 (0.5225, 1.52)

177.7 (60.59, 298.0)

178.1
0.1947

0.8894

0.1939 (0.1748, 0.213)
4.191 (—6.454,27.22)
—0.5196 (—3.4, 0.838)

0.0098
9.486

0.1939
7.359

0.1939 (0.1747, 0.213)
0.9327 (0.5069, 1.518)

0.0098
0.2545
0.3271
0.2257

0.1939
0.9521

0.0097
0.2536
0.3093

0.1937
0.9602

0.1947 (0.1757, 0.2138)
0.8486 (0.4829, 1.249)

0.0097
0.198

R?

1.173
1.317

11.51

—0.8548
0.936

—0.1635 (—0.9063, 0.3914)
0.1481 (—0.2889, 0.6004)

—0.1846
0.1506

—0.1005 (—0.8089, 0.4116)

—0.1251

2

0.5456 (—1.013, —3.768)
2.967 (—30.83, 9.936)

n3

—6.792
723.411

N4

725.385

724.664

720.988

DIC

to be significant. In comparison the model 1 where « is a fixed
dispersion parameter showed better overall model fit. Although
the effect of the parameter estimates for 1, 12, n3 and 14 from
models 2, 3 and 4 are in the same direction with what Miaou
and Lord (2003) obtained, the parameters 7., n3 and n4 are not
significantly different from zero. What this means is that even
without the flow-varying part in parameterization of «, it is pos-
sible to capture the variation and resulted in a better model fit.
This supports a comment from Winkelmann (2003), who did
extensive research on count data and explained in his book that
it is very hard to justify that some variables affect the variance
but not the mean. Hence, the finding supports the fact that if the
mean function is well defined, a simple variance as a function of
mean and a fixed dispersion parameter is sufficient to capture the
unobserved heterogeneity for traffic crash occurrences in rural
intersections. A comparison of several goodness-of-fit statistics
such as mean deviance, chi-square statistic, R2-like measure of
fit also supported the appropriateness of the fixed dispersion
parameter model which can be seen in Table 3. Another impor-
tant goodness of fit statistic in the case of Bayesian models is
the DIC, where a lower value suggests a better fit. From this
study it was observed that the DIC value of model 1 is 720.9 and
that of models 2, 3 and 4 are 724.6, 725.3 and 723.4, respec-
tively. Hence, in terms of significance of coefficient as well as
goodness-of-fit measures a flow dependent dispersion function
did not result in better model.

While the results seemed to be plausible, a different finding
than previous studies triggered a greater investigation of the pro-
cess under consideration. As a first step, the mean functions from
these two studies are compared and as mentioned before they are
not same in terms of functional form as well as included covari-
ates. Miaou and Lord (2003) considered mainly the effect of
major and minor road traffic flow with various functional forms
all of which was supported by previous research findings. How-
ever, in the present study the effect of various geometric factors
are considered in addition to the major and minor road traffic
volume and some of the included variables are found to be sig-
nificant. So under this scenario of two different mean functions,
a direct comparison of the variance function is not possible.
Also it is important to remember that the unexplained part of the
mean structure goes into the variance structure and thus influ-
ences the over-dispersion. This means that in the presence of a
well defined mean function the structure of the variance func-
tion would vanish. Hence, any structural or covariate changes
in the mean function would affect the structure and coefficient
estimates of the variance function.

To test the effect of a different mean function another esti-
mation has been undertaken. The explanatory covariates for this
second estimation are restricted to only major and minor road
AADT, both in mean as well as variance structure. All the four
different modeling strategies as explained in Section 3.1 have
been adopted in this case too.

The results from these models are given in Table 4. The table
shows a dramatic change in findings from the previous results
shown in Table 3. In the case of a mean function that deals mainly
with traffic flows, there is a distinct structure present in the vari-
ance function. In other words, while major and minor road traffic



Table 4

Bayesian estimation results from four different models for total crashes including only major and minor road traffic flows

Model 4

Model 3

Model 2

Model 1

Variables

Median (2.5-97.5%) Mean S.D. Median (2.5-97.5%) Mean S.D. Median (2.5-97.5%)

S.D.

Mean

Median (2.5-97.5%)

S.D.

Mean

—6.068 (—7.544, —4.793)
0.5115 (0.3319, 0.7137)
0.3894 (0.2281, 0.5141)
160.0 (126.2, 199. 2)
75.1(51.84, 118.8)

0.7119

0.1013

0.0767
18.64
22.68
60.56

—6.058
0.524

—5.841 (—8.025, —4.38)
0.5083 (0.3391, 0.7658)
0.3725 (0.2552, 0.5521)
163.0 (127.3, 204.6)
76.86 (49.51,143.5)

0.97

—5.952
0.509

—5.547 (—6.724, —4.241)

0.6672

—5.539
0.4889
0.3451
162.7
81.78
180.9

—5.818 (—6.744, —4.533)
0.5227 (0.3648, 0.6795)
0.3424 (0.2174, 0.4885)

153.5 (120.8, 1191.1)
63.61 (44.76, 94.62)

0.6148

0.0819

0.0698
17.93

—5.772
0.5219
0.3424
154.1
65.23

Constant

0.1086

0.0776
19.75
24.63

0.0729  0.4841 (0.3559, 0.6494)

0.0843
19.72
24.8

AADTMAJ (F})

0.3811
160.7
77.66

0.3823
163.8
82.01

0.3479 (0.1519, 0.4870)
161.9 (126.4, 203.6)
76.56 (49.25, 144.0)

AADTMIN (F3)
Deviance

13.54
60.46

Chi-square

177.6 (59. 94, 297.9)

177.9

180.5 (62.49, 301.7)

60.96

180.8

180.4 (62.07, 302.1)

61.24

171.5 (54.47, 291.6)

171.9

0.1931 (0.1741, 0.2122)
2.726 (1316, 4.467)

0.0097
0.7805

0.1931
2.782

0.1924 (0.1733, 0.2116)
1.23 (0. 5515, 2.052)

0.0098
0.3715
0.0005

0.0098  0.1929 (0.1736, 0.2121) 0.1924
1.245

0.3823
0.0005

0.1929
1.275

0.1931 (0.174 0.2122)
0.5608 (0.2491, 0.8986)

0.0097
0.1659

0.1931
0.5644

R?

0.7312 (0.326, 1.312)

m

—2.62E—4 (—0.004, —0.001)

8.29E—4

—2.66E—4

3.48E—4
—3.027

—0.001 (—0.002, —0.0002)

—1.11E—4
2.64E—5

—0.3272 (—0.9701, 0.1066)

—1.06E—4

n2

1.43E—4 3.48E—4 (0.0005, 0.006)

1.175

8.30E—5 0.0003 (—0.001, 0.001)

3

—3.021 (—5.341, —0.7244)

N4

719.869

724.399

722.95

722.638

DIC

volumes solely explain the mean structure, the variance is no
longer a function of the mean and a constant dispersion function,
but has a specific structural form. Also, among the four models,
the model where variance is structured as a function of the major,
minor and interaction with major and minor road flow yielded the
greatest explanatory power. These findings agree with findings
from Miaou and Lord (2003) based on the analysis of data from
urban intersections of Toronto. The goodness-of-fit of model 4
is also improved compared to the rest of the models in Table 4.
Interesting enough, the DIC obtained from this model (model
4) is almost the same as that of the Model 1 in Table 3 with
additional covariates in the mean structure and simple variance
structure. This result corroborates the findings from Miaou and
Lord (2003), and emphasizes the fact that variance structure is
dependent on the mean structure. If a limited number of covari-
ates are considered in the model, the dispersion parameter is
indeed structured, resulting in significant mis-specification if o
is assumed to be fixed (Miaou and Lord, 2003). The result also
suggests that in case of a well-specified mean structure (proper
form and no significant omitted variables) the variance is pro-
portional to the expected crash count. However, the question still
remains as to which functional form is most appropriate: a sim-
ple mean structure with flow-dependent variance structure (to
avoid additional data collection) or the inclusion of additional
geometric variables. To address the question, it is important to
compare the results and inferences from these two specifications
and to consider theoretical appeal. As mentioned previously, the
structure of the dispersion parameter affects confidence interval
estimation, and a comparison between the results obtained from
these two mean structures reveals similar outcomes. The esti-
mated confidence intervals for major and minor road AADT in
Table 3 are narrower than the confidence intervals of the same
variables in Table 4, which suggests that the addition of variables
is beneficial on statistical grounds. In addition, theoretically
it is more appealing to include geometric variables (and per-
haps environmental and traffic) in accounting for between-site
variation rather than allowing for additional random variation.

The results described here are empirical and not theoreti-
cal. As such, it may be possible that both datasets examined in
this study and Miaou and Lord’s study performed similarly by
chance. It also leaves the possibility that the variance could in
fact be explained through explanatory variables not included in
the mean function with other datasets, although the likelihood
of this result is now diminished. If this were the case, how-
ever, it would suggest that the mean and variance functions are
related to mutually exclusive sets of predictors—one set help-
ing to explain expected crash counts and the other set helping to
explain unaccounted for variation across crash sites or locations.
The evidence for this outcome based on this study (which in turn
builds on Miaou and Lord), however, is lacking.

If the results described in this paper are generalizeable —i.e.
corroborated by numerous researchers — then a couple of impor-
tant implications arise. First, modeling the variance as a function
of covariates may be a reliable way to provide modeling feed-
back as to model mis-specification. The guidance would be that
significant variables in the variance function had heretofore been
mis-specified in the mean function. Second, the assumption of



an unstructured variance function is reasonable, leaving the stan-
dard negative binomial density as a reasonable approximation of
crash distributions across sites. Finally, it should be remembered
that consideration of a more complex model — i.e. a dispersion
function rather than a fixed dispersion parameter —involves addi-
tional model parameters and thus should be compared to the
‘base’ model using penalized fit criterion. In other words, we
should expect relatively significant improvements in fit in order
to justify the additional model complexity and parameters.

6. Conclusions and recommendations

While the study was motivated to corroborate the findings
of Miaou and Lord (2003) regarding the variance structure in
overdispersed crash models, during the course of research some
interesting findings emerged. The research re-emphasized the
basic theory of count data models and focused on how the
unobserved heterogeneity can be effectively considered in crash
prediction models through over-dispersion, with the negative
binomial density particularly well-suited. Using crash data from
two-lane rural intersections of Georgia, this research emphasized
the importance of a well-defined mean structure that accommo-
dates all the relevant covariates in explaining crash occurrence
with a simple variance structure as a function of mean and
a constant dispersion parameter. However, in the presence of
small number of explanatory variables, researchers are cautioned
about using the standard NB count models where the dispersion
parameter does not vary among different sites—there appears
to be a tradeoff between these two functions with an overlap-
ping set of predictors. Hence, the main finding of this study is
to closely judge the functional form of crash prediction mod-
els in the light of available data in hand and to emphasize that
the mean function must be correctly specified (functional form
correct and no significant omitted variables) in order to reduce
omitted variable bias in the variance function.

An important extension of this research is the investigation
of crash data for other kinds of rural as well as urban inter-
sections and/or road segments to obtain further corroboration.
In any case, this research contributes to the existing state of
the knowledge regarding the nature of over-dispersion in motor
vehicle crash models and how over-dispersion should ideally be
modeled.
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