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bstract 

Statistical modeling of traffic crashes has been of interest to researchers for decades. Over the most recent decade many crash models have 
ccounted for extra-variation in crash counts—variation over and above that accounted for by the Poisson density. The extra-variation – or dispersion 
 is theorized to capture unaccounted for variation in crashes across sites. The majority of studies have assumed fixed dispersion parameters in 
ver-dispersed crash models—tantamount to assuming that unaccounted for variation is proportional to the expected crash count. Miaou and 
ord [Miaou, S.P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes 
ersus empirical Bayes methods. Transport. Res. Rec. 1840, 31–40] challenged the fixed dispersion parameter assumption, and examined various 
ispersion parameter relationships when modeling urban signalized intersection accidents in Toronto. They suggested that further work is needed 
o determine the appropriateness of the findings for rural as well as other intersection types, to corroborate their findings, and to explore alternative 
ispersion functions. 

This study builds upon the work of Miaou and Lord, with exploration of additional dispersion functions, the use of an independent data set, 
nd presents an opportunity to corroborate their findings. Data from Georgia are used in this study. A Bayesian modeling approach with non-
nformative priors is adopted, using sampling-based estimation via Markov Chain Monte Carlo (MCMC) and the Gibbs sampler. A total of eight 

odel specifications were developed; four of them employed traffic flows as explanatory factors in mean structure while the remainder of them 
ncluded geometric factors in addition to major and minor road traffic flows. The models were compared and contrasted using the significance 
f coefficients, standard deviance, chi-square goodness-of-fit, and deviance information criteria (DIC) statistics. The findings indicate that the 
odeling of the dispersion parameter, which essentially explains the extra-variance structure, depends greatly on how the mean structure is 
odeled. In the presence of a well-defined mean function, the extra-variance structure generally becomes insignificant, i.e. the variance structure 
s a simple function of the mean. It appears that extra-variation is a function of covariates when the mean structure (expected crash count) is poorly 
pecified and suffers from omitted variables. In contrast, when sufficient explanatory variables are used to model the mean (expected crash count), 
xtra-Poisson variation is not significantly related to these variables. If these results are generalizable, they suggest that model specification may 
e improved by testing extra-variation functions for significance. They also suggest that known influences of expected crash counts are likely to 
e different than factors that might help to explain unaccounted for variation in crashes across sites. 

afety 
eywords: Over-dispersion; Crash prediction; Bayesian method; Intersection s

. Introduction and background 
Research on highway and traffic safety has been of great 
nterest to engineers and planners for decades. Major factors 
nown to affect safety are driver characteristics, vehicle fea-
ures, exposure to risk (traffic volumes), traffic control, weather 
onditions, and roadway design characteristics. To predict the 

safety of transportation system traffic engineers model crash rate 
or frequency as a function of the above mentioned factors. Of 
course these measurable factors do not completely explain acci
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ent occurrence and so the models typically used are stochastic 
odels including a disturbance or error term. 
Ideally, the mathematical relationship between crashes and 

arious explanatory factors is specified correctly so as to reveal 

he underlying effects on safety and to enable useful insights into 
he underlying crash process. A significant proportion of past 
tudies have been focused on modeling accidents at roadway 
ntersections, due primarily to the relative share of accidents at 
ntersections. While the majority of these studies report on urban 
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ignalized intersections, there is considerable work on rural and 
nsignalized intersections as well. Relatively early work on this 
opic is reported by Chapman (1972), Satterthwaite (1981), and 
auer et al. (1988). Further development and continuation of 

he previous crash modeling research is reported by Bonneson 
nd McCoy (1993), Belanger (1994), Maher and Summersgill 
1996), Persaud and Nguyen (1998), Lord and Persaud (2000), 

ang and Nihan (2004), Persaud et al. (2002), and Miaou and 
ord (2003). A main focus of prior studies has been to identify 
 defensible statistical relationship between crash counts and 
xposure. Researchers not only considered the effect of total 
raffic flow, but have also accounted for various turning move

ents, pedestrian flows, and even bicycle flows in some cases to 
odel different crash outcomes. Statistical modeling of crashes 

emains a significant area of ongoing research. 
During the past decade or so researchers have begun to 

xtensively use the negative binomial (NB) model for mod
ling crashes. The NB model arises mathematically (and 
onveniently) by assuming that unobserved crash heterogene
ty (variation) across sites (intersections, road segments, etc.) 
s gamma distributed, while crashes within sites are Poisson 
istributed (Washington et al., 2003). The Poisson, Poisson-
amma (NB), and other related models are collectively called 
eneralized linear models (GLM). In the majority of NB model
ng, covariates are used to forecast the Poisson mean, while the 
amma heterogeneity is assumed constant. The functional form 
f the NB model is as follows: 

i = exp(βXi) exp(εi) (1) 

here μi is the Poisson mean, Xi’s are the vector of various 
ovariates that include geometric characteristics and exposure, 
’s the vector of unknown fixed-effect parameters and exp(εi) 

s the gamma distributed error with mean 1 and variance 1/α 
where α is the inverse dispersion parameter and α is greater 
han 0). This negative binomial formulation provides flexible 
roperties where mean = Poisson mean or exp(βXi) and vari
nce = exp(βXi)[1 + exp(βXi)/α], a simple function of mean. 
hile GLM employs a simple variance structure as a function 

f the mean structure, statisticians like Dey et al. (1997) com
ented that in some applications, heterogeneity in the sample is 

oo great to be explained by the simple variance function implicit 
n the GLM. This is particularly important in the presence of 
mportant omitted variable that influence the mean structure. 
o deal with this issue they performed a Bayesian modeling 
ith ship-accident count data, previously used by other statisti

ians (McCullagh and Nelder, 1983) using GLM and found that 
he variance function has a particular structure. While model
ng traffic crash-flow relationship for intersections, Miaou and 
ord (2003) also challenged the assumption of fixed dispersion 
arameter. Due to complexity and interaction of traffic flow in 
nd around intersections, they suspected that the unmodeled 
eterogeneity of the mean of crash counts would be spatially 

tructured. This means that the variance of NB model is not 
 simple function of mean as explained before but contains a 
ispersion function that depends on site-specific characteristics 
uch as major and minor road traffic flows. Following this the 
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ispersion function they suggested is as follows: 

η0 + η1F1,i + η2F2,i + η3F2,i
i = exp (2)

F1,i 

here F1 and F2 are respectively major and minor road flow 
nd η’s are the vector of covariates. This leads to the modeling 
f gamma heterogeneity in terms of included covariates which 
ill be discussed later in more detail. 
While modeling urban intersection crashes using this func

ional form for variance structure, Miaou and Lord (2003) found 
n improvement in model estimation. In addition they mentioned 
hat treatment of dispersion parameter as a fixed parameter can 
eriously undermine the goodness of the estimate for individ
al sites by up to about 35%. Further, they suggested that more 
ork is needed to determine the appropriateness of the findings 

or rural as well as other intersection types, to corroborate their 
ndings, and to explore alternative dispersion functions. 

This study builds upon the work of Miaou and Lord (2003), 
ith exploration of additional dispersion functions, the use of 

n independent data set from rural intersections of Georgia, 
nd an opportunity to corroborate findings. In addition to the 
xposure data, information about geometric design and light
ng conditions of the intersections are considered in this study. 
 Bayesian modeling approach with non-informative prior is 

dopted over the classical methodology to check the structure 
f gamma heterogeneity. While the intent of using Bayesian 
ethodology over the classical methods is never to show any 

uperiority of a Bayesian approach, it is still important to point 
ut some key reasons as to why it was preferred over the clas
ical framework. As correctly specified by Dey et al. (1997), 
 Bayesian estimation method using non-informative prior is 
omething where we let the data decide the inference. Hence, 
his is an approximate likelihood-based inference but with more 
eliable estimates of variability for small sample sizes. Hence, it 
an be concluded that for large sample sizes this inference will 
e closer to that of maximum likelihood and for smaller sam
les this estimate of variability should be more appropriate than 
symptotic estimates from maximum likelihood. In the follow
ng sections, discussion about the Bayesian modeling approach 
ith sampling-based estimation and Markov Chain Monte Carlo 

MCMC) techniques, such as the Gibbs sampler are given first. 
his is then followed by the methodology of the study and 

he goodness-of-fit criteria used. Finally, summary of the study 
ndings and conclusions are presented. 

. Bayesian modeling approach 

While the Bayesian statistical analysis have been widely used 
n the field of health science and social sciences, the application 
n the field of transportation engineering is few if not absent 
Hauer, 1992; Heydecker and Wu, 2001; and Miaou and Lord, 
003). Although the argument about the superiority between the 

ayesian and classical method existed for decades, this study 
hose to use the Bayesian approach for some specific reasons 
s described in the following paragraphs. Also, brief descrip
ions about the Bayesian method along with Markov Chain 
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onte Carlo (MCMC) technique and Gibbs sampling are given 
ere. 

As described by Congdon (2003), the determination of 
arameters in the traditional classical estimation processes is 
imed at finding a single optimum estimate using asymptotic 
ormality based on large samples, at a particular confidence 
nterval around its mode, whereas the Bayesian estimation deter

ines posterior density for each parameter under consideration. 
his density estimation is the product of a process where a long 

un or a series of long runs of samples are taken from the poste
ior density based on the prior information about the parameter 
s well as the data. As a result a Bayesian modeling approach 
rovides a considerable interpretive advantage because posterior 
stimates reflect the probabilities that the analyst is primarily 
nterested in, the probability of the null hypothesis being true 
called a posterior credible interval or credible set) (Washington 
t al., 2005). In contrast, classical confidence intervals on param
ter estimates provide the probability of observing data given 
hat a parameter(s) takes on a specific value. “Bayesians” argue 
hat this distinction provides a considerable philosophical and 
ractical advantage over classical estimation methods. 

Instead of the difference in approach, the classical maximum 
ikelihood estimation (MLE) and Bayesian analysis are closely 
elated. As mentioned before, inference in MLE is based on the 
ikelihood of the data alone, whereas in Bayesian models, the 
ikelihood of the observed data x given parameters θ, is used 
o modify the prior beliefs π(θ), with the updated knowledge 
ummarized in a posterior density π(θ|x). An example using a 
inear regression model with form: 

ˆk = β0 + β1xk (3) 

n which a prior experience or evidence-based research may pro
ide analyst with information regarding the expected values of 
ome or all of the β values. However, in the absence of exist
ng knowledge, it is difficult to form a so-called “informative 
rior” and the application of non-informative or flat prior comes 
nto play. For example, if we consider the slope parameter of 
he regression equation is distributed such that β1 ∼ N(μ,τ), and 
oth μ and τ are known, then a lower value of τ would indicate 
 higher variance of the distribution, i.e. a lower precision of the 
oefficient estimate, while larger values of τ would be associated 
ith very low variance which would be indicated as informative 
rior. In contrast a large value of σ = 1/τ, is considered for a 
on-informative or diffuse prior. However, as mentioned in Sec
ion 1, even using non-informative prior we would get a better 
stimate compared to MLE in case of small sample sizes due to 
he limitation of the asymptotic normality assumption of MLE. 
lso as described by experts like Congdon (2003), in case of dis

rete outcomes, a sampling-based approach to estimation can be 
eneficial to screen out marginally important predictors, or in 
omparing between non-nested models. Hence, with the prior 
nowledge about the distribution of the parameter, π(θ), as well 

s the data x we get the posterior information in a Bayesian 
ramework as 

(θ|x) ∝ f (x|θ)π(θ) (4) 

M
a
P

n this context, it is worth mentioning that for the prior informa
ion in Bayesian analysis, the location of the parameter (mean 
nd mode) and the precision (the reciprocal of variance) of the 
rior are more critical than its actual shape in terms of conveying 
rior information (Walsh, 2004). The shape of the prior distribu
ion is often chosen to facilitate calculation of the prior through 
he use of conjugate priors for the posterior distribution. How
ver, in the absence of conjugate priors, much difficulty arises 
n terms of summarizing the marginal posterior of a particular 
arameter of θ, if the dimension of θ is really large. In that case 
t is necessary to integrate out the joint distribution of Eq. (4), 
xcluding the one parameter of particular interest. While cal
ulation of such an integral was computationally demanding in 
he past, with today’s desktop computer, the sampling of the 
osterior distribution using a Markov Chain and Monte Carlo 
echnique becomes relatively easy. 

Markov Chain Monte Carlo (MCMC) methods are used 
o repeatedly sample from the joint posterior distribution. A 

arkov chain operates in discrete time intervals to produce a 
equence of evolving random variables, with the probability 
f transition dependent on its current time. Chains are gener
ted from a transition kernel, a conditional probability density 
unction. The resulting chains enjoy very strong stability with 
esirable properties (Washington et al., 2005). In particular, a 
tationary probability distribution exists by construction of the 
hain and convergence to the limiting or stationary distribution 
ccurs almost surely, or after the chain converges. 

The Gibbs sampler is an application of the MCMC process 
hat allows the user to generate random variables indirectly from 
he marginal density function without actually computing the 
ensity itself (Casella and George, 1992). The key to the Gibbs 
ampler is that only univariate conditional distributions are con
idered: the distribution when all of the random variables but one 
s assigned fixed values (Walsh, 2004). Thus, one simulates n 
andom variables sequentially from the n univariate conditionals 
ather than generating a single n dimensional vector in a single 
ass using the full joint distribution. The general principal of the 
ibbs sampler as given by Robert and Casella (1997), involves 

uccessive sampling from the complete conditional densities: 

(θk|x, θ1, θ2, . . . , θk+1, . . . , θp) (5) 

hich condition both the data and the other parameters. The 
ibbs sequence converges to a stationary distribution that is 

ndependent of starting values and it converges to a station
ry sampling distribution of the posterior density (Congdon, 
003). Greater details of the MCMC and Gibbs sampling can 
e obtained from Norris (1997), Robert and Casella (1997) and 
asella and George (1992). 

. Methodology and analytical approach 
Extensive work by researchers like Joshua and Garber (1990), 
iaou et al. (1992), Miaou and Lum (1993a,b) established that 

ccident phenomenon is best expressed by count models such as 
oisson regression process. The Poisson process with parameter 
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 is given as 

exp(−μi)μn 
ir(ni|μi) =	 (6) 

ni! 

here Pr(ni|μi) is the probability of n accidents occurring at 
ntersection i and μi is the expected number of accidents at inter
ection i. Now if  Xi is a vector of covariates which describes the 
eometric, traffic control and regulatory characteristics of an 
ntersection i, and β is a vector of estimable coefficients, then μ 
an be estimated by the equation: 

n μi = βXi	 (7) 

his functional form of Poisson process assumes that all the 
ovariates in Xi are sufficient in explaining the mean and variance 
f crash occurrence. However, this is a limitation of Poisson 
odel as also described by Cox (1983) and Dean and Lawless 

1989), that the variance of the data is constrained to be equal 
o the mean, i.e.: 

ar(ni) = E(ni) = μi	 (8) 

n case of rare events like traffic accident variance is significantly 
reater than mean which is well known as over-dispersion in 
ccident modeling field. Hence, to deal with this problem of 
xtra-variation, researchers proposed the inclusion of a gamma-
istributed error term in the parent Poisson model such that: 

n μi = βXi + εi	 (9) 

s explained in Section 1, the exp(εi) is gamma distributed and 
akes the unobserved heterogeneity of the Poisson mean into 
ccount. The unobserved heterogeneity is caused by various fac
ors such as model misspecification, unavailability of important 
ut immeasurable covariates, as well as omission of relevant but 
easurable factors. These factors can result in over-dispersed 

ount models where a substantial portion of the mean is not cap
ured by included covariates and instead is captured through the 
amma distributed error term and the over-dispersion parameter. 
his dispersion parameter is proportional to model uncertainty 
nd is aptly used in the calculation of overall model fit and stan
ard errors of estimated parameters and confidence intervals. To 
etter understand the importance of the over-dispersion param
ter in model assessment is a prime motivation for this study. 

hether the over-dispersion parameter is fixed or variable plays 
n important role in this assessment. 

To examine the structure of gamma heterogeneity, it is first 
ecessary to check the mean structure. This includes both the 
unctional form of the mean and the covariates considered. Till 
ate, researchers postulated many functional forms that differ by 
he type of covariates included and the form of variable transfor

ation. While for intersection crash models almost all studies 
onsidered the traffic volume from major and minor road, other 
tudies took the effect of geometric factors in addition to the 
xposure variables to develop the mean structure. For exam

le, Bauer and Harwood (2000), Vogt and Bared (1998), Oh et 
l. (2003), Lyon et al. (2003) considered geometric factors in 
ddition to traffic volume. In all of these studies they adopted 
 logarithmic transformation of the major road and minor road 
raffic flow along with a linear effect of common geometric fac
ors. A similar functional form has been adopted by interactive 
ighway safety design model (IHSDM) as well. For the pur
ose of this research different transformation of traffic volume 
ariables were tested. However, the logarithmic transformation 
esulted in improved model fit. Also, this form ensures that: (1) 
n the absence of traffic there are no expected crashes and (2) a 
onlinear relationship describes the relationship between traffic 
ow and accidents. Guided by prior research the structure of the 
ean for this study is 

n μi = β0 + β1 log(F1) + β2 log(F2) + βjXj (10) 

here F1 and F2 are respectively major and minor road flow, Xj’s 
re j different types of geometric properties of the intersection 
nd β’s are the vector of covariates. As mentioned before, this 
tudy compares and contrasts the findings from Miaou and Lord 
2003), so some possible relationship between dispersion param
ter and the traffic flows are considered here. The following 
ection describes the Bayesian approach of model specification 
nd estimation. 

.1. Bayesian framework of the model 

The Bayesian framework to obtain the NB model for accident 
bservation has been described by Hauer (1992) and Heydecker 
nd Wu (2001). While these studies use an empirical Bayesian 
ethod to obtain the posterior mean of the crash occurrences, a 

imilar concept has been utilized but using a full Bayes method to 
nd the posterior mean of the coefficient estimates for the mean 
s well as variance structure of the NB model. By following this 
rocedure, the NB model in Eq. (1) is rewritten as 

i = viλi	 (11) 

here μi is the Poisson parameter but is assumed to be random, 
i = exp(βXi) and λi = exp(εi). The model specifies that λi is 
amma distributed with a mean of the distribution = 1 and vari
nce = 1/α, i.e. with shape parameter = scale parameter for the 
istribution such that 

i ∼ Γ (αi, αi)	 (12) 

o test the variance structure, four different functional form 
f the dispersion parameter α are investigated. The models are 
iven below: 

	 Model 1 considers a fixed dispersion parameter so that the 
Eq. (2) can be written as log αi = η1. 

	 In model 2, in addition to the fixed parameter major road 
traffic volumes are considered so that: 

log αi = η1 + η2 (log F1,i − mean(log F1)) 

	 In model 3, the effect of both major road and minor road traffic 

volumes are taken into account: 

log αi = η1 + η2 (log F1,i − mean(log F1)) 

+ η2(log F2,i − mean(log F2)) 
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	 In model 4, in addition to the model 3 parameters, a major 
and minor road volume interaction term as proposed by Miaou 
and Lord (2003) is considered and given as 

log αi = η1 + η2(log F1,i − mean(log F1)) 

+ η3(log F2,i − mean(log F2)) + η4(log(F2,i/F1,i) 

− mean(log(F2,i/F1))) 

where F1 and F2 are major and minor road traffic volumes. In 
models 2, 3 and 4 the term mean(log F) is addititive to capture 
the absolute deviation of the traffic volume of a particular site 
from the mean traffic volumes of all sites considered in the 
study. 

.2. Goodness-of-fit 

Much has been written on MCMC convergence issues via 
CMC sampling techniques. In this section first the model 

onvergence criteria used in this study is described followed 
y some of the goodness of fit measures used for model 
election. A total of five different measures of goodness of 
t are computed to select the most parsimonious model and 

hese are: mean deviance, chi-square measure, sum of model 
eviance, R2-like measure of fit and deviance information 
riteria. The Bayesian modeling was conducted and goodness-
f-fit estimates was obtained using the WinBUGS modeling 
oftware. 

.2.1. Model convergence 
Model convergence is concerned with the time of producing 

equence of draws from the posterior distribution. This is par
icularly important because (1) it ensures that the posterior has 
een ‘found’ and (2) it indicates when sampling of parameters 
hould begin. A common methodology to check the convergence 
s by tracking the Gelman-Rubin convergence statistic as mod
fied by Brooks and Gelman (1998). A Gelman–Rubin statistic 
nder 1.2 indicates approximate convergence and it is used to 
ssess when convergence occurred. 

.2.2. Chi-square measure 
Another measure of goodness of fit is the χ2-statistic dis

ributed with the degrees of freedom equal to the difference in 
he numbers of coefficients in the restricted and unrestricted 

odels. The χ2-statistic that is based on standardized residuals, 
s given as 

(ni − μi)2 

(13)
V (ni) 

.2.3. Sum of model deviance 

Theoretically, if the sum of model deviance, or G2, is equal 

o zero, then the model is regarded to have a perfect fit. This is a 
heoretical lower bound because the observed values are integer 
alues and the predicted values are continuous (Washington et 

i
p
r
o

� 

l., 2003). The G2 statistic is given by 

n � � 
ni 2 = 2 n1 ln (14)
μi

i=1 

he model with the lowest G2 value is therefore regarded as the 
odel with the better fit. 

.2.4. R2-like measure of fit 
As a result of heteroscedasticity in the regression and the non

inearity of the conditional mean the R2 value used in ordinary 
east squares linear regression is not available. Based on stan
ardized residuals a similar statistic can be calculated where the 
esidual sum of squares forms the numerator and the total sum 
f squares forms the denominator (Washington et al., 2003): � √ n 

1[(ni − μ̂i)/ μ̂i]
2 

2 = 1 − i=	 (15) � √ 2n 
1[(ni − n̄)/ n̄]i=

n Eqs. (13)–(15) ni is the observed number and μi is the 
xpected number of accidents occurring at intersection i, μ̂i 
s the predicted expected value and n̄ is the average observed 
umber of accident. 

.2.5. Deviance information criteria 
Another criterion for assessing model goodness of fit 

s deviance information criteria or DIC as proposed by 
piegelhalter et al. (2002). DIC is a generalized and the Bayesian 
ersion of Akaike’s information criterion (AIC), and is a penal
zed fit measure (larger parameter models are penalized). The 
IC for model m are calculated as follows: 

ICm = Δ̄m + dem	 (16) 

¯

osterior mean of the deviance of un-standardized model while 
m is the mean of the model log likelihood; dem, also known 
s “pD” can be calculated as follows dem = Δ̄m − Δ(y|θ) and 

here Δm = −2 log Lm also known as “Dbar”, represents the 

¯ 

epresents the penalty for the number of effective model param
¯ters. The term Δ(y|θ) is also known as “Dhat”, which is a point 

stimate of deviance obtained by substituting in the posterior 
eans θ ¯ of θ. The model that provides the best short-term pre

ictions will have the lowest DIC value. It is also important to 
eep in mind that DIC values can only be compared between 
odels that were developed using the same set of data although 

he models need not be nested. 

. Description of the data 

Accident data for this study were obtained from rural inter
ections in 38 counties in the state of Georgia for the years 1996 
nd 1997. Road characteristic (RC) files, aerial photographs, and 
eographic information system (GIS) roadmaps were used to 
nd various geometric characteristics of the intersections. Dig
tal Orthophotography Quarter-Quadrangles (DOQQs) aerial 
hotos were used from 1994 and 2000 to extract information 
egarding intersection angle and degree of horizontal curvature 
f selected intersections by overlapping with GIS roadmaps. A 



Table 1 Table 2 
Variable list used in this study Estimation results for total crashes using classical maximum likelihood method 

Variables Definition 

Dependent variables 
TOTACC Number of total crashes 

Independent variables 
AADTMAJ (F1) AADT on major road 
AADTMIN (F2) AADT on minor road 
MDWDMAJ Median width on major road in feet 
MDWDMIN Median width on minor road in feet 
SHLWDMAJ Shoulder width on major road in feet 
SHLWDMIN Shoulder width on minor road in feet 
SIGNAL Intersection type (0 if non-signalized 

intersection, 1 if signalized intersection) 
RTLMAJ Right-turn lane indicator (1 if at least one 

right-turn lane on the major road, 0 otherwise) 
LTLMAJ Left-turn lane indicator (1 if at least one left-turn 

lane on the major road, 0 otherwise) 
RTLMIN Right-turn lane indicator (1 if at least one 

right-turn lane on the minor road, 0 otherwise) 
LTLMIN Left-turn lane indicator (1 if at least one left-turn 

lane on the minor road, 0 otherwise) 
HZRATMAJ Roadside hazard rating on major road (from 1, 

least hazardous case, to 7, most hazardous case) 
HZRATMIN Roadside hazard rating on minor road 
DRWYMAJ Number of driveways on major road within 

250 ft of the intersection center 
DRWYMIN Number of driveways on minor road within 

250 ft of the intersection center 
LIGHTMAJ Lighting indicator (1 if lighting exists on the 

major road, 0 otherwise) 
LIGHTMIN Lighting indicator (1 if lighting exists on the 

minor road, 0 otherwise) 
TERNMAJ Terrain on major road (0 = flat, 1 = rolling, 

2 = mountainous) 
TERNMIN Terrain on minor road (0 = flat, 1 = rolling, 

2 = mountainous) 
SPDLIMAJ Speed limit on major road in mph 
SPDLIMIN Speed limit on minor road in mph 
SDMAJ Sight distance on major road in feet 
SDMIN Sight distance on minor road in feet 
VIMAJ/VIMIN Sum of absolute change of grade in percent per 

hundred feet for each curve on major road or 
minor road within 250 ft of the intersection 

d
i

5
a
n
a
2
m
t

5

u

(negative binomial regression model) 

Variables Estimated t-Statistic p-Value 
coefficient 

Constant −4.4552 −6.490 0.0000 
AADTMAJ (F1) 0.4356 5.974 0.0000 
AADTMIN (F2) 0.3196 3.692 0.0002 
MDWDMAJ −0.0757 −3.006 0.0026 
RTLMAJ 0.7408 3.330 0.0009 
DRWYMAJ 0.1168 3.015 0.0026 
LIGHTMAJ −0.4785 −2.326 0.0200 
A (dispersion parameter) 0.4139 5.064 0.0000 

Number of observations 165 
Log-likelihood at zero −464.54 

i
c
t
f
p
s
w
w
i

b
d
i
u
f

d
t
e
s
2
f
M
l
t
a
r

t
t
a
e
t
i
m
a

center, divided by the number of such curves 
HAU Intersection angle variable in degrees 

escription of various independent variables used in the analysis 
s provided in Table 1. 

The data included 165 rural intersections on two-lane roads: 
1 were signalized and 114 non-signalized. The sample included 
 total of 837 accidents (345 at non-signalized and 492 at sig
alized intersections). Intersection crashes were defined as any 
ccident that occurred at the intersection or occurred within 
50 ft (76 m) from the intersection on either the major or the 
inor road. For the purpose of this study total crashes rather 

han crash outcomes are used to find the overall effect. 
. Results and discussion 

For the purpose of analysis all the eight models are estimated 
sing three chains taken to 100,000 iterations. The convergence 

s
t
c
w

Log-likelihood at convergence −394.52 
ρ2 0.15 

n all of these models was obtained after 4000 iterations and this 
onvergence is assured by checking the Gelman–Rubin statis
ics as mentioned in Section 3.2.1. Consequently, the samples 
or posterior analysis have been taken after 4000 burn-ins. The 
riors for regression coefficients of mean as well as variance 
tructure are taken as N(0,0.001) in WINBUGS modeling soft
are where 0.001 is the precision of the normal distribution 
hich indicates that the variance is high, i.e. they are non-

nformative or flat priors. 
The results from this analysis are compared with a likelihood-

ased estimation done by Kim et al. (2006) using the same 
ataset but following a classical estimation approach and is given 
n Table 2. The results from the four models where traffic vol
me and geometric design factors are considered in the mean 
unction are given in Table 3. 

From the model findings (Table 3) it is clear that over-
ispersion is significant with α significantly greater than 1. In 
erms of the coefficient estimates, the results from four mod
ling strategies did not have much variation which shows a 
imilar trend as that of previous researches (Miaou and Lord, 
003; Maher and Summersgill, 1996). However, there is a dif
erence in parameter estimates between the best fitted model (i.e. 

odel 1) from Bayesian analysis and that from maximum like
ihood estimate, but it is less than 2%. This could be attributed 
o the small size of data that violate the implicit assumption of 
symptotic normality of the maximum likelihood estimate of 
egression coefficients. 

A closer comparison between these two models based on pos
erior credible intervals and model parameters shows that in all 
he four models the coefficient estimates for the constant as well 
s other predictors are very similar to that of classical estimate 
xcept for beta5, which identifies the effect of major road right 
urn lane on crash occurrence. The estimation of this variable 
n the Bayesian framework is about 0.55, whereas the same in 

aximum likelihood estimate is 0.74, which clearly indicates 
n enhanced effect of the right turn lane. To check the variance 

tructure and the parameterization of α, the significance and 
he estimations of η1, η2, η3 and η4 from the four models are 
ompared. The hypothesis that α is a function of flow is very 
eakly supported as η2, η3 and η4s are consistently found not 
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o be significant. In comparison the model 1 where α is a fixed
ispersion parameter showed better overall model fit. Although 
he effect of the parameter estimates for η1, η2, η3 and η4 from 

odels 2, 3 and 4 are in the same direction with what Miaou 
nd Lord (2003) obtained, the parameters η2, η3 and η4 are not 
ignificantly different from zero. What this means is that even 
ithout the flow-varying part in parameterization of α, it is pos

ible to capture the variation and resulted in a better model fit. 
his supports a comment from Winkelmann (2003), who did 
xtensive research on count data and explained in his book that 
t is very hard to justify that some variables affect the variance 
ut not the mean. Hence, the finding supports the fact that if the 
ean function is well defined, a simple variance as a function of 
ean and a fixed dispersion parameter is sufficient to capture the 

nobserved heterogeneity for traffic crash occurrences in rural 
ntersections. A comparison of several goodness-of-fit statistics 
uch as mean deviance, chi-square statistic, R2-like measure of 
t also supported the appropriateness of the fixed dispersion 
arameter model which can be seen in Table 3. Another impor
ant goodness of fit statistic in the case of Bayesian models is 
he DIC, where a lower value suggests a better fit. From this 
tudy it was observed that the DIC value of model 1 is 720.9 and 
hat of models 2, 3 and 4 are 724.6, 725.3 and 723.4, respec
ively. Hence, in terms of significance of coefficient as well as 
oodness-of-fit measures a flow dependent dispersion function 
id not result in better model. 

While the results seemed to be plausible, a different finding 
han previous studies triggered a greater investigation of the pro
ess under consideration. As a first step, the mean functions from 
hese two studies are compared and as mentioned before they are 
ot same in terms of functional form as well as included covari
tes. Miaou and Lord (2003) considered mainly the effect of 
ajor and minor road traffic flow with various functional forms 

ll of which was supported by previous research findings. How
ver, in the present study the effect of various geometric factors 
re considered in addition to the major and minor road traffic 
olume and some of the included variables are found to be sig
ificant. So under this scenario of two different mean functions, 
 direct comparison of the variance function is not possible. 
lso it is important to remember that the unexplained part of the 
ean structure goes into the variance structure and thus influ

nces the over-dispersion. This means that in the presence of a 
ell defined mean function the structure of the variance func

ion would vanish. Hence, any structural or covariate changes 
n the mean function would affect the structure and coefficient 
stimates of the variance function. 

To test the effect of a different mean function another esti
ation has been undertaken. The explanatory covariates for this 

econd estimation are restricted to only major and minor road 
ADT, both in mean as well as variance structure. All the four 
ifferent modeling strategies as explained in Section 3.1 have 
een adopted in this case too. 

The results from these models are given in Table 4. The table 

hows a dramatic change in findings from the previous results 
hown in Table 3. In the case of a mean function that deals mainly 
ith traffic flows, there is a distinct structure present in the vari

nce function. In other words, while major and minor road traffic 



Ta
bl

e 
4

B
ay

es
ia

n 
es

tim
at

io
n 

re
su

lts
 f

ro
m

 f
ou

r 
di

ff
er

en
t m

od
el

s 
fo

r 
to

ta
l c

ra
sh

es
 in

cl
ud

in
g 

on
ly

 m
aj

or
 a

nd
 m

in
or

 r
oa

d 
tr

af
fic

flo
w

s

V
ar

ia
bl

es
 

M
od

el
 1

 
M

od
el

 2
 

M
od

el
 3

 
M

od
el

 4

 

M
ea

n 
S.

D
. 

M
ed

ia
n 

(2
.5

–9
7.

5%
) 

M
ea

n 
S.

D
. 

M
ed

ia
n 

(2
.5

–9
7.

5%
) 

M
ea

n 
S.

D
. 

M
ed

ia
n 

(2
.5

–9
7.

5%
) 

M
ea

n 
S.

D
. 

M
ed

ia
n 

(2
.5

–9
7.

5%
)


C
on

st
an

t 
−5

.7
72

 
0.

61
48

 
−5

.8
18

 (
−6

.7
44

, −
4.

53
3)

 
−5

.5
39

 
0.

66
72

 
−5

.5
47

 (
−6

.7
24

, −
4.

24
1)

 
−5

.9
52

 
0.

97
 

−5
.8

41
 (
−8

.0
25

, −
4.

38
) 

−6
.0

58
 

0.
71

19
 

−6
.0

68
 (
−7

.5
44

, −
4.

79
3)


 
A

A
D

T
M

A
J 

(F
1
) 

0.
52

19
 

0.
08

19
 

0.
52

27
 (

0.
36

48
, 0

.6
79

5)
 

0.
48

89
 

0.
07

29
 

0.
48

41
 (

0.
35

59
, 0

.6
49

4)
 

0.
50

9 
0.

10
86

 
0.

50
83

 (
0.

33
91

, 0
.7

65
8)

 
0.

52
4 

0.
10

13
 

0.
51

15
 (

0.
33

19
, 0

.7
13

7)



A
A

D
T

M
IN

 (
F

 2)
 

0.
34

24
 

0.
06

98
 

0.
34

24
 (

0.
21

74
, 0

.4
88

5)
 

0.
34

51
 

0.
08

43
 

0.
34

79
 (

0.
15

19
, 0

.4
87

0)
 

0.
38

23
 

0.
07

76
 

0.
37

25
 (

0.
25

52
, 0

.5
52

1)
 

0.
38

11
 

0.
07

67
 

0.
38

94
 (

0.
22

81
, 0

.5
14

1)



D
ev

ia
nc

e 
15

4.
1 

17
.9

3 
15

3.
5 

(1
20

.8
, 1

19
1.

1)
 

16
2.

7 
19

.7
2 

16
1.

9 
(1

26
.4

, 2
03

.6
) 

16
3.

8 
19

.7
5 

16
3.

0 
(1

27
.3

, 2
04

.6
) 

16
0.

7 
18

.6
4 

16
0.

0 
(1

26
.2

, 1
99

. 2
)


C
hi

-s
qu

ar
e 

65
.2

3 
13

.5
4 

63
.6

1 
(4

4.
76

, 9
4.

62
) 

81
.7

8 
24

.8
 

76
.5

6 
(4

9.
25

, 1
44

.0
) 

82
.0

1 
24

.6
3 

76
.8

6 
(4

9.
51

,1
43

.5
) 

77
.6

6 
22

.6
8 

75
.1

 (
51

.8
4,

 1
18

.8
)


G

 2 
17

1.
9 

60
.4

6 
17

1.
5 

(5
4.

47
, 2

91
.6

) 
18

0.
9 

61
.2

4 
18

0.
4 

(6
2.

07
, 3

02
.1

) 
18

0.
8 

60
.9

6 
18

0.
5 

(6
2.

49
, 3

01
.7

) 
17

7.
 9

 
60

.5
6 

17
7.

6 
(5

9.
 9

4,
 2

97
.9

)

R

 2 
0.

19
31

 
0.

00
97

 
0.

19
31

 (
0.

17
4 

0.
21

22
) 

0.
19

29
 

0.
00

98
 

0.
19

29
 (

0.
17

36
, 0

.2
12

1)
 

0.
19

24
 

0.
00

98
 

0.
19

24
 (

0.
17

33
, 0

.2
11

6)
 

0.
19

31
 

0.
00

97
 

0.
19

31
 (

0.
17

41
, 0

.2
12

2)



η

 1 
0.

56
44

 
0.

16
59

 
0.

56
08

 (
0.

24
91

, 0
.8

98
6)

 
1.

27
5 

0.
38

23
 

0.
73

12
 (

0.
32

6,
 1

.3
12

) 
1.

24
5 

0.
37

15
 

1.
23

 (
0.

 5
51

5,
 2

.0
52

) 
2.

78
2 

0.
78

05
 

2.
72

6 
(1

.3
16

, 4
.4

67
)


η

 2 
−1

.0
6E

−4
 

0.
00

05
 

−0
.3

27
2 

(−
0.

97
01

, 0
.1

06
6)

 
−1

.1
1E

−4
 

0.
00

05
 

−0
.0

01
 (
−0

.0
02

, −
0.

00
02

) 
−2

.6
6E

−4
 

8.
29

E
−4

 
−2

.6
2E

−4
(−

0.
00

4,
 −

0.
00

1)

 

η
3 

2.
64

E
−5

 
8.

30
E
−5

 
0.

00
03

 (
−0

.0
01

, 0
.0

01
) 

3.
48

E
−4

 
1.

43
E
−4

 
3.

48
E
−4

 (
0.

00
05

, 0
.0

06
)


η

 4 
−3

.0
27

 
1.

17
5 

−3
.0

21
 (
−5

.3
41

, −
0.

72
44

)

 

D
IC

 
72

2.
63

8 
72

2.
95

 
72

4.
39

9 
71

9.
86

9

 

v
l
b
t
m
g
f
u
i
I
4
a
s
L
d
a
i
i
s
f
p
r
p
a
g
c
a
s
e
t
m
T
v
i
i
h
v

c
t
c
f
t
o
e
r
i
e
T
b

c
t
o
b
s
m

olumes solely explain the mean structure, the variance is no 
onger a function of the mean and a constant dispersion function, 
ut has a specific structural form. Also, among the four models, 
he model where variance is structured as a function of the major, 

inor and interaction with major and minor road flow yielded the 
reatest explanatory power. These findings agree with findings 
rom Miaou and Lord (2003) based on the analysis of data from 
rban intersections of Toronto. The goodness-of-fit of model 4 
s also improved compared to the rest of the models in Table 4. 
nteresting enough, the DIC obtained from this model (model 
) is almost the same as that of the Model 1 in Table 3 with 
dditional covariates in the mean structure and simple variance 
tructure. This result corroborates the findings from Miaou and 
ord (2003), and emphasizes the fact that variance structure is 
ependent on the mean structure. If a limited number of covari
tes are considered in the model, the dispersion parameter is 
ndeed structured, resulting in significant mis-specification if α 
s assumed to be fixed (Miaou and Lord, 2003). The result also 
uggests that in case of a well-specified mean structure (proper 
orm and no significant omitted variables) the variance is pro
ortional to the expected crash count. However, the question still 
emains as to which functional form is most appropriate: a sim
le mean structure with flow-dependent variance structure (to 
void additional data collection) or the inclusion of additional 
eometric variables. To address the question, it is important to 
ompare the results and inferences from these two specifications 
nd to consider theoretical appeal. As mentioned previously, the 
tructure of the dispersion parameter affects confidence interval 
stimation, and a comparison between the results obtained from 
hese two mean structures reveals similar outcomes. The esti

ated confidence intervals for major and minor road AADT in 
able 3 are narrower than the confidence intervals of the same 
ariables in Table 4, which suggests that the addition of variables 
s beneficial on statistical grounds. In addition, theoretically 
t is more appealing to include geometric variables (and per
aps environmental and traffic) in accounting for between-site 
ariation rather than allowing for additional random variation. 

The results described here are empirical and not theoreti
al. As such, it may be possible that both datasets examined in 
his study and Miaou and Lord’s study performed similarly by 
hance. It also leaves the possibility that the variance could in 
act be explained through explanatory variables not included in 
he mean function with other datasets, although the likelihood 
f this result is now diminished. If this were the case, how
ver, it would suggest that the mean and variance functions are 
elated to mutually exclusive sets of predictors—one set help
ng to explain expected crash counts and the other set helping to 
xplain unaccounted for variation across crash sites or locations. 
he evidence for this outcome based on this study (which in turn 
uilds on Miaou and Lord), however, is lacking. 

If the results described in this paper are generalizeable – i.e. 
orroborated by numerous researchers – then a couple of impor
ant implications arise. First, modeling the variance as a function 

f covariates may be a reliable way to provide modeling feed
ack as to model mis-specification. The guidance would be that 
ignificant variables in the variance function had heretofore been 
is-specified in the mean function. Second, the assumption of 
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n unstructured variance function is reasonable, leaving the stan
ard negative binomial density as a reasonable approximation of 
rash distributions across sites. Finally, it should be remembered 
hat consideration of a more complex model – i.e. a dispersion 
unction rather than a fixed dispersion parameter – involves addi
ional model parameters and thus should be compared to the 
base’ model using penalized fit criterion. In other words, we 
hould expect relatively significant improvements in fit in order 
o justify the additional model complexity and parameters. 

. Conclusions and recommendations 

While the study was motivated to corroborate the findings 
f Miaou and Lord (2003) regarding the variance structure in 
verdispersed crash models, during the course of research some 
nteresting findings emerged. The research re-emphasized the 
asic theory of count data models and focused on how the 
nobserved heterogeneity can be effectively considered in crash 
rediction models through over-dispersion, with the negative 
inomial density particularly well-suited. Using crash data from 
wo-lane rural intersections of Georgia, this research emphasized 
he importance of a well-defined mean structure that accommo
ates all the relevant covariates in explaining crash occurrence 
ith a simple variance structure as a function of mean and 

 constant dispersion parameter. However, in the presence of 
mall number of explanatory variables, researchers are cautioned 
bout using the standard NB count models where the dispersion 
arameter does not vary among different sites—there appears 
o be a tradeoff between these two functions with an overlap
ing set of predictors. Hence, the main finding of this study is 
o closely judge the functional form of crash prediction mod
ls in the light of available data in hand and to emphasize that 
he mean function must be correctly specified (functional form 
orrect and no significant omitted variables) in order to reduce 
mitted variable bias in the variance function. 

An important extension of this research is the investigation 
f crash data for other kinds of rural as well as urban inter
ections and/or road segments to obtain further corroboration. 
n any case, this research contributes to the existing state of 
he knowledge regarding the nature of over-dispersion in motor 
ehicle crash models and how over-dispersion should ideally be 
odeled. 
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