OPTIMIZATION OF ETHYLENE BIOPRODUCTION IN *SYNECHOCYSTIS* SP. PCC 6803

Derick Reid¹, Justin Ungerer², Jianping Yu²

¹STAR Fellow, Mississippi State University, Starkville, Mississippi USA, email: derick.reid86@gmail.com

²National Renewable Energy Laboratory, Golden, Colorado USA

GOAL

To optimize key nutrient concentrations contributing to the greatest photosynthetic ethylene production in the cyanobacterium *Synechocystis* 6803.

BACKGROUND

Ethylene is the most produced petrochemical feedstock. Derived products include:

- plastics, including polyethylene, polystyrene and PVC, and textiles (polyester)
- long-chain hydrocarbons (e.g., diesel fuel) via polymerization
- High-grade ethanol through hydration

The current method of producing ethylene, steam cracking of petroleum feedstock, is the largest CO₂ emitting process in chemical industry. Globally, 133M tons produced in 2008 [4].

APPROACH

Expressed the ethylene-forming enzyme (*efe*) from *Pseudomonas syringae* in the cyanobacterium *Synechocystis* sp. PCC 6803

PREVIOUS WORK

Studies showed that ethylene production was limited due to unknown media components becoming limiting.

METHODS

- Increased or decrease specific components 5-fold
- Measured rate of ethylene production using gas chromatography
- Optimization procedure: Data were fit to a second order polynomial

RESULTS

![Figure 1](image_url)

CONCLUSIONS

- Increasing N, P, and S allow for increase ethylene and biomass production.
- Reduction of any single nutrient attenuates growth. Nitrogen is essential for ethylene production.
- General growth of *Synechocystis* and ethylene production are linked.

FUTURE DIRECTIONS

- Increase *efe* expression by incorporating additional copies of *efe*.
- Explore EFE protein structure, e.g., crystalize protein.
- Develop a more detailed understanding for the carbon-flux for ethylene production in *Synechocystis*.

ACKNOWLEDGEMENT

The authors are thankful for support from the Noyce Foundation, and Dr. Linda Coats in the MSU College of Education and Dr. Matthew Berg in the MSU College of Arts and Sciences, in addition to the Department of Energy and the STAR program.

REFERENCES

