
Synchroscalar: Initial Lessons in Power-Aware
Design of a Tile-Based Embedded Architecture

John Oliver1, Ravishankar Rao1, Paul Sultana1, Jedidiah Crandall1 ,

Erik Czernikowski1, Leslie W. Jones IV2, Dean Copsey1, Diana Keen2 ,

Venkatesh Akella1, and Frederic T. Chong1

1 University of California at Davis

2 California Polytechnic State University, San Luis Obispo

Abstract. Embedded devices have hard performance targets and severe
power and area constraints that depart significantly from our design in­
tuitions derived from general-purpose microprocessor design. This paper
describes our initial experiences in designing Synchroscalar, a tile-based
embedded architecture targeted for multi-rate signal processing applica­
tions.

We present a preliminary design of the Synchroscalar architecture and
some design space exploration in the context of important signal process­
ing kernels. In particular, we find that synchronous design and substan­
tial global interconnect are desirable in the low-frequency, low-power do­
main. This global interconnect enables parallelization and reduces pro­
cessor idle time, which are critical to energy efficient implementations
of high bandwidth signal processing. Furthermore, statically-scheduled
communication and SIMD computation keep control overheads low and
energy efficiency high.

Keywords: Low Power Processor, 802.11(a), Programmable DSP Pro­
cessor, tiled-based architectures, embedded processors.

1 Introduction

Next-generation embedded applications demand high throughput with low power
consumption. Current approaches often use Application-Specific Integrated Cir­
cuits (ASICs) to satisfy these constraints. However, rapidly evolving application
protocols, multi-protocol embedded devices, and increasing chip NRE costs all
argue for a more flexible solution. In other words, we want the flexibility of a
programmable DSP with energy efficiency more similar to an ASIC. We propose
the Synchroscalar architecture, a tile-based DSP designed to efficiently meet
the throughput targets of applications with multi-rate computational subcom­
ponents.

In designing Synchroscalar, we focused on three key features of ASICs that
lead to their energy efficiency – high parallelism, custom interconnect, and low
control overhead. Parallelism is important in that it allows the frequency of an

2

architecture to be reduced linearly with investment in logic, modulo communica­
tion. This linear reduction, when coupled with voltage scaling, yields a quadratic
decrease in power and a linear decrease in system energy. Low communication
latency, however, is important in maintaining the parallelism necessary for these
energy gains. ASICs accomplish low latency through custom interconnect. We
find that, in the low frequency domain, a tile-based processing architecture can
use segmentable global busses to achieve low latency with high energy efficiency.
Control overhead of the busses is kept low by using statically scheduled segmen­
tation and data motion. Control overhead of the tiles can be reduced by grouping
columns into SIMD execution units.

In the remainder of this paper, we provide an overview of the Synchroscalar
architecture to establish the context of our study. Then we provide some simple
tile and interconnect models which we used to guide our design. We use these
models to conduct an analysis of FIR, FFT, Viterbi, and AES kernels running on
different points in the design space. We discuss our intuitions from this analysis
and conclude with future work for our project.

Synchroscalar Architecture

In this section, we introduce the proposed Synchroscalar architecture and the
rationale behind it. As noted in the previous section, we were motivated by
the need for an embedded architecture with the flexibility of a general purpose
processor (DSP) and the power efficiency of an application specific integrated
circuit. We examined ASIC implementations of Viterbi, FFT, AES, FIR and
found that the key sources of the power efficiency of an ASIC are

– Parallelism, multiple clock and voltage domains
– Customized interconnect mirroring the dataflow inherent in the computation
– Distributed memory to provide high bandwidth
– Customized functional blocks to implement the computation
– Absence of instructions, removing instruction cache accesses and decode logic

If we want to approach the efficiency of an ASIC, our architecture should
retain as many of the key strengths of an ASIC as possible. This directs us
towards a tiled-based multiprocessor architecture with multiple clock and voltage
domains, reconfigurable interconnect, and low-overhead SIMD control.

Abstractly, Synchroscalar is a two dimensional array of processing elements
(PEs), each column potentially operating at different fixed frequencies and hence
voltage. There is a single vertical bus connecting the elements in a column, and
these vertical buses are connected by a single horizontal bus for communication
between columns. In reality, in order to reduce the distance between PEs in a
single column, the column is folded over. There are PEs on both sides of the
vertical bus. That is the basis for Synchroscalar, as shown in Figure1 (we do not
plan to support dynamic frequency/voltage scaling at present). Because of the
data-parallel nature of computation, each PE can be viewed as one functional
unit of a SIMD machine. There is a SIMD controller for each pair of columns.

 C C C

Clock 0 Clock 1 Clock 2

SIMD Ctrl SIMD Ctrl SIMD Ctrl

PE

PE

PE

PE

Segm
 ent

trl

Segm
 ent

trl

Segm
 ent

trl

PE

PE

PE

PE

PE

PE

PE

PE

Fig. 1. The Synchroscalar Architecture

Each PE (tile) has a single DSP engine with two functional units, SRAM, register
file, and communication interfaces. For brevity, we will refer to this cluster of
bus, two columns, and SIMD controller as a single column. Although the tiles are
SIMD, the communication patterns are not identical, so programmable engines
are required for controlling communication.

2.1 Programming Model

The architecture of Synchroscalar is motivated by Synchronous Dataflow (SDF)
model of computation [2, 3, 4]. DSP design environment tools created by Synop­
sys and Cadence use this model.

SDF is a subset of general purpose dataflow that restricts the number of
data values produced and consumed by an actor to be a constant. The restric­
tion imposed by the SDF model offers the advantage of static scheduling and
decidability of key verification problems such as bounded memory requirements
and deadlock avoidance [8] Synchroscalar can be viewed as a architecture to
support SDF computation model efficiently. This predictability is crucial to pro­
viding the generality of programming units while retaining much of the efficiency
of ASICs.

2.2 Clock and Voltage Domains

Clock and voltage domains are per-column, with the task parallelized within
the column. Tasks can be mapped to different columns depending on their com­
putational requirements. This mapping is crucial to performance, because once
set, the voltage and frequency of a column may not change. Mapping algorithms
must be developed to provide minimize communication and maximize power
savings. Computationally-intensive tasks are performed at the best available

frequency and voltage that meets the performance requirements. Other tasks
can be mapped to columns operated at lower frequency and voltage.

We employ rational clocking[15] for the frequencies of different columns. If
fm and fn are the frequencies of two columns of PEs then fm/fn = M/N where
M and N are integers. While this allows a wide range of selection of frequencies,
the relation between the two frequencies provides the predictable communication
points between the domains required for statically scheduled communication.
Rational clocking eliminates the synchronization overhead with asynchronous
or GALS systems while still giving us the flexibility of different frequency do­
mains.

ASICs benefit from high-bandwidth, low-latency communication provided by
custom interconnects. We exploit low clock frequencies and static scheduling to
maximize throughput while minimizing latency. Static scheduling is required
to maintain guaranteed performance. Although the clock frequencies are low
enough to traverse a column in a single cycle, we segment the bus in order
to increase the usable bandwidth. Segment controllers are turned on or off by
signals from a central per-column segment controller. As shown in Fig.1, the
bus connecting two columns of PEs is partitioned into segments [23] by segment
controllers.

The column segment controllers are small state machines which can be re-
configured for each algorithm. By suitably controlling the segment controllers,
the bus can perform several parallel communications. For instance, if all the
controllers are turned off, the bus becomes a broadcast bus, all PEs able to re­
ceive the same data. Alternatively, two messages can pass between neighboring
columns using the same wires in different segments if the segment controller be­
tween them is on. The tasks are mapped to the tile architecture such that the
communication between the PEs is minimized. Highly communicating tasks are
assigned to neighboring PEs. This reduces the number of segments the data has
to travel, and hence saves power.

2.3 SIMD Control

In order to reduce the cost of instruction fetch and decode, a single SIMD con­
troller sends instructions to the PEs in a column. The SIMD controller performs
all control instructions, only forwarding computation instructions to the PEs.
To communicate data (used for conditional branches), the SIMD controller is
connected to the segmented bus with the PEs.

In order to use branch prediction, there needs to be a mechanism to squash
instructions that have already been sent to the processing elements. Instead,
we provide a short pipeline in the control unit to calculate branches quickly,
and delay instructions from reaching the processing elements. This introduces
a single-cycle stall for each conditional branch. For zero-overhead loops, there
is still no delay, because the PC is used for decision-making, not the actual
instruction. Our implementation incurs no extra overhead for these loops which
are critical to DSP performance.

3 Framework

With the Synchroscalar architecture and motivation for context, we now present
a general framework within which to evaluate the surrounding design space.
The framework will use some simple first-order models of tile and interconnect
power, validated with datapoints in the literature and VHDL designs of custom
Synchroscalar elements. Although our models are by necessity abstract enough to
cover the design space, we argue that the important scaling effects are captured
and that our qualitative conclusions are valid.

3.1 Tile Model

We use the voltage frequency scaling given by the Newton’s alpha law
f= k* (Vdd−Vt)α

[14]. This equation gives the voltage-frequency scaling for a given V dd
technology. We have modeled a ring oscillator in SPICE using the Berkeley
Predictive Technology Model (http://www-device.eecs.berkeley.edu/ ptm/) to
get a better feel for the acceptable range of supply voltage and threshold
voltage. This enables us to project the models into 90 nm and 45 nm
technology.

Our tile is based on the low power 16-bit VLIW DSPs similar to the Intel-
ADI MSA-based Blackfin[7] and the SPXK5 from NEC [19]. The minimum core
power is assumed to be 0.07mW/MHz similar to [19]. (We are in the process of
finishing a detailed VHDL model for the tile and and validating this assumption).
The SRAM power is given 0.02mA/MHz for 32kB of memory. This number was
obtained from the circuit given in [12], by scaling for technology and size.

3.2 Interconnect Model

The interconnect model is largely based on the data given in [6]. We find that
the gate and drain capacitances are orders of magnitude smaller than the wire
capacitance per unit length. We thus model only the wire capacitance. The
drain-source capacitance of the segmenters and the gate and drain capacitances
of the drivers are ignored. In 0.18u tech, the gate capacitance of a minimum
sized transistor is about 1-2fF [6]. This value is expected to remain constant
over shrinking process technologies. The projected value, in 0.13u tech, of wire
capacitance of a semi-global wire, per unit length is 387fF/mm. The chip length
is about 10mm and hence the wire capacitance is about 3870fF. This suggests
that even if the drivers and repeaters are 10-times the minimum size, their
capacitance is about 20fF. If there are 8 drivers for each bus, it adds only 160fF
to the wire capacitance.

We are in the process of completing VHDL models for the segment controllers,
SIMD controller and the communication interfaces. We plan to augment our
results with this in the future, but we believe that they are unlikely to change
the major trends in the results reported here.

4 Applications

The main objective of this paper is an exploration of the design space defined
by the goals of the Synchroscalar architecture. Specifically, we are interested in
the impact of various architectural parameters such as the number of tiles, the
interconnect structure, the width of the buses on the power while meeting the
performance constraints of an application.

For an initial driving application, we choose the 54 Mbps 802.11(a) wireless
LAN physical layer. This is currently outside the scope of DSP processors and is
currently done with ASICs or DSPs with co-processors for the computationally
intensive applications. The computationally challenging aspects of 802.11(a) are
Viterbi decoder, FFT, and large FIR filters for equalization. We will evaluate
each of these function on the Synchroscalar architecture. We derive the perfor­
mance (throughput) targets for each function so that we can meet the 54 Mbps
data rate. In addition we also use the Advanced Encryption Standard (AES)
as a benchmark as it contains very different kind of computation, intensive on
bit manipulation and table look-ups, to see how our architecture fares on such
workloads.

The FIR filter is used in the equalization function in the OFDM receiver. We
model a 128-tap FIR filter and assume that the data rate is 64 Mbps. We also
model a 128 point FFT and assume the data rate is 256 Mbps. FFT and IFFT
are key components of the OFDM receiver. For the Viterbi Decoderwe assume
the constraint length for the decoder K=7 and the data rate is 54 Mbps. This
is the most computation intensive part of the OFDM receiver.

Our initial experimental procedure is as follows:

1. Write the function in C and verify using Blackfin Visual DSP simulation
environment

2. Replace the performance critical sections of the code with Blackfin assembly
code, to achieve optimal performance. This corresponds to the implementa­
tion on a single tile.

3. Next map the application into multiple tiles and using a homebrewed tool
to assist in pruning the search space.

4. Manually insert the communication instructions
5. Estimate the clock cycle count for the application.
6. Using the power model for the interconnect and the tile described in the

previous section, estimate the power. The parameterized power models were
described in Excel and that was used to generate the graphs reported in the
next section.

While an extensive cycle-level simulation infrastructure is currently under
development, we felt that hand-counts were appropriate for guiding the early
design of the architecture. In particular, our driving signal processing applica­
tions are very amenable to hand-analysis as their computations are focused on
a small number of kernels.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1x2 2x2 4x2 8x2

Number of Tiles

FFT FIR Viterbi

Fig. 2. Power required as the number of tiles increases

P
ow

er
 (

W
)

5 Results

Our results focus on several key design questions. We explore the parallelism
available in each algorithm by varying the number of processing tiles, the com­
munication bandwidth necessary through varying global bus widths, and the
power efficiency of communication by exploring segmented buses.

P
ow

er
 N

or
m

al
iz

ed
 to

 8
x2

5.1 Architectural Configurations

Figure 2 shows that as the number of tiles increases, there is the traditional
tradeoff between computation and communication, but performance is not our
goal. As the performance increases, we lower the clock frequency to maintain

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

1.40E+00

1.60E+00

32 64 128

Bus Width (bits)

2x2 4x2 8x2

Fig. 3. Viterbi Decoder power as bus width increases for various tile configurations

P
ow

er
 (

m
W

)

1.7

1.9

2.1

2.3

2.5

2.7

0 64 128 192 256 320

Bus Width
2x1 2x2 4x2 8x2

Fig. 4. FIR Filter power as the bus width increases for various tile configurations

a constant performance target, allowing a decrease in voltage. Note that this
is not done dynamically. Each experiment with a different number of tiles is
a completely different instance of the program. So, for each instance, we pro­
vide the lowest frequency / voltage to maintain the same performance. The
tradeoff is then between adding processors, providing a constant increase in-
power consumption, and reducing the voltage, providing a quadratic decrease in
performance.

All three applications observe an initial decrease in total power, but by the
8x2 tile configuration, the decreasing returns of parallelization is outweighing
the benefits voltage scaling. Thus we should provide either 2x2 or 4x2 tiles in
each column.

5.2 Impact of Bus Width

We then vary bus width. Data dependencies prevent effective overlap of commu­
nication and computation. This makes fast communication critical to efficiency,
else processor idle time will lead to wasted power. We note that processor power
accounts for the majority of our system power and that it is impractical to
turn processors on and off for periods on the order of a dozen cycles. Conse­
quently, we see in Figures 3 - 5 that increasing bus width decreases processor
idle time, which decreases system power. For FIR, the power begins increas­
ing again at 256 bits because FIR can not take advantage of the increased
width.

We further note that Amdahl’s law comes into play, and we see the greatest
power savings as we initially double bus width, cutting communication latencies
in half. As we continue to invest in bus bandwidth, processor idle time becomes
a smaller fraction of total run time. With cost as a concern, an area-conscious
design philosophy would be to choose a bus width of 64 or 128 bits, where we
get the most bang for the buck.

P
ow

er
 (

m
W

)
N

or
m

al
iz

ed
 P

ow
er

 S
av

in
gs

32 64 128 256 512 1024 2048 4096

Bus Width

1x2 2x2 4x2 8x2

20

15

10

5

0

Fig. 5. FFT power as the bus width increases for various tile configurations

0

1

2

3

4

5

6

7

8

9

1x2 2x2 4x2 8x2

Number of Tiles

FFT FIR Viterbi

Fig. 6. Power Savings when using Segmented Buses over Unsegmented Buses

5.3 Impact of Segmented Buses

Segmenting the bus allows two simultaneous, short-distance messages to use
the same bits in the wire. At the low frequencies of the Synchroscalar system,
segmenters are simple transmission gates with little signal restoration or latency
involved. Figure 6 shows that as the number of tiles in the column increases, the
savings from segmentation also increases, because there are more messages that
can traverse the bus at once. Dramatic savings are seen in Viterbi with 8x2 tiles.
Even at 4x2, the applications observe 17-54% power savings.

5.4 Discussion

Our simple design-space exploration has revealed several results that challenge
our intuitions of microprocessor design. Primarily, substantial global intercon­

6

nect makes sense in this domain. Low operating frequencies allow signals to
traverse global buses in a single cycle. Data dependencies and tile power make
the latency of global communication critical. Furthermore, statically-scheduled
segmented buses allow the power and utilization of our interconnect to approx­
imate more specialized interconnects as used in ASICs.

Related Work

The challenges presented by next generation applications in terms of higher data
rates, lower power requirements, shrinking time-to-market requirements, and
lower cost has resulted in a tremendous interest in architectures and platforms
for embedded communication appliances in the past few years. Researchers have
approached the problem from several different angles. The DSP architecture
companies have proposed highly parallel VLIW machines coupled with hardware
accelerators or co-processors for the computation-intensive functions. The TI
OMAP is a good example of this category of solutions. The programmable logic
community has been very active in this area, as well, and there are numerous
architectural proposals that are derivatives of the standard FPGA. The SCORE
project at UC Berkeley [5] and the PipeRench project at CMU [16] are especially
noteworthy. They use the dynamic reconfigurability of field-programmable gate
arrays to exploit power and performance efficiency. The PLEIADES project at
UC Berkeley [21] proposes an interconnection of a low power FPGA, datapath
units, memory, and processors, optimized for different application domains. The
Pleiades researchers conclude that a hierarchical generalized mesh interconnect
structure [22] is most appropriate for their architecture because it balances both
the global and the local interconnect. Our results are in agreement with this
conclusion in general but given that we are targetting streaming computations
such as those encountered in a wirless transceiver, we have greater emphasis on
near-neighbor communication, so we have stayed away from a general mesh.

The adaptive SOC project at University of Massachussets [10] advocates an
array of processors connected by a statically scheduled communication fabric.
They allow different processors to operate at different clock frequencies and
demonstrate significant power savings on video processing benchmarks. The key
differences between this work and Synchronscalar are in the structure and con­
tents of the tiles and the memory architecture. In aSOC the tiles are hardwired
functional blocks such as Viterbi decoder, FFT, DCT etc., while in Synchroscalar
we assume programmable DSPs as the building blocks for the tiles. As a result,
the memory architecture of the system is radically different, changing the data
transfer and communication scheduling problem as well. But, it would be inter­
esting to compare the results between the Synchroscalar and aSOC approaches.

Recently, there has been a revival of interest in locally synchronous and glob­
ally asynchronous (GALS) approach to processor implementation [1] including
the use of multiple clock domains and multiple voltages [11] [17]. The key dif­
ference between GALS approach and the Synchroscalar approach is the restric­
tion of using only rationally related frequencies between different columns. This

7

avoids the use of asynchronous FIFOs with their synchronization overhead. So,
synchroscalar is similar to Numesh [18], rather than the GALS approach.

Synchroscalar’s use of spatial rather than temporal flexibility is somewhat
inspired by the MIT RAW project [20] [9], but our focus on low power and
embedded applications is significantly different. Nevertheless, we expect to be
further inspired by the extensive compiler work from the RAW group. Although
their compiler algorithms are geared towards dynamic general microprocessor
algorithms such as speculation and caching, we expect to leverage their experi­
ences with program analysis and resource allocation.

Another project with a less embedded focus is the Imagine stream processor,
a tile architecture at Stanford [13]. Their experience with streaming applications
will also be invaluable to the design of our high-level software. Our emphasis on
Synchroscalar regions for power reduction and static scheduling of rationally-
clocked communication, however, will add significant challenges to our software
solutions. Furthermore, both Imagine and RAW are focused on large-system
scalability rather than the inexpensive design points of small, embedded systems.
We believe that Synchroscalar’s differing focus in cost and power will lead to
significantly new tradeoffs and design decisions.

Conclusion

The goal of this work was to guide the initial design of tile-based embedded ar­
chitecture. Through simple power models, we found that our original intuitions
regarding interconnect did not apply to the low-frequency, data-dependent na­
ture of our application domain. We found that wide, segmented global buses
give us some of the low latency and flexibility that conventional DSPs lack.
We plan to continue our evaluation of the Synchroscalar architecture through
extensive design and simulation of end-to-end applications. We are confident
that a novel architecture can meet the challenges of tomorrow’s embedded
applications.

Acknowledgements

This work is supported by NSF ITR grants 0312837 and 0113418, and NSF
CAREER and UC Davis Chancellor’s fellowship awards to Fred Chong.

References

1. B. M. Baas. A parallel programmable energy-efficient architecture for computation-
ally intensive DSP systems. In Conference Record of the Thirty-Seventh Asilomar
Conference on Signals, Systems, and Computers, Nov 2003.

2. S. Bhattacharya, P. Murthy, and E. Lee. Software synthesis from dataflow graphs,
1996.

3. S. Bhattacharya, P.	 Murthy, and E. Lee. Synthesis of embedded software from
synchronous dataflow specifications. Journal of VLSI Signal Processing, (21):151–
166, June 1999.

4. J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt.	 Ptolemy: A framework
for simulating and prototyping heterogenous systems. Int. Journal in Computer
Simulation, 4(2):0–, 1994.

5. E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek, and A. DeHon. Stream com­
putations organized for reconfigurable execution (SCORE). In Field-Programmable
Logic and Applications, FPL-2000, pages 605–614, 2000.

6. R. Ho, K. Mai, and M. Horowitz. The future of wires. In Proceedings of the IEEE,
volume 89, pages 490–504, April 2001.

7. R. Kolagotla, J. Fridman, B. Aldrich, M. Hoffman, W. Anderson, M. Allen,
D. Witt, R. Dunton, and L. Booth. High Performance Dual-MAC DSP Archi­
tecture. IEEE Signal Processing Magazine, July 2002.

8. E. A. Lee and D. G. Messerschmitt.	 Static scheduling of synchronous dataflow
programs for digital signal processing. IEEE Transactions on Computers, C-36(1),
January 1999.

9. W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and S. P. Amaras­
inghe. Space-time scheduling of instruction-level parallelism on a raw machine. In
Architectural Support for Programming Languages and Operating Systems, pages
46–57, 1998.

10. J. Liang, S. Swaminathan, and R. Tessier. aSOC: A scalable, single-chip commu­
nications architecture. In IEEE PACT, pages 37–46, 2000.

11. D. Marculescu and A. Iyer.	 Power and performance evaluation of globally asyn­
chronous locally synchronous processors. In D. DeGroot, editor, Proceedings of the
29th International Symposium on Computer Architecture (ISCA-02), volume 30, 2
of Computer Architectuer News, pages 158–170, New York, May 25–29 2002. ACM
Press.

12. T. Mori, B. Amrutur, M. Horowitz, I. Fukushi, T. Izawa, and S. Mitarai.	 A 1v
0.19mw at 100 mhz 2kx16b sram utilizing a half-swing pulsed-decoder and write-
bus architecture in 0.25 µm dual-vt cmos. In Solid-State Conference, 1998, Digest
of Technical Papers, 45th ISSCC 1998 IEEE International, 1998.

13. S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. Lopez-Lagunas, P. R. Mattson,
and J. D. Owens. A bandwidth-efficient architecture for media processing. In
International Symposium on Microarchitecture, pages 3–13, 1998.

14. T. Sakurai and R. Newton. Alpha-Power Law MOSFET Model and Its Applica­
tion to CMOS Inverter Delay and Other Formulas. IEEE Journal of Solid State
Circuits, 25:584–594, April 1990.

15. L. Sarmenta, G. A. Pratt, and S. Ward. Rational clocking. In International Con­
ference on Computer Design, pages 271–278, 1995.

16. H. Schmit, S. Cadambi, M. Moe, and S. Goldstein. Pipeline reconfigurable FPGA.
Journal of VLSI Signal Processing Systems for Signal, Image and Video Technol­
ogy, 24(2):129–146, March 2000.

17. G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas, and
M. L. Scott. Energy-efficient processor design using multiple clock domains with
dynamic voltage and frequency scaling. In HPCA, pages 29–42, 2002.

18. D. Shoemaker, F. Honore, C. Metcalf, and S. Ward.	 Numesh: An architecture
optimized for scheduled communication. Journal of Supercomputing, 10(3), 1996.

19. M. Y. T. Kumura, M. Ikekawa and I. Kuroda. VLIW DSP for Mobile Applications.
IEEE Signal Processing Magazine, July 2002.

20. M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoff­
man, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman,
V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal. The Raw micropro­
cessor: A computational fabric for software circuits and general-purpose programs.
IEEE Micro, 22(2):25–35, Mar./Apr. 2002.

21. H. Zhang, V. Prabhu, V. George, M. Benes, A. Abnous, and J. Rabaey.	 A 1-V
heterogenous reconfigurable DSP IC for wireless baseband digital signal processing.
IEEE Journal of Solid State Circuits, 35:1697–1704, November 2000.

22. H. Zhang, M. Wan, V. George, and J. Rabaey.	 Interconnect Architecture Ex­
ploration for Low Energy Reconfigurable Single-Chip DSP. In Proceedings of the
Workshop on VLSI, Orlando, Florida, April 1999.

23. Y. Zhang, W. Ye, and M. J. Irwin.	 An alternative for on-chip global intercon­
nect: Segmented bus power modeling. In Conference Record of the Thirty-Second
Asilomar Conrference on Signals, Systems and Computers, pages 1062–1065, 1998.

