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Abstract. Embedded devices have hard performance targets and severe 
power and area constraints that depart significantly from our design in­
tuitions derived from general-purpose microprocessor design. This paper 
describes our initial experiences in designing Synchroscalar, a tile-based 
embedded architecture targeted for multi-rate signal processing applica­
tions. 

We present a preliminary design of the Synchroscalar architecture and 
some design space exploration in the context of important signal process­
ing kernels. In particular, we find that synchronous design and substan­
tial global interconnect are desirable in the low-frequency, low-power do­
main. This global interconnect enables parallelization and reduces pro­
cessor idle time, which are critical to energy efficient implementations 
of high bandwidth signal processing. Furthermore, statically-scheduled 
communication and SIMD computation keep control overheads low and 
energy efficiency high. 

Keywords: Low Power Processor, 802.11(a), Programmable DSP Pro­
cessor, tiled-based architectures, embedded processors. 

1 Introduction 

Next-generation embedded applications demand high throughput with low power 
consumption. Current approaches often use Application-Specific Integrated Cir­
cuits (ASICs) to satisfy these constraints. However, rapidly evolving application 
protocols, multi-protocol embedded devices, and increasing chip NRE costs all 
argue for a more flexible solution. In other words, we want the flexibility of a 
programmable DSP with energy efficiency more similar to an ASIC. We propose 
the Synchroscalar architecture, a tile-based DSP designed to efficiently meet 
the throughput targets of applications with multi-rate computational subcom­
ponents. 

In designing Synchroscalar, we focused on three key features of ASICs that 
lead to their energy efficiency – high parallelism, custom interconnect, and low 
control overhead. Parallelism is important in that it allows the frequency of an 
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architecture to be reduced linearly with investment in logic, modulo communica­
tion. This linear reduction, when coupled with voltage scaling, yields a quadratic 
decrease in power and a linear decrease in system energy. Low communication 
latency, however, is important in maintaining the parallelism necessary for these 
energy gains. ASICs accomplish low latency through custom interconnect. We 
find that, in the low frequency domain, a tile-based processing architecture can 
use segmentable global busses to achieve low latency with high energy efficiency. 
Control overhead of the busses is kept low by using statically scheduled segmen­
tation and data motion. Control overhead of the tiles can be reduced by grouping 
columns into SIMD execution units. 

In the remainder of this paper, we provide an overview of the Synchroscalar 
architecture to establish the context of our study. Then we provide some simple 
tile and interconnect models which we used to guide our design. We use these 
models to conduct an analysis of FIR, FFT, Viterbi, and AES kernels running on 
different points in the design space. We discuss our intuitions from this analysis 
and conclude with future work for our project. 

Synchroscalar Architecture 

In this section, we introduce the proposed Synchroscalar architecture and the 
rationale behind it. As noted in the previous section, we were motivated by 
the need for an embedded architecture with the flexibility of a general purpose 
processor (DSP) and the power efficiency of an application specific integrated 
circuit. We examined ASIC implementations of Viterbi, FFT, AES, FIR and 
found that the key sources of the power efficiency of an ASIC are 

– Parallelism, multiple clock and voltage domains 
– Customized interconnect mirroring the dataflow inherent in the computation 
– Distributed memory to provide high bandwidth 
– Customized functional blocks to implement the computation 
– Absence of instructions, removing instruction cache accesses and decode logic 

If we want to approach the efficiency of an ASIC, our architecture should 
retain as many of the key strengths of an ASIC as possible. This directs us 
towards a tiled-based multiprocessor architecture with multiple clock and voltage 
domains, reconfigurable interconnect, and low-overhead SIMD control. 

Abstractly, Synchroscalar is a two dimensional array of processing elements 
(PEs), each column potentially operating at different fixed frequencies and hence 
voltage. There is a single vertical bus connecting the elements in a column, and 
these vertical buses are connected by a single horizontal bus for communication 
between columns. In reality, in order to reduce the distance between PEs in a 
single column, the column is folded over. There are PEs on both sides of the 
vertical bus. That is the basis for Synchroscalar, as shown in Figure1 (we do not 
plan to support dynamic frequency/voltage scaling at present). Because of the 
data-parallel nature of computation, each PE can be viewed as one functional 
unit of a SIMD machine. There is a SIMD controller for each pair of columns. 
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Fig. 1. The Synchroscalar Architecture 

Each PE (tile) has a single DSP engine with two functional units, SRAM, register 
file, and communication interfaces. For brevity, we will refer to this cluster of 
bus, two columns, and SIMD controller as a single column. Although the tiles are 
SIMD, the communication patterns are not identical, so programmable engines 
are required for controlling communication. 

2.1 Programming Model 

The architecture of Synchroscalar is motivated by Synchronous Dataflow (SDF) 
model of computation [2, 3, 4]. DSP design environment tools created by Synop­
sys and Cadence use this model. 

SDF is a subset of general purpose dataflow that restricts the number of 
data values produced and consumed by an actor to be a constant. The restric­
tion imposed by the SDF model offers the advantage of static scheduling and 
decidability of key verification problems such as bounded memory requirements 
and deadlock avoidance [8] Synchroscalar can be viewed as a architecture to 
support SDF computation model efficiently. This predictability is crucial to pro­
viding the generality of programming units while retaining much of the efficiency 
of ASICs. 

2.2 Clock and Voltage Domains 

Clock and voltage domains are per-column, with the task parallelized within 
the column. Tasks can be mapped to different columns depending on their com­
putational requirements. This mapping is crucial to performance, because once 
set, the voltage and frequency of a column may not change. Mapping algorithms 
must be developed to provide minimize communication and maximize power 
savings. Computationally-intensive tasks are performed at the best available 



frequency and voltage that meets the performance requirements. Other tasks 
can be mapped to columns operated at lower frequency and voltage. 

We employ rational clocking[15] for the frequencies of different columns. If 
fm and fn are the frequencies of two columns of PEs then fm/fn = M/N where 
M and N are integers. While this allows a wide range of selection of frequencies, 
the relation between the two frequencies provides the predictable communication 
points between the domains required for statically scheduled communication. 
Rational clocking eliminates the synchronization overhead with asynchronous 
or GALS systems while still giving us the flexibility of different frequency do­
mains. 

ASICs benefit from high-bandwidth, low-latency communication provided by 
custom interconnects. We exploit low clock frequencies and static scheduling to 
maximize throughput while minimizing latency. Static scheduling is required 
to maintain guaranteed performance. Although the clock frequencies are low 
enough to traverse a column in a single cycle, we segment the bus in order 
to increase the usable bandwidth. Segment controllers are turned on or off by 
signals from a central per-column segment controller. As shown in Fig.1, the 
bus connecting two columns of PEs is partitioned into segments [23] by segment 
controllers. 

The column segment controllers are small state machines which can be re-
configured for each algorithm. By suitably controlling the segment controllers, 
the bus can perform several parallel communications. For instance, if all the 
controllers are turned off, the bus becomes a broadcast bus, all PEs able to re­
ceive the same data. Alternatively, two messages can pass between neighboring 
columns using the same wires in different segments if the segment controller be­
tween them is on. The tasks are mapped to the tile architecture such that the 
communication between the PEs is minimized. Highly communicating tasks are 
assigned to neighboring PEs. This reduces the number of segments the data has 
to travel, and hence saves power. 

2.3 SIMD Control 

In order to reduce the cost of instruction fetch and decode, a single SIMD con­
troller sends instructions to the PEs in a column. The SIMD controller performs 
all control instructions, only forwarding computation instructions to the PEs. 
To communicate data (used for conditional branches), the SIMD controller is 
connected to the segmented bus with the PEs. 

In order to use branch prediction, there needs to be a mechanism to squash 
instructions that have already been sent to the processing elements. Instead, 
we provide a short pipeline in the control unit to calculate branches quickly, 
and delay instructions from reaching the processing elements. This introduces 
a single-cycle stall for each conditional branch. For zero-overhead loops, there 
is still no delay, because the PC is used for decision-making, not the actual 
instruction. Our implementation incurs no extra overhead for these loops which 
are critical to DSP performance. 



3 Framework 

With the Synchroscalar architecture and motivation for context, we now present 
a general framework within which to evaluate the surrounding design space. 
The framework will use some simple first-order models of tile and interconnect 
power, validated with datapoints in the literature and VHDL designs of custom 
Synchroscalar elements. Although our models are by necessity abstract enough to 
cover the design space, we argue that the important scaling effects are captured 
and that our qualitative conclusions are valid. 

3.1 Tile Model 

We use the voltage frequency scaling given by the Newton’s alpha law 
f= k* (Vdd−Vt)α 

[14]. This equation gives the voltage-frequency scaling for a given V dd  
technology. We have modeled a ring oscillator in SPICE using the Berkeley 
Predictive Technology Model (http://www-device.eecs.berkeley.edu/ ptm/) to 
get a better feel for the acceptable range of supply voltage and threshold 
voltage. This enables us to project the models into 90 nm and 45 nm 
technology. 

Our tile is based on the low power 16-bit VLIW DSPs similar to the Intel-
ADI MSA-based Blackfin[7] and the SPXK5 from NEC [19]. The minimum core 
power is assumed to be 0.07mW/MHz similar to [19]. (We are in the process of 
finishing a detailed VHDL model for the tile and and validating this assumption). 
The SRAM power is given 0.02mA/MHz for 32kB of memory. This number was 
obtained from the circuit given in [12], by scaling for technology and size. 

3.2 Interconnect Model 

The interconnect model is largely based on the data given in [6]. We find that 
the gate and drain capacitances are orders of magnitude smaller than the wire 
capacitance per unit length. We thus model only the wire capacitance. The 
drain-source capacitance of the segmenters and the gate and drain capacitances 
of the drivers are ignored. In 0.18u tech, the gate capacitance of a minimum 
sized transistor is about 1-2fF [6]. This value is expected to remain constant 
over shrinking process technologies. The projected value, in 0.13u tech, of wire 
capacitance of a semi-global wire, per unit length is 387fF/mm. The chip length 
is about 10mm and hence the wire capacitance is about 3870fF. This suggests 
that even if the drivers and repeaters are 10-times the minimum size, their 
capacitance is about 20fF. If there are 8 drivers for each bus, it adds only 160fF 
to the wire capacitance. 

We are in the process of completing VHDL models for the segment controllers, 
SIMD controller and the communication interfaces. We plan to augment our 
results with this in the future, but we believe that they are unlikely to change 
the major trends in the results reported here. 



4 Applications 

The main objective of this paper is an exploration of the design space defined 
by the goals of the Synchroscalar architecture. Specifically, we are interested in 
the impact of various architectural parameters such as the number of tiles, the 
interconnect structure, the width of the buses on the power while meeting the 
performance constraints of an application. 

For an initial driving application, we choose the 54 Mbps 802.11(a) wireless 
LAN physical layer. This is currently outside the scope of DSP processors and is 
currently done with ASICs or DSPs with co-processors for the computationally 
intensive applications. The computationally challenging aspects of 802.11(a) are 
Viterbi decoder, FFT, and large FIR filters for equalization. We will evaluate 
each of these function on the Synchroscalar architecture. We derive the perfor­
mance (throughput) targets for each function so that we can meet the 54 Mbps 
data rate. In addition we also use the Advanced Encryption Standard (AES) 
as a benchmark as it contains very different kind of computation, intensive on 
bit manipulation and table look-ups, to see how our architecture fares on such 
workloads. 

The FIR filter is used in the equalization function in the OFDM receiver. We 
model a 128-tap FIR filter and assume that the data rate is 64 Mbps. We also 
model a 128 point FFT and assume the data rate is 256 Mbps. FFT and IFFT 
are key components of the OFDM receiver. For the Viterbi Decoderwe assume 
the constraint length for the decoder K=7 and the data rate is 54 Mbps. This 
is the most computation intensive part of the OFDM receiver. 

Our initial experimental procedure is as follows: 

1. Write the function in C and verify using Blackfin Visual DSP simulation 
environment 

2. Replace the performance critical sections of the code with Blackfin assembly 
code, to achieve optimal performance. This corresponds to the implementa­
tion on a single tile. 

3. Next map the application into multiple tiles and using a homebrewed tool 
to assist in pruning the search space. 

4. Manually insert the communication instructions 
5. Estimate the clock cycle count for the application. 
6. Using the power model for the interconnect and the tile described in the 

previous section, estimate the power. The parameterized power models were 
described in Excel and that was used to generate the graphs reported in the 
next section. 

While an extensive cycle-level simulation infrastructure is currently under 
development, we felt that hand-counts were appropriate for guiding the early 
design of the architecture. In particular, our driving signal processing applica­
tions are very amenable to hand-analysis as their computations are focused on 
a small number of kernels. 
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5 Results 

Our results focus on several key design questions. We explore the parallelism 
available in each algorithm by varying the number of processing tiles, the com­
munication bandwidth necessary through varying global bus widths, and the 
power efficiency of communication by exploring segmented buses. 
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5.1 Architectural Configurations 

Figure 2 shows that as the number of tiles increases, there is the traditional 
tradeoff between computation and communication, but performance is not our 
goal. As the performance increases, we lower the clock frequency to maintain 
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a constant performance target, allowing a decrease in voltage. Note that this 
is not done dynamically. Each experiment with a different number of tiles is 
a completely different instance of the program. So, for each instance, we pro­
vide the lowest frequency / voltage to maintain the same performance. The 
tradeoff is then between adding processors, providing a constant increase in-
power consumption, and reducing the voltage, providing a quadratic decrease in 
performance. 

All three applications observe an initial decrease in total power, but by the 
8x2 tile configuration, the decreasing returns of parallelization is outweighing 
the benefits voltage scaling. Thus we should provide either 2x2 or 4x2 tiles in 
each column. 

5.2 Impact of Bus Width 

We then vary bus width. Data dependencies prevent effective overlap of commu­
nication and computation. This makes fast communication critical to efficiency, 
else processor idle time will lead to wasted power. We note that processor power 
accounts for the majority of our system power and that it is impractical to 
turn processors on and off for periods on the order of a dozen cycles. Conse­
quently, we see in Figures 3 - 5 that increasing bus width decreases processor 
idle time, which decreases system power. For FIR, the power begins increas­
ing again at 256 bits because FIR can not take advantage of the increased 
width. 

We further note that Amdahl’s law comes into play, and we see the greatest 
power savings as we initially double bus width, cutting communication latencies 
in half. As we continue to invest in bus bandwidth, processor idle time becomes 
a smaller fraction of total run time. With cost as a concern, an area-conscious 
design philosophy would be to choose a bus width of 64 or 128 bits, where we 
get the most bang for the buck. 
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5.3 Impact of Segmented Buses 

Segmenting the bus allows two simultaneous, short-distance messages to use 
the same bits in the wire. At the low frequencies of the Synchroscalar system, 
segmenters are simple transmission gates with little signal restoration or latency 
involved. Figure 6 shows that as the number of tiles in the column increases, the 
savings from segmentation also increases, because there are more messages that 
can traverse the bus at once. Dramatic savings are seen in Viterbi with 8x2 tiles. 
Even at 4x2, the applications observe 17-54% power savings. 

5.4 Discussion 

Our simple design-space exploration has revealed several results that challenge 
our intuitions of microprocessor design. Primarily, substantial global intercon­
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nect makes sense in this domain. Low operating frequencies allow signals to 
traverse global buses in a single cycle. Data dependencies and tile power make 
the latency of global communication critical. Furthermore, statically-scheduled 
segmented buses allow the power and utilization of our interconnect to approx­
imate more specialized interconnects as used in ASICs. 

Related Work 

The challenges presented by next generation applications in terms of higher data 
rates, lower power requirements, shrinking time-to-market requirements, and 
lower cost has resulted in a tremendous interest in architectures and platforms 
for embedded communication appliances in the past few years. Researchers have 
approached the problem from several different angles. The DSP architecture 
companies have proposed highly parallel VLIW machines coupled with hardware 
accelerators or co-processors for the computation-intensive functions. The TI 
OMAP is a good example of this category of solutions. The programmable logic 
community has been very active in this area, as well, and there are numerous 
architectural proposals that are derivatives of the standard FPGA. The SCORE 
project at UC Berkeley [5] and the PipeRench project at CMU [16] are especially 
noteworthy. They use the dynamic reconfigurability of field-programmable gate 
arrays to exploit power and performance efficiency. The PLEIADES project at 
UC Berkeley [21] proposes an interconnection of a low power FPGA, datapath 
units, memory, and processors, optimized for different application domains. The 
Pleiades researchers conclude that a hierarchical generalized mesh interconnect 
structure [22] is most appropriate for their architecture because it balances both 
the global and the local interconnect. Our results are in agreement with this 
conclusion in general but given that we are targetting streaming computations 
such as those encountered in a wirless transceiver, we have greater emphasis on 
near-neighbor communication, so we have stayed away from a general mesh. 

The adaptive SOC project at University of Massachussets [10] advocates an 
array of processors connected by a statically scheduled communication fabric. 
They allow different processors to operate at different clock frequencies and 
demonstrate significant power savings on video processing benchmarks. The key 
differences between this work and Synchronscalar are in the structure and con­
tents of the tiles and the memory architecture. In aSOC the tiles are hardwired 
functional blocks such as Viterbi decoder, FFT, DCT etc., while in Synchroscalar 
we assume programmable DSPs as the building blocks for the tiles. As a result, 
the memory architecture of the system is radically different, changing the data 
transfer and communication scheduling problem as well. But, it would be inter­
esting to compare the results between the Synchroscalar and aSOC approaches. 

Recently, there has been a revival of interest in locally synchronous and glob­
ally asynchronous (GALS) approach to processor implementation [1] including 
the use of multiple clock domains and multiple voltages [11] [17]. The key dif­
ference between GALS approach and the Synchroscalar approach is the restric­
tion of using only rationally related frequencies between different columns. This 
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avoids the use of asynchronous FIFOs with their synchronization overhead. So, 
synchroscalar is similar to Numesh [18], rather than the GALS approach. 

Synchroscalar’s use of spatial rather than temporal flexibility is somewhat 
inspired by the MIT RAW project [20] [9], but our focus on low power and 
embedded applications is significantly different. Nevertheless, we expect to be 
further inspired by the extensive compiler work from the RAW group. Although 
their compiler algorithms are geared towards dynamic general microprocessor 
algorithms such as speculation and caching, we expect to leverage their experi­
ences with program analysis and resource allocation. 

Another project with a less embedded focus is the Imagine stream processor, 
a tile architecture at Stanford [13]. Their experience with streaming applications 
will also be invaluable to the design of our high-level software. Our emphasis on 
Synchroscalar regions for power reduction and static scheduling of rationally-
clocked communication, however, will add significant challenges to our software 
solutions. Furthermore, both Imagine and RAW are focused on large-system 
scalability rather than the inexpensive design points of small, embedded systems. 
We believe that Synchroscalar’s differing focus in cost and power will lead to 
significantly new tradeoffs and design decisions. 

Conclusion 

The goal of this work was to guide the initial design of tile-based embedded ar­
chitecture. Through simple power models, we found that our original intuitions 
regarding interconnect did not apply to the low-frequency, data-dependent na­
ture of our application domain. We found that wide, segmented global buses 
give us some of the low latency and flexibility that conventional DSPs lack. 
We plan to continue our evaluation of the Synchroscalar architecture through 
extensive design and simulation of end-to-end applications. We are confident 
that a novel architecture can meet the challenges of tomorrow’s embedded 
applications. 
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