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de Vries behavior of the electroclinic effect in the smectic-A� phase near a biaxiality-induced 
smectic-A�–smectic-C� tricritical point 
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Using a generalized Landau theory involving orientational, layering, tilt, and biaxial order parameters we 
analyze the smectic-A� and smectic-C� �Sm-A�–Sm-C�� transitions, showing that a combination of small 
orientational order and large layering order leads to Sm-A�–Sm-C� transitions that are either continuous and 
close to tricriticality or first order. The model predicts that in such systems the increase in birefringence upon 
entry to the Sm-C� phase will be especially rapid. It also predicts that the change in layer spacing at the 
Sm-A�–Sm-C� transition will be proportional to the orientational order. These are two hallmarks of 
Sm-A�–Sm-C� transitions in de Vries materials. We analyze the electroclinic effect in the Sm-A� phase and 
show that as a result of the zero-field Sm-A�–Sm-C� transition being either continuous and close to tricriticality 
or first order �i.e., for systems with a combination of weak orientational order and strong layering order�, the 
electroclinic response of the tilt will be unusually strong. Additionally, we investigate the associated electri
cally induced change in birefringence and layer spacing, demonstrating de Vries behavior for each, i.e., an 
unusually large increase in birefringence and an unusually small layer contraction. Both the induced changes in 
birefringence and layer spacing are shown to scale quadratically with the induced tilt angle. 

DOI: 10.1103/PhysRevE.80.011703	 	 PACS number�s�: 64.70.M�, 61.30.Gd, 61.30.Cz, 61.30.Eb 

I. INTRODUCTION	 	 Ferroelectric de Vries materials have generated consider
able excitement because in the Sm-A� phase they exhibit an 

A. Background and motivation unusual electroclinic effect: a very large reorientation of the 
In the last decade there has been significant experimental optical axis with a very small associated layer contraction. 

and theoretical interest in the response of de Vries materials Additionally, there is a very large increase in the birefrin
to externally applied electric fields �1�. In the absence of gence. Aside from being scientifically interesting, such an 
an applied field, de Vries materials exhibit a electroclinic effect makes ferroelectric de Vries materials 
smectic-A–smectic-C �Sm-A–Sm-C� �or, if chiral, a strong candidates for liquid crystal devices that have large 
Sm-A�–Sm-C�� transition with an unusually small change in electro-optical response without the associated problem of 
layer spacing and a significant increase in birefringence upon chevron defects. 
entry to the Sm-C phase. The increase in birefringence is There are some details of the electro-optical response in 
associated with an increase in orientational order. Some de the Sm-A� phase of de Vries materials that merit further dis-
Vries materials exhibit another unusual feature, namely, a cussion. An important characterization of the electroclinic 
birefringence that varies nonmonotonically with temperature effect is the response curve ��E�, where � is the tilt of the 
�2,3�. Specifically, the birefringence decreases as the optical axis and E is the strength of the applied electric field. 
Sm-A�–Sm-C� transition is approached from either the low- Different types of electroclinic response curves are shown 
or the high-temperature side. de Vries materials generally schematically in Fig. 1 and it can be seen that they are gen
seem to have unusually small orientational order and follow erally nonlinear �9,10�. As shown in Fig. 1�a�, for systems 
the phase sequence isotropic Sm-A�–Sm-C� . In several de with a continuous Sm-A�–Sm-C� transition ��E� is also con-
Vries materials, the Sm-A�–Sm-C� transition seems to occur tinuous. As is typical for the electroclinic effect, the curva

. 	 d2�	 d�close to a tricritical point �4–6� ture 
dE2 �0 so the susceptibility �= is largest at E=0. The 

For chiral liquid crystals in general, the application of an 
dE 

zero-field susceptibility �0 diverges as the temperature T is 
electric field to the Sm-A� phase induces a tilt of the average lowered toward the Sm-A�–Sm-C� transition temperature, 
molecular direction, relative to the layer normal, and hence TAC. For systems with a first-order Sm-A�–Sm-C� transition 
the optical axis. This phenomenon, known as the electro the situation is quite different. For temperatures above a criti
clinic effect, was first predicted using a symmetry-based ar cal temperature Tc the response is continuous but exhibits 
gument �7� and was then observed experimentally �8�. The what has been termed “superlinear growth.” As shown in 
electroclinic effect led to the development of electro-optic Fig. 1�b�, this corresponds to positive curvature at small 
devices using ferroelectric, i.e., chiral, liquid crystals. How- fields followed by negative curvature at large fields. It can 
ever, the quality of these devices has been limited by the also be seen that � is largest at the field where the curvature 
formation of chevron defects, which result from a significant changes sign. As T is reduced toward Tc this value of � 
layer contraction associated with the electrically induced mo diverges. For T�Tc the response becomes discontinuous, as 
lecular tilt. shown in Fig. 1�b�, and there is now a jump in the � at Ej. 

The value of Ej decreases continuously to zero as T is low
ered toward TAC. The value of �0 remains finite as T is low

*ksaunder@calpoly.edu	 	 ered toward TAC. 
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T(iv) = TAC < T(iii) < T(ii) < T(i) 

E 
(a) (b) 

FIG. 1. �Color online� A schematic representation of different types of electroclinic response curves. �a� ��E� for materials with 
continuous Sm-A�–Sm-C� transitions. The curves �i�–�iv� have progressively smaller T with curve �iv� having T=TAC. The susceptibility 
�= d� is largest at E=0, and monotonically decreases as E is increased. The response increases as temperature, T, is lowered toward the dE 
Sm-A�–Sm-C� transition temperature, TAC, with the zero-field susceptibility �0 diverging as T approaches TAC. �b� ��E� for materials with 
first-order Sm-A�–Sm-C� transitions. Curve �i� shows the response for T� Tc, a critical temperature. In this case the response is continuous 
but “superlinear,” corresponding to positive curvature at small fields followed by negative curvature at large fields. � is largest where the 
curvature changes sign. As T is lowered toward Tc this value of � diverges. On curve �ii�, corresponding to T=Tc, � diverges at Ec. For 
T�Tc the response becomes discontinuous, and � jumps at field Ej. The value of Ej decreases continuously to zero as T is lowered toward 
TAC. Curves �iii� and �iv� correspond to TAC�T� Tc and T=TAC, respectively. The value of �0 remains finite as T is lowered toward TAC. 

The response of the birefringence �n�E� in the Sm-A� 

phase is also nonlinear and is qualitatively similar to the 
response of the tilt, ��E� �9,10�. For systems with a continu
ous Sm-A�–Sm-C� transition, �n�E� is also continuous, 
while for systems with a first-order Sm-A�–Sm-C� transition, 
�n�E� is continuous with superlinear growth for T�Tc and 
is discontinuous for T�Tc, exhibiting a jump at Ej. Remark
ably, when �n�E� is plotted parametrically against �2�E�, the 
scaling is essentially linear, regardless of the nature �continu
ous or first order� of the transition �9,10�. Equally remarkable 
is the fact that for a given system, the slope of the linear 
scaling varies very little with temperature. This means that 
for any de Vries material the response of the birefringence is 
well fitted by �n�E�=�n�0�+k�T��2�E�, where k�T� is a 
material-dependent parameter that has only a very weak tem
perature dependence. There is less published data on the re
sponse of the layer spacing due to the application of an elec
tric field, other than to show that it decreases with increasing 
field and is unusually small �11�. 

To date, there have been two theoretical approaches to 
modeling the unusual electroclinic effect that is displayed by 
de Vries materials. The first �6,12–14� is to use a Langevin 
model �originally proposed by Fukuda in the context of 
thresholdless antiferroelectricity �15�� in conjunction with 
the assumption of a “hollow cone” distribution of the mo
lecular directions. For the sake of brevity we refer to this 
simply as the hollow cone Langevin model. For a hollow 
cone distribution, the angle � between the long axes of the 

molecules and the layer normal N̂ has a preferred value �A. 
In the absence of a field the distribution of azimuthal angles, 
i.e., the projections of the molecular axes onto the layering 
plane, is uniform so that the average molecular direction, the 

direction n̂, is parallel to N̂. One motivation for the use of 
such a distribution is that it would explain the absence of 
layer contraction at the Sm-C� transition because the already 

tilted molecules need only to align azimuthally in order to 

reorient n̂ away from N̂ by an angle �A. However, it has been 
pointed out �16� that the hollow cone distribution would have 
a large negative value of S4 �corresponding to the P4�cos �� 
term in an expansion of the distribution in Legendre polyno
mials�, whereas no Sm-A� materials have been found with 
negative values of S4 �de Vries materials seem in general to 
have very small values of S4�. The hollow cone Langevin 
model yields predictions for the electrical response of the 
director �via the response of the tilt and azimuthal angles� 
and the birefringence, but not layer spacing, per se. Rather, it 
is assumed that the response of the layer spacing will be 
small due to the assumption of a hollow cone distribution. 

The hollow cone Langevin model cannot describe sys
tems with response curves of the type shown in Fig. 1�b�, 
i.e., systems with first-order transitions. This has motivated 
the use of a second type of model, namely, that initially 
presented by Bahr and Heppke in their analysis of a field-
induced critical point near the Sm-A�–Sm-C� transition �17�. 
While this model provides an accurate description of the re
sponse curves, it does not make any predictions regarding 
the electrical response of the birefringence or layer spacing. 
Additionally, it does not make any connection to the de Vries 
behavior of the zero-field Sm-A�–Sm-C� transition. 

B. Summary of results 

In this article we present and analyze a model that is a 
chiral extension of the generalized Landau mean-field theory 
that was presented in Refs. �18,19�. This model is based on 
an expansion of the free-energy density in powers of orien
tational, layering, tilt, and biaxial order parameters. There are 
chiral couplings of these order parameters to an externally 
applied field, the effects of which include the electroclinic 
effect. Our analysis of this chiral model predicts all of the 
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main experimentally observed features of de Vries materials 
outlined above: the de Vries behavior �near the zero-field 
Sm-A�–Sm-C� transition� of layer spacing d and birefrin
gence �n, as well as the nonmonotonicity of �n; proximity 
of the transition to a tricritical point; the unusually strong 
electrical response of tilt ��E� and birefringence �n�E� in the 
Sm-A� phase, along with unusually small layer contraction; 
the linear scaling of �n�E� vs �2�E�, regardless of the nature 
of the zero-field Sm-A�–Sm-C� transition. Furthermore, all 
of these features can be accounted for if the system possesses 
unusually small orientational order and strong layering order, 
a combination thought prevalent among de Vries materials. 
These results do not rely on any particular assumptions about 
the distribution of the molecular directions, other than that 
the distribution corresponds to small orientational order. Ref
erence �16� presents further details on possible molecular 
distributions leading to small orientational order but non
negative S4 value. 

1. Zero-field Sm-A�–Sm-C� transition 

Figure 2 shows the Sm-A�–Sm-C� phase boundary in 
���2− M space, where ��� and M are the magnitudes of the 
layering and orientational order parameters, respectively. 
They will be defined more rigorously in Sec. II A. It has  
been observed that the orientational order in de Vries sys
tems has only a very weak temperature dependence. Along 
with the fact that the nematic phase does not occur for all 
known de Vries materials, this implies �18,19� that the tran
sition to the Sm-C� phase is driven by an increase in the 
layering as the temperature decreases. Thus, in the phase 
diagram of Fig. 2�a�, varying the temperature corresponds to 
a horizontal path. It is important to note that the negative 
slope of the Sm-A�–Sm-C� phase boundary implies that the 
smaller the value of M, the larger the value of ��� at which 
the Sm-A�–Sm-C� transition occurs. This is consistent with 
the observation �1,16� that de Vries smectics generally have 
such unusually weak orientational order that their stabiliza
tion requires strong layering order, perhaps via microsegre
gation. 

The zero-field model predicts that a Sm-A�–Sm-C� tric
ritical point results due to a coupling between biaxiality and 
tilt. The effect of biaxiality is stronger in systems with small 
M and large ��� so that a tricritical point and associated 
neighboring first-order transition can be accessed by systems 
with sufficiently small orientational order, M �MTC. Here 
MTC is the value of the orientational order at which the sys
tem exhibits a tricritical Sm-A�–Sm-C� transition. This is 
shown in the phase diagram of Fig. 2. 

As usual, for systems with continuous Sm-A�–Sm-C� 

transitions, the growth of � upon entry to the Sm-C� phase 
scales like �� �t��, where t= T

T −1 is the reduced tempera
AC 

ture and TAC is the Sm-A�–Sm-C� transition temperature 
�20�. Away from the tricritical point the scaling is XY like, so 
�=0.5, and at the tricritical point �=0.25, implying a more 
rapid growth of � at tricriticality, as shown in Fig. 2�b�. In  
the Sm-C� phase, for M �MTC, there is a crossover in the 
scaling from XY like to tricritical at some reduced tempera
ture t��M�. As  M is lowered toward MTC this crossover t� 
shrinks to zero. For M0 �MTC the transition Sm-A� to Sm-C� 
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(a)
 

(b)
 


FIG. 2. �a� The phase diagram in ���2-M space near the tricriti
cal point ���TC�2 , MTC�. The quantity M is a measure of how much 
orientational order the system possesses and for de Vries materials 
is effectively athermal. The quantity ��� is a measure of the strength 
of the layering. It is a monotonically decreasing function of tem
perature so that for a given material, decreasing the temperature 
corresponds to moving horizontally from left to right. The solid line 
represents the continuous Sm-A�–Sm-C� boundary while the dashed 
line represents the first-order Sm-A�–Sm-C� boundary. These two 
boundaries meet at the tricritical point ���TC�2 , MTC�. The dotted 
line indicates the region in which the behavior crosses over from 
XY like to tricritical. The region in which the behavior is XY like 
shrinks to zero as the tricritical point is approached. At the tricritical 
point the slopes of the first-order and continuous Sm-A�–Sm-C� 

boundaries are equal but the curvatures are not. Also shown, as 
double ended arrows, are the three distinct classes of transitions: XY 
like, tricritical, and first order. �b� The tilt angle � as a function of 
reduced temperature t��1− T

T � near the Sm-A�–Sm-C� transition 
AC 

temperature TAC, i.e., for �t��1. Upon entry to the Sm-C� phase the 
growth of the tilt angle scales like �t�1/2 for a mean-field XY-like 
transition. For a tricritical transition it scales like �t�1/4 and is thus 
more rapid. For a first-order transition there is a jump in the tilt 
angle upon entry to the Sm-C� phase. 

is first order and there is a discontinuous jump in � at the 
transition, also shown in Fig. 2�b�. 

The behavior of the birefringence near the zero-field 
Sm-A�–Sm-C� transition is essentially the same as that for 
the Sm-A–Sm-C transition. This behavior is best described in 

�n−�nACterms of the fractional change in birefringence �n� �nAC 
, 

where �nAC is the birefringence in the Sm-A� phase right at 
the Sm-A�–Sm-C� boundary. As discussed in Ref. �18� we 
find that upon entry to the Sm-C� phase, for any of the three 
types of transitions �XY like, tricritical, and first order�, �n of 
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a de Vries type material will grow according to �n��2. 
While the dependence of �n on � is the same for all three 
types of transitions, its dependence on temperature is not the 
same because, as shown in the Fig. 2�b�, � scales differently 
with temperature for each type of transition. For an XY-like 
transition the growth of �n will be linear, ��t�, while for a 
transition at tricriticality it scales like �t�1/2 and is thus more 
rapid. For a first-order transition there will be a jump in the 
tilt angle and, therefore, an associated jump in �n, although 
near tricriticality, where the transition is only weakly first 
order, the jump will be small. Thus, the rapid growth of 
birefringence observed in de Vries materials can be attributed 
to the proximity of the system’s Sm-A�–Sm-C� transition to a 
tricritical point, which as discussed above, can in turn be 
attributed to unusually small orientational order. Addition
ally, we predict the possibility of a weakly temperature-
dependent birefringence that decreases as the zero-field 
Sm-A�–Sm-C� transition is approached from the Sm-A� 

phase, which as discussed above, is an unusual feature that 
has been observed experimentally �2,3�. 

Similarly, the behavior of the layer spacing d near the 
zero-field Sm-A�–Sm-C� transition is essentially the same as 
that for the Sm-A–Sm-C transition, and is best described in 
terms of the layer contraction �d��dAC−dC� /dAC, where dAC 
and dC are the layer spacing in the Sm-A� phase �right at the 
Sm-A�–Sm-C� boundary� and in the Sm-C� phase, respec
tively. We find that for any of the three possible types of 
transitions, �d�M0�2. Thus, for unusually small orienta
tional order M0, the layer contraction is unusually small, and 
therefore de Vries like. 

2. Electroclinic effect in the Sm-A� phase 

With the application of an electric field of strength E, we  
show that our generalized Landau model predicts the follow
ing relationship between the induced tilt, �, and E: 

E = �e�t,M,d�� + �e�M,d��3 + �e�M,d��5. �1� 

This relationship is completely analogous to that presented 
by Bahr-Heppke in the context of a field-induced critical 
point near the Sm-A�–Sm-C� transition �17�. However, our 
derivation of Eq. �1� from the more basic level of a general
ized Landau theory �in terms of layering and orientational 
order parameters� allows us to relate the coefficients 
�E�t , M , d�, �E�M ,d�, and �E�M ,d� to the orientational or
der, M, and the layer spacing, d, in the system. This allows 
us to do two important things. First, we can determine the 
nature of the response ��E� �i.e., continuous with decreasing 
slope, superlinear or discontinuous� based on the degree of 
orientational order M in the system. Second, using Eq. �1� 
along with the rest of the generalized free energy, we can 
determine the electrical response of the birefringence �which 
is proportional to the M� and the layer spacing d. 

The nature of the response depends crucially on the sign 
of �e�M ,d�. We find that �e�M ,d�� �M − MTC�. Thus, for 
sufficiently large orientational order M �MTC, i.e., for sys
tems with a continuous Sm-A�–Sm-C� transition, �e�0 and 
the response is continuous with susceptibility decreasing as 
E is increased. The response at the continuous Sm-A�–Sm-C� 

transition for small fields scales like ��E1/�. Away from tri

(a) (b) 

FIG. 3. �a� A plot of the fractional change of the birefringence 
due to applied electric field, �n�E��  �n�E�−�n�0� versus the square of �n�0� 
the induced tilt, �2�E�. For any type of transition �and hence any 
type of response of ��E�� we find that the scaling of �n�E� with 
�2�E� is linear. The model predicts the possibility of a weakly 
temperature-dependent slope ��T�. �b� A plot of the layer contrac
tion due to applied electric field, �d�E��  d�E�−d�0� versus the square d�0� 
of the induced tilt, �2�E�. For any type of transition �and hence any 
type of response of ��E�� we find that the scaling of �d�E� with 
�2�E� is linear. The slope of the scaling is proportional to ME=0, the 
value of the zero-field orientational order, which for de Vries mate
rials is unusually small. Two plots are shown, one for a system with 
small orientational order ME=0 �1, for which the contraction will 
be small, and one for a system with strong orientational order 
ME=0 �1, for which the contraction will be sizable. 

criticality �M �MTC� �=3 while at tricriticality �M = MTC�� 
=5 and the response is significantly stronger. For sufficiently 
small orientational order M �MTC, i.e., for systems with a 
first-order Sm-A�–Sm-C� transition, �e�0. In this case for 
sufficiently large temperature T�Tc the response is superlin
ear, while for T�Tc the response curve ��E� becomes S 
shaped and there is a jump in � as the field is increased 
through Ej. At  T=Tc the susceptibility diverges at Ec, and, as 
shown by Bahr and Heppke, the corresponding point 
�Tc ,Ec ,��Tc ,Ec�� is a critical point. Thus, like the rapid 
growth of the zero-field birefringence at the Sm-A�–Sm-C� 

transition, the strong electrical response of the tilt in de Vries 
materials can be attributed to the proximity of the system’s 
Sm-A�–Sm-C� transition to a tricritical point. This can in 
turn be attributed to the unusually small orientational order 
of de Vries materials. 

In describing the change in birefringence due to an ap
plied field, it is useful to define the fractional change of the 
birefringence due to the applied electric field, �n�E� 
� �n�E�−�n�0� , where �n�E� is the birefringence in the pres�n�0� 
ence of a field of magnitude E. We show that regardless of 
the nature of the transition �and hence the response� �n�E� 
scales linearly with �2�E�, i.e., 

�n�E� = ��T��2�E� . �2� 

This scaling, shown in Fig. 3�a�, is consistent with experi
ment �9,10�. The dimensionless constant ��T� 
� ���T��2 /d�T�2 depends on temperature via its dependence 
on layering strength ���T�� and layer spacing d�T�. Since 
both d ���T�� and d d�T� have the same sign �i.e., negative�,dT dT 
it is possible that ��T� is only weakly dependent on tempera
ture, which would be consistent with experiment. The rela
tionship given in Eq. �2� means that an unusually strong, e.g., 
discontinuous, electrical response of the tilt will imply an 
unusually strong response, e.g., discontinuous, of the bire
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fringence, which again is consistent with experiment. 
Similarly, the layer spacing d�E� is affected by the field, 

and the layer contraction �d�E��  d�E�−d�0� also scales linearly d�0� 
with �2�E� regardless of the nature of the transition �and 
hence the response�, i.e., 

�d�E� � ME=0�2�E� , �3� 

where ME=0 is the value of the zero-field orientational order, 
which for de Vries materials is unusually small. Thus, for de 
Vries materials the contraction of the layers associated with 
the electroclinic effect will also be unusually small. As with 
the birefringence, the shape of response curve d�E� will be 
nonlinear and discontinuous if ��E� is. However, regardless 
of the shape, if ME=0 is small, the layer contraction will be 
too. This is summarized in Fig. 3�b�. As discussed above, 
there is less published data on the response of the layer spac
ing other than to show that it is small. Further experimental 
investigation of the response could be in interesting, in order 
to see if it is consistent with Eq. �3� above. 

C. Outline 

The remainder of this article is organized as follows. In 
Sec. II we review the nonchiral generalized Landau theory. 
This is done with a view to using it as the basis of our chiral 
model and we focus in particular on the parts of model that 
are important for the analysis of the electroclinic effect. Ad
ditionally, we review the results for the nonchiral zero-field 
phase diagram, as it will be argued later that the phase dia
gram for a chiral system is essentially the same. In Sec. III 
we generalize the model to reflect the presence of chirality 
and an external field. The general approach to doing so is to 
add the relevant chiral terms and field-dependent terms. To 
strike a balance between making the model realistic and 
making it manageable, we are selective in what we add to 
reflect the presence of chirality and a field. The justification 
behind our selection is discussed in Sec. III. In Sec. IV we 
analyze the response of the tilt to a field applied to the Sm-A� 

phase. In Sec. V we analyze the response of the birefringence 
and layer spacing to a field applied to the Sm-A� phase. We 
provide a brief recap of our results in Sec. VI. The Appendix 
includes details of the analysis from Sec. V. 

II. MODEL AND RESULTS FOR A NONCHIRAL SYSTEM 

In constructing the free-energy density for a chiral smec
tic we follow the usual strategy of starting with a nonchiral 
free-energy density and then adding the terms that reflect the 
breaking of the chiral symmetry and the presence of a field. 
In this section we discuss the nonchiral model and results. 

A. Free-energy density for a nonchiral system 

The nonchiral free-energy density includes orientational, 
tilt �azimuthal�, biaxial, and layering order parameters. The 
complex layering order parameter � is defined via the den
sity �=�0+Re��eiq·r� with �0 constant and q the layering 
wave vector, the arbitrary direction of which is taken to be z. 
The remaining order parameters are embodied in the usual 

FIG. 4. The unit eigenvectors ê1, ê2, and ê3 of the orientational 
order tensor Q. These are shown as solid arrows, with ê1 pointing 
into the page. Also shown, as a dotted arrow, is the layering direc

tion N̂, which is normal to the plane of the layers. We choose this as 
our ẑ direction. The eigenvector ê3 corresponds to the average di
rection of the molecules’ long axes. The order parameter, c, for the 
C phase is the projection of ê3 onto the plane of the layers, and is 
shown as a dashed arrow. The angle �, by which the optical axis 
tilts, is also shown. This is the arrangement that corresponds to the 
lowest energy state if the applied electric field points into the page. 
Taking this direction to be ŷ, i.e., E =Eŷ implies that c points in the 
x̂ direction. 

second-rank tensor orientational order parameter Q, which is 
most conveniently expressed as 

Qij  = M��− cos��� + �3 sin����e1ie1j + �− cos��� 

− �3 sin����e2ie2j + 2 cos���e3ie3j� , �4� 

where ê3 = c+�1−c2ẑ is the average direction of the mol
ecules’ long axes, �i.e., the director�. Here, in either the Sm-A 
or Sm-C phase, ẑ is normal to the plane of the layers. The 
projection, c, of the director onto the layers is the order pa
rameter for the Sm-C phase. The other two principal axes of 
Q are given by ê1 = ẑ� ĉ and ê2 =�1−c2ĉ−cẑ. These unit 
eigenvectors are shown in Fig. 4. The amount of orienta
tional order is given by M ��Tr�Q2�, which is proportional 
to the birefringence. The degree of biaxiality is described by 
the parameter �. The Sm-A phase is untilted �c=0� and 
uniaxial ��=0�, while the Sm-C phase is tilted �c�0� and 
biaxial ���0�. From Fig. 4 it can be seen that the angle �, 
by which the optical axis tilts, can be related to c via c 
=sin���. 

The nonchiral generalized free energy was presented pre
viously �18� as a sum, f = fQ+ f� + fQ�, of orientational �fQ�, 
layering �f��, and coupling �fQ�� terms. The orientational 
term consists of terms �Tr�Qn�, with integer n� 1. The lay
ering term consists of terms �q2n���2m with integers n�0 
and m�0. The coupling term fQ� consists of real scalar 
combinations of q, Q, and �, e.g., qiqjQij���2. To make the 
analysis tractable, the coefficients of these coupling terms 
were �and will be� assumed to be small. Minimization with 
respect to the biaxiality � yielded the nonchiral free-energy 
density f � fM + f� + fM� + fc. The pieces fM and f� only in
volve the orientational and layering order parameter M and 
�, respectively, and are given by 

1 1 1 
fM = rnM2 − wM3 + unM4, �5� 

2 3 4 

and 

011703-5 



M 1=0 -

I = I. . .....

W O _ .•

.~
~.~

• ~ • ( 2MTc· M),,,

I'l/Jrcl

KARL SAUNDERS 

1 1 1 
f� = rs���2 + us���4 + K�q2 − q2

0�2���2. �6� 
2 4 2 

The coefficients w, un, us, and K are positive. As usual in 
Landau theory, the parameters rn and rs are monotonically 
increasing functions of temperature and control the “bare” 
orientational and layering order parameters, M0 and �0, re
spectively. By “bare” we mean the values the order param
eters would take on in the absence of the coupling term fQ� 
and an externally applied field. Similarly, the constant q0 
is the bare value of the layering wave vector. From Eqs. �5� 
and �6� above, we immediately find M0�rn�= �w 
+�w2−4unrn� /2un and ��0�=�−rs /us. As discussed in Sec. I, 
de Vries behavior occurs in materials where the layering and 
orientational order parameters are the primary and secondary 
order parameters, respectively. This would imply a virtually 
athermal rn �and thus, an athermal M0� so that for a given 
material M0 can be thought of as a fixed quantity. This means 
that the temperature variation in orientational order M is ef
fectively due to its coupling to the temperature dependent 
layering, i.e., via fM� and fc. The term fM� is given by 

fM� = q2���2M�− a�q2� + b���2 + 2gM + hq2M� , �7� 
2� 2where a�q =a0+a1�q2− q0�. The coefficients a0, a1, b, g, 

and h are positive and, as discussed above, are treated per
turbatively throughout �21�. For notational simplicity, we 
suppress the explicit q dependence of a, i.e., we use a 
=a�q2�. The coupling term fc involves the tilt �azimuthal� 
order parameter c and is given by 

1 1 1 6fc = rcc
2 + ucc

4 + vcc . �8� 
2 4 6 

The coefficients rc, uc, and vc are given by rc=3aq2���2M�, 
81 uc=9�hq4���2M2, and vc = 4 sq6���2M3, with s another cou

pling coefficient that is treated perturbatively throughout. 
The parameter �=1− b���2+�g+2hq2�M controls the zero-field a 
transition. The proximity of the zero-field transition to tric
riticality is measured by the tricritical proximity parameter � 
which will be discussed below. 

B. Zero-field Sm-A–Sm-C transitions 

1. Continuous Sm-A–Sm-C transition 

At the continuous Sm-A–Sm-C transition the dimension
less parameter � and thus rc changes sign. For materials, such 
as de Vries smectics, with orientational order M that is 
weakly temperature dependent, this transition occurs due to 
the layering order ��� increasing as temperature decreases. 
Using the above expression for �, the continuous transition 
temperature T0 is defined via ��0�T0��2= �a0− �g 
+2hq0

2�M0� /b. Figure 5 shows the continuous Sm-A–Sm-C 
boundary as a straight line in ���2− M space. At this point we 
make a notational distinction. In referring to the Sm-A–Sm-C 
transition temperature generally �i.e., without distinguishing 
between continuous or first order� we use TAC. When refer
ring specifically to either a continuous or a first-order transi
tion we use T0 and T1st, respectively. It is useful to work with 
a reduced temperature t� T

T −1 which, near the continuous 
0 
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FIG. 5. The t=0 �solid�, �=0 �dashed-dotted�, t= t��−�M 
− MTC�2 �dotted�, and t= t1st� �MTC− M�2 �dashed� loci in ���2-M 
space. The corresponding phase diagram is shown in Fig. 2�a�. The 
continuous transition occurs for ��0 and at t=0. Thus, the tricriti
cal point ���TC�2 , MTC� is located at the intersection of the t=0 and 
�=0 loci. The first-order Sm-A�–Sm-C� transition occurs for � 
�0 and at t�0. The horizontal separation between the first-order 
boundary and the extrapolated continuous boundary scales like 
�MTC− M�2. Similarly, the separation between the continuous 
boundary and the tricritical crossover region at t� scales like �M 
− MTC�2. The negative slope of the Sm-A�–Sm-C� phase boundary 
implies that the smaller the value of M, the larger the value of ��� at 
which the Sm-A�–Sm-C� transition occurs. This is consistent with 
the observation that de Vries smectics generally have such unusu
ally weak orientational order that their stabilization requires strong 
layering order, perhaps via microsegregation. 

��0�T��2 

transition, can be related to � via �=1− � pt. Here we ��0�T0��2 

have Taylor expanded ��0�T�� near T=T0. The dimensionless 
d��0�T��2 

parameter p=−� 
T0 

�0 can be thought of as a ��0�T0��2 dT �T=T0 

dimensionless measure of how rapidly the layering order 
changes with temperature. 

2. Sm-A–Sm-C tricritical point 

The dimensionless tricritical proximity parameter � incor
porates the renormalization of the c4 term due to the coupling 
between biaxiality � and tilt c �in the absence of such a 
coupling �=1� and depends on the amount of orientational 
and layering order. It is given by 

g wM�T� −1 

��T� = 1 −  � − 1� , �9� 
2hq2 gq2���T�2� 

where the temperature dependence of � is a consequence of 
the temperature dependence of both � and M. For de Vries 
materials, in which the orientational order M varies very 
little with temperature in the Sm-A phase, the temperature 
dependence of � in the Sm-A phase is due primarily to the 
temperature variation in the layering order ���. Figure 5 
shows the locus of �=0 in  ���2− M space. The nature of the 
transition is determined by the sign of �AC���TAC�, the 
value of � at the zero-field Sm-A–Sm-C transition. For 
�AC�0 �for small and large values of ��� and M, respec
tively� the transition is continuous while for �AC�0 �for 
large and small values of ��� and M, respectively� the tran
sition is first order. When �AC =0 the quartic term vanishes 
and the transition is tricritical. As shown in Fig. 5 the asso
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ciated tricritical point ���TC�2 , MTC� is located where the con
tinuous Sm-A–Sm-C boundary meets the locus of �=0. For 
de Vries materials with a virtually athermal M the sign of 
�AC is determined by the size of the system’s orientational 
order. For a transition close to tricriticality, �AC is most con
veniently expressed as 

M − MTC
�AC � m , �10� 

MTC 

2hq0
2 

where m=1+ is a dimensionless constant. To lowest or-g 2ma0g
der in the coupling parameters, MTC = 2hbw . The correspond
ing value of layering order at the tricritical point is ��TC� 
=�a / b. In previous models �22� of the Sm-A–Sm-C transi
tion the parameter analogous to � has been assumed to be 
independent of temperature. In our model, as discussed 
above, � will vary with temperature via the temperature de
pendence of ���T��. For the time being we will use a constant 
� approximation, ��T���AC, valid near the Sm-A–Sm-C 
transition. In Sec. IV C we discuss in further detail the tem
perature dependence of � and some of the related conse
quences for the electroclinic response. 

A commonly used �22� measure of how close the continu
ous Sm-A–Sm-C �or Sm-A�–Sm-C�� transition is to tricriti
cality is the magnitude of the reduced temperature, �t��, when 

2 /vc�rc�=u . Using this condition, it is straightforward to show c 
that 

M − MTC 
2 

t� = −  �1� � , �11� 
MTC 

4h2m2 

where the dimensionless constant �1= . In the Sm-C3pas
phase, well within the corresponding temperature window 

4T� �T�T0, where T� =T0�1− �t���, the quartic term �c is 
important, and the behavior is XY like. Sufficiently far out
side this window, i.e., T�T�, it can be neglected, and the 
behavior of the system is tricritical. Figure 5 shows the cor
responding crossover region in ���2-M space, in which the 
system’s behavior goes from being XY to tricritical. The re
duced temperature t� can be obtained �22� from measure
ments of the specific heat at the continuous Sm-A–Sm-C �or 
Sm-A�–Sm-C�� transition. Work has been done to relate the 
size of the reduced temperature window �t�� to system param
eters, e.g., the width of the Sm-A phase �23�. However, to the 
best of our knowledge, no one has yet investigated a possible 
relationship between the size of the reduced temperature 
window and the size of the orientational order M. The above 
expression for t� provides a prediction for such a relationship 
�24�. 

3. First-order Sm-A–Sm-C transition 

It was shown �18� that when the tricritical proximity pa
rameter �AC�0, i.e., M � MTC, a first-order Sm-A–Sm-C 

3 �t�transition occurs at a value of t given by t1st = ��0. As 16 
discussed in Ref. �18� the size of the latent heat at the first-
order Sm-A–Sm-C transition is proportional to �AC and thus, 
calorimetric studies can measure the proximity of the first-
order transition to the tricritical point. It is important to keep 
in mind that the first-order Sm-A–Sm-C will occur at t�0 
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and thus T1st�T0. Correspondingly, the value of layering 
order ��� at the first-order Sm-A–Sm-C boundary is smaller 
than would be necessary for a continuous Sm-A–Sm-C tran
sition. Figure 5 shows an extrapolation of the continuous 
Sm-A–Sm-C boundary in ���2-M space for M � MTC. The 
difference between the layering at the extrapolated boundary 
and the first-order Sm-A–Sm-C boundary is proportional to 
�M − MTC�2 . 

C. Roles of orientational order and layering order in de Vries 
behavior and the nature of the Sm-A–Sm-C transition 

As shown in Ref. �18� de Vries behavior, i.e., an unusu
ally small change in the layer spacing at the Sm-A–Sm-C 
transition, can be explained by unusually small orientational 
order and coupling parameters. The de Vries behavior, i.e., 
unusually rapid change, of the birefringence at the 
Sm-A–Sm-C transition can be explained by proximity of the 
transition to a tricritical point. It has been experimentally 
observed �4–6� that several materials exhibiting de Vries be
havior also have a Sm-A–Sm-C transition that is close to a 
tricritical point. Our model implies that de Vries behavior 
and proximity of the Sm-A–Sm-C transition to tricriticality 
can be connected by unusually small orientational order. In
deed, it has been observed that de Vries materials do have 
unusually small orientational order. Consequently it has been 
argued �1,16� that stabilization of materials with such small 
orientational order must be provided by unusually strong lay
ering order, perhaps via microsegregation. The phase dia
gram in ���2-M space, shown in Fig. 2, is consistent with 
such an argument; the negative slopes of both the continuous 
and first-order phase boundaries mean that systems with 
smaller orientational order require larger layering order to 
make the transition from the Sm-A phase to the Sm-C phase. 

To the best of our knowledge, no direct measurement of 
the layering order in de Vries materials has been published. 
We believe such measurements would be valuable in under
standing the role that layering order plays in driving the 
Sm-A–Sm-C �or Sm-A�–Sm-C�� transition, as well as the 
nature of the transition �i.e., continuous, tricritical, or first 
order� and how de Vries like the system is. While direct 
measurements of the layering have not been reported, there is 
published data �25� on the width of the Sm-A� phase in a 
homologous series of hexyl lactates �nHL� exhibiting 
Sm-A�–Sm-C� transitions that range from conventional to de 
Vries like. It is found that the temperature width of the 
Sm-A� phase window increases as the system becomes more 
de Vries like. Making the conventional assumption that the 
layering order at the Sm-A�–Sm-C� transition is a monotoni
cally increasing function of the temperature width of the 
Sm-A� phase, this data is consistent with our model. How
ever, one must be careful in making this assumption for sys
tems �e.g., de Vries materials� that have first-order isotropic 
�Iso�–Sm-A �or Sm-A�� transitions where the layering does 
not necessarily grow continuously from zero. For example, it 
could be possible that the layering order at the Iso–Sm-A �or 
Sm-A�� transition is larger in systems with smaller orienta
tional order. Thus, the layering at the Iso–Sm-A �or Sm-A�� 
transition may already be large enough so that it is not nec
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essary to have a wider temperature window for the Sm-A �or 
Sm-A�� phase �26�. This is another reason that a systematic 
experimental investigation of the layering and orientational 
order in these systems would be valuable. 

III. INCORPORATING THE EFFECTS OF CHIRALITY
 

AND EXTERNAL FIELDS TO THE
 


FREE-ENERGY DENSITY
 


Having set up the nonchiral zero-field free energy we next 
add terms to reflect the presence of chirality and an exter
nally applied field. The most important such term is the one 
which models the electroclinic interaction of the molecules 
with the applied electric field E. To lowest order in the ori
entational and layering order parameters it is 

fEC = e�ijkqiql���2EjQlk � eq2M���2ẑ · �E � c� , �12� 

where �ijk  is the Levi-Cevita symbol and the Einstein sum
mation convention is implied. In coupling the electric field 
directly to the tilt c, instead of via the electrostatic polariza
tion P, we are making the standard assumption that P� ẑ 
�c �27�. The coefficient e depends on the strength of the 
electrostatic coupling between the field and the molecules. 
This in turn depends on amount of chirality in the system and 
for a racemic mixture e=0. Here we take e� 0; switching the 
handedness, e.g., left to right, of the molecules simply 
switches the sign of e. In making the approximation in Eq. 
�12� above, we include only the lowest-order contribution of 
tilt c from the orientational order tensor Q and we neglect 
the biaxial part of Q. It can be shown that close to the tric
ritical point the coupling between the field and biaxiality is 
negligible. 

In order to make the model manageable, we also omit 
other contributions, each of which lead only to secondary 
less important effects. The first of these is the nonchiral cou
pling of the system to the electric field which would contrib
ute terms such as EiEjQij. All such terms scale like E2 and in 
the limit of small field can be shown to be much smaller than 
the electroclinic term in Eq. �12� above, which scales linearly 
with E. 

We also assume a spatially uniform tilt c and thus ignore 
a second group of contributions involving spatial variations 
in c, including manifestly chiral terms that depend on the 
sign of ��c. We have analyzed the difference that such 
terms make to our model. One zero-field effect of these 
terms is to shift the location of the Sm-A�–Sm-C� phase 
boundary, by renormalizing the coefficients in the free-
energy expression, Eq. �8�, for fc. In particular, increasing 
the chirality of the system lowers the quadratic coefficient, 
rc, the effect of which is to increase the Sm-A�–Sm-C� tran
sition temperature. Increasing the chirality also lowers the 
value of the quartic coefficient uc, thus driving a continuous 
transition toward tricriticality or a first-order transition away 
from tricriticality. The behavior of the layer spacing and bi
refringence are also somewhat affected via the renormaliza
tion of these coefficients. However, in the limit �which we 
assume throughout� of small orientational order and small 
couplings between layering and orientational order param
eters, the renormalization of these coefficients is negligible. 
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Thus, the zero-field behavior of the chiral system should es
sentially be the same as described for the nonchiral system. 

The absence of terms involving spatial variations in c also 
precludes the possibility of a superstructure involving a spa
tial modulation of c, which in the zero-field Sm-C� phase 
would be helical. In the past �17� the assumption of a spa
tially uniform tilt has been justified by consideration of elec
tric field strength above that necessary to unwind a helical 
superstructure. However, it is not obvious that a helical su
perstructure would form when the tilt is electrically induced 
�as opposed to spontaneously developing at the zero-field 
Sm-A�–Sm-C� transition.� For example, it has been shown 
�28� that in a two-dimensional Sm-A� film, the electroclinic 
effect can lead to a spatially uniform tilt at small and large 
fields and to a modulated tilt for fields of intermediate 
strength. To the best of our knowledge the situation for three-
dimensional Sm-A� systems has yet to be analyzed, although 
we plan to do so in the near future. It should be pointed out 
that one proposed explanation �29� for the strong electro
clinic effect in de Vries materials is that the Sm-A� phase is 
actually a Sm-C� phase that is made up of an ordered array 
of disclination lines and walls, and thus assumes a strong 
spatial modulation of the tilt in the Sm-A� phase. We do not 
explore that possibility here. 

In summary, because we are interested primarily in the 
electroclinic effect and do not wish to overburden the model 
with less important secondary effects, the only extra term we 
add to our nonchiral model is that given in Eq. �12�. 

IV. RESPONSE OF TILT 

In this section we explore the response of the tilt order 
parameter c to an externally applied electric field E. Of par
ticular interest is the response near the tricritical point shown 
in Fig. 2. As shown in Fig. 4 we take the field to point in the 
ŷ direction so that the free energy is minimized by a tilt in 
the x̂ direction, i.e., c=cx̂ and fEC=−bq2M���2Ec. The mag
nitude c of the tilt induced by the applied field can be deter
mined using the tilt portion of the free energy, fc+ fEC. Mini
mizing this free energy with respect to the tilt c one obtains 
the following relationship between c and E: 

5E = �ec + �ec
3 + �ec , �13� 

where the electroclinic coefficients �e, �e, and �e are given 
by 

3apt 
�e = , �14� 

e 

9�hq2M 
�e = , �15� 

e 

4M281sq
�e = , �16� 

4e 

where the reader is reminded that the tricritical parameter � 
generally depends on temperature via its dependence on ori
entational �M� and layering order �����, given in Eq. �9�. As  
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DE VRIES BEHAVIOR OF THE ELECTROCLINIC EFFECT…	 

discussed in Sec. II B 2  the orientational order of the Sm-A� 

phase in de Vries materials varies very little with temperature 
so the temperature dependence of � in the Sm-A� phase is 
due primarily to the temperature variation in the layering 
order ���. The relationship �Eq. �13�� between E and c is 
analogous �30� to that derived by Bahr and Heppke in their 
analysis of a field-induced critical point near the 
Sm-A�–Sm-C� transition �17�. There are, however, a couple 
of distinctions that should be pointed out. The first is moti
vation. In Ref. �17� the primary motivation was to establish 
the existence of and to analyze a line of first-order 
Sm-A�–Sm-C� transitions in the temperature-field plane that 
terminates at a critical point. Our motivation is to model and 
explain the unusually large electroclinic response of de Vries 
materials. It will be shown that this can be done by analyzing 
Eq. �13� in a similar manner to Ref. �17�. 

A second related distinction is that, as a result of starting 
with a generalized Landau theory in terms of orientational 
and layering order parameters, we can relate our coefficients 
�e, �e, and �e to the strengths of orientational order �and 
hence birefringence� and layering order, as well as the layer 
spacing �via q� in the system. Of particular interest is the 
origin of a negative quartic coefficient ��e�0 in Eq. �13� 
above�, which is necessary for a field-induced first-order 
Sm-A�–Sm-C� transition. In Ref. �17�, this was assumed 
�justifiably� on the basis of the existence of a zero-field first-
order Sm-A�–Sm-C� transition. Here, a negative quartic co
efficient can be explained as resulting from sufficiently weak 
orientational order, which, as discussed in Sec. II C necessi
tates strong layering order, in order to stabilize the system. 
Thus, our generalized Landau theory shows that an unusually 
strong electrical response of the tilt can be explained as re
sulting from a combination of weak orientational order and 
strong layering order, which makes the quartic coefficient �e 
either positive and small �corresponding to a continuous 
zero-field Sm-A�–Sm-C� transition that is near a tricritical 
point� or negative �corresponding to a first-order zero-field 
Sm-A�–Sm-C� transition�. A related distinction between this 
analysis and that of Bahr and Heppke is that our quartic 
coefficient, �e, depends on temperature via the temperature 
dependence of �. We will next analyze the electroclinic re
sponse implied by Eq. �13�. 

A. Electroclinic response near the continuous zero-field 
Sm-A�–Sm-C� transition 

We begin our analysis by approximating the tricritical 
proximity parameter � as being temperature independent, 
i.e., ��T���AC, which is valid sufficiently close to the 
Sm-A�–Sm-C� transition. The effect of �’s temperature de
pendence will be discussed in Sec. IV C. For �AC�0, corre
sponding to a continuous zero-field Sm-A�–Sm-C� transition, 
�e�0. For such systems, the response of the tilt c to an 
applied field E is continuous. Additionally, as shown in Fig. 

�c6, the susceptibility �= �E gets smaller with increasing field. 
Its largest value, at E=0,  is  �0�T�=�e�T�−1, which diverges 
as the system approaches the continuous zero-field 
Sm-A�–Sm-C� transition at �e�T0�=0, a standard result for 
continuous transitions. The response at the Sm-A�–Sm-C� 
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transition for small fields is c�E1/�, with �=3 away from 
tricriticality and �=5 at the tricritical point. 

It is interesting to consider how the response �c� at fixed 
reduced temperature �t�0� and field �E�0� is affected by 
lowering �AC toward zero, i.e., driving the continuous tran
sition to tricriticality. It is straightforward to show that 

�c 9hq2Mc3� 
= −  � 0, �17� 

��AC e 

which, as expected, shows that the response, at fixed E and t, 
should be larger for systems with smaller �AC, i.e., systems 
in which the orientational order is small �M � MTC�. This is 
shown graphically in Fig. 6�b� and is reminiscent of an ex
perimentally obtained comparison �1,31� of electroclinic re
sponses for a homologous series of hexyl lactates �nHL�, 
with each response being measured at the same reduced tem
perature. The response is observed to be larger for small n 
values. The compounds have zero-field continuous 
Sm-A�–Sm-C� transitions that range from conventional to de 
Vries like �25�. We speculate that if one were to measure the 
proximity of each compound’s transition to a tricritical point, 
one would find that 9HL’s and 12HL’s transitions are closest 
and furthest respectively, i.e., 0��AC9HL 

.��AC12HL 

B. Electroclinic	 response 	near the first-order zero-field 
Sm-A�–Sm-C� transition 

Next we consider the response when the tricritical prox
imity parameter �AC�0 �and thus �e�0� corresponding to a 
first-order zero-field Sm-A�–Sm-C� transition. As shown in 
Fig. 7, for large reduced temperatures t the response is con-

ctinuous and will show a positive curvature � d
2 

dE2 �0� at small 
cfields followed by a	 negative curvature � d

2 

dE2 �0� at large 
fields. The positive curvature has been referred to in the lit
erature �e.g., in Ref. �12�� as “superlinear growth.” For suf
ficiently small temperatures the response curve is S shaped 
�i.e., has a portion with negative slope� and there is a jump in 
the tilt as the electric field is increased from zero. Thus, an 
unusually strong discontinuous electroclinic effect will be 
exhibited by systems with sufficiently small orientational or
der M � MTC. 

We define tc as the value of reduced temperature below 
which the response curve, c�E�, exhibits a negative slope, 
and hence a discontinuity in the response. As shown in Fig. 
7, at  t= tc, the curve has divergent slope and curvature at Ec 
and cc. Thus, the values tc, Ec, and cc are specified by 
dE d2E�t ,c = 

dc2 �t ,c =0 and Ec =E�tc ,cc�. At the level of the dc c cc c 
mean-field theory presented here and elsewhere �17�, the as
sociated critical point �tc ,Ec ,cc� is analogous to the liquid-
vapor critical point. However, it has been pointed out �32� 
that when fluctuations are included the universality class of 
this critical point is distinct from that of the liquid-vapor 
critical point. It is straightforward �17� to calculate the criti
cal values �tc ,Ec ,cc�. We rederive these values, primarily 
with a view to presenting them in terms of the degree of 
orientational order in the system. We also provide extra de
tails that might be useful in experimentally investigating 
whether the strong response of de Vries materials is indeed a 
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(a) (b)
 

E (a.u.) 

c 
e(iv) = 0  <  e(iii) < e(ii) < e(i) 

E (a.u.) 

c 
e(iii) = 0  <  e(ii) < e(i) 

FIG. 6. �Color online� Response curves c�E� for systems with �e�0, i.e., systems with continuous Sm-A�–Sm-C� transitions. The curves 
show the electrically induced tilt c due to the application, in the Sm-A� phase, of a field of magnitude E. The curves were obtained using Eq. 
�13�. Since we are primarily interested in the evolution of the shape of the curves we do not specify units for E �i.e., we use arbitrary units, 
a.u.�. �a� A set of curves for fixed �e =0.4 and �e =0.1 �and thus, fixed �AC�0� and different values of �e� t�0. The different values of �e 

correspond to different values of reduced temperature values t� 0, and thus to different values of T� TAC. �i� �e =0.0225, �ii� �e 

=0.011 25, �iii� �e =0.005 625, and �iv� �e =0. The susceptibility �= dc is largest at E=0, and monotonically decreases as E is increased. The dE 
response increases as temperature, T, is lowered toward the Sm-A�–Sm-C� transition temperature, TAC, with the zero-field susceptibility �0 

diverging as T approaches TAC �or equivalently, as �e approaches zero�. �b� A set of curves for fixed �e =0.011 25 �and thus fixed reduced 
temperature t�0�, �e =0.4 and different values of �e��AC�0. The different values of �e�0 imply varying degrees of proximity of the 
continuous Sm-A�–Sm-C� transition to a tricritical point. �i� �e =0.13, �ii� �e =0.05, and �iii� �e =0. The response is larger for systems with 
smaller �e �and thus, smaller �AC�. 

result the proximity of the Sm-A�–Sm-C� tricritical point. �0�Tc�Ec 
The value of the critical reduced temperature is found to be �c = 

cc 
, �21� 

12tc = 5 t1st, where t1st is defined in Sec. III. Keeping in mind 
the fact that the first-order transition occurs at t1st �0, one where �0�Tc� is the value of the zero-field susceptibility at 
can find the temperature difference between T1st and Tc: T=Tc. Together, Eqs. �20� and �21� predict that �c=8 / 15 for 

every material that has a first-order Sm-A�–Sm-C� transition. 
2Tc − T1st 21 MTC − M It would be interesting to investigate experimentally whether � �1� � , �18� this is accurate for de Vries materials with first-orderT1st 80 MTC 

Sm-A�–Sm-C� transitions. If so, it would indicate that the 
4h2m2 

where the dimensionless constant �1= was defined ear- mean-field theory described here is suitable to describe the 3pas
lier in Sec. II and the approximation applies close to tricriti- strong electro-optic response of de Vries type materials. 
cality where M � MTC. The value of cc is found to be 

1/2 C. Effects of the temperature dependence of the tricritical �2 MTC − M 
cc = c1st � � � , �19� proximity parameter � on the electroclinic response 

5 MTC near the Sm-A�–Sm-C� transition 

where c1st is the size of the jump in the tilt order parameter at In previous models �22� of the Sm-A–Sm-C �and 
the zero-field transition, which is found �18� to be c1st Sm-A�–Sm-C�� transitions the parameter analogous to � has 
=�3��e� . The above equation implies that the ratio 

cc = �2 been assumed to be independent of temperature. In our 
4�e c1st 5 

model ��T�, given by Eq. �9�, will vary with temperature via should hold for any system, a prediction that should be 
the temperature dependence of ���T�� and to a lesser degree straightforward to test experimentally. Lastly, we find 
M�T�. From Eq. �9� it can be seen that ��T� decreases if 

5/28 MTC − M M�T� and ���T�� decrease and increase, respectively. We 
Ec = �e�tc�cc � � � , �20� have argued here and elsewhere �18,19� that in de Vries ma15 MTC terials the system is driven toward the Sm-C� phase as the 

where �e�t� is given by Eq. �14�. Using the fact that �e�T� layering ����� increases with decreasing temperature. Addi
=�0�T�−1, we define the following combination: tionally, the nonmonotonicity of M�T�, which is both pre
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(a) (b)
 

E (a.u.) 

c 
e(iii) < e(ii) = ec < e(i) = 0  

FIG. 7. �Color online� Response curves c�E� for systems with �e�0, i.e., systems with first-order Sm-A�–Sm-C� transitions. The curves 
show the electrically induced tilt c due to the application, in the Sm-A� phase, of a field of magnitude E. The curves were obtained using Eq. 
�13�. Since we are primarily interested in the evolution of the shape of the curves we do not specify units for E �i.e., we use arbitrary units, 
a.u.�. �a� A set of curves for fixed �e =0.4 and �e =−0.1 �and thus, fixed �AC�0� and different values of �e. The values of �e are most 

2 

� 9 �eusefully expressed in terms of �ec =0.001 25, which is the value of �e at the critical reduced temperature tc. Below this value the 20 �e 

curves become S shaped. Since �e� t, the ratio t / tc is the same as �e /�ec and we label the curves according to the value of t in terms of tc: 
5 d2c�i� t=1.2tc, �ii� t= tc, �iii� t=0.65tc, and �iv� t= t1st = . For t� tc the response is continuous but “superlinear,” with 

dE2 �0 at small E12 tc 
cfollowed by d2

= tc the response has divergent susceptibility �i.e., slope� and curvature at Ec and cc, indicated with a dot. 
dE2 �0 at large E. At  t 

The curves are now S shaped which implies a discontinuous response. �b� A set of curves for fixed �e =0.011 25 �and thus, fixed reduced 
temperature t�0�, �e =0.4 and different values of �e��AC�0. Different values of �e imply varying degrees of proximity of the first-order 

20�e�eSm-A�–Sm-C� transition to a tricritical point. The values of �e are given in terms of �ec �−� , the value of �e below which the curves 9 
become S shaped. �i� �e=0,  �ii� �e =�ec, �iii� �e =1.3�ec. Making �e �and thus, �AC� more negative would increase the temperature window 
Tc−T1st so that the discontinuous response occurs further away from the Sm-A�–Sm-C� transition. 

dicted by our model and observed experimentally �2,3� in de 
Vries materials, implies that M�T� decreases as the 
Sm-A�–Sm-C� transition is approached from above. Thus, 
each of these effects causes ��T� to decrease toward �AC as 
the Sm-A�–Sm-C� transition is approached from above. 

As discussed in the preceding two sections, decreasing 
��T� leads to a strengthening of the electrical response of the 
tilt. Thus, we speculate that the electroclinic response in de 
Vries materials is further strengthened by the thermal behav
ior of the layering and orientational order. It would be inter
esting to extract the temperature dependence of ��T� �per
haps through fitting the response curves at different 
temperatures� to see if it does have a temperature depen
dence and, if so, whether it decreases as the Sm-A�–Sm-C� 

transition is approached from above. 
There may also be an observable feature associated with 

the temperature dependence of ��T� and the nonmonotonic
ity of M�T�. It has been predicted �19� and observed �3� that 
M�T� can have a maximum within the Sm-A� phase. This 
would correspond to a birefringence that increases with de
creasing temperature �after the system has entered the Sm-A� 

phase from the isotropic phase� before reaching a maximum 
at Tmax and then decreases as the Sm-C� phase is approached. 
For systems in which this is the case, as T is lowered through 
Tmax the decrease in ��T� would become more rapid once 

M�T� begins to decrease. If this were so, there may be an 
associated anomaly in the electroclinic response as T is low
ered through Tmax. 

V. RESPONSE OF THE BIREFRINGENCE AND LAYER
 

SPACING TO AN ELECTRIC FIELD APPLIED TO
 


THE Sm-A� PHASE
 


Having analyzed how the tilt order parameter, c, will re
spond to an electric field E being applied to the Sm-A� 

phase, we now investigate how the birefringence, �n, and 
layer spacing, d, are simultaneously affected. We do this with 
a view to providing insight into the response of birefringence 
and layer spacing for de Vries materials in particular. First 
we summarize the main experimental observations �1�. In de  
Vries materials the response of the tilt is unusually strong, 
which as discussed above, can be explained by an unusually 
small orientational order which leads to a Sm-A�–Sm-C� 

transition that is either continuous and close to tricriticality 
or first order. The response of the birefringence �which is 
proportional to the orientational order in the system� is also 
unusually strong. However, the contraction, i.e., fractional 
change �d, of the layer spacing d associated with the tilt is 
unusually small. The combination of a large response in the 
tilt and birefringence and a small contraction of the layer 
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spacing is technologically desirable. The unusually small 
contraction of the layers eliminates buckling of the layers 
and the associated chevron defects which lead to unwanted 
striping in ferroelectric liquid crystal displays. 

Another noteworthy experimental observation is the scal
ing of the birefringence response with tilt response. The tilt 
c�E� and the birefringence �n�E� each scale nonlinearly with 
applied field E, and the shape of the nonlinear curves change 
significantly as temperature is varied. However, a parametric 
plot of �n�E� vs c2�E� is very close to being linear. Remark
ably, this linear scaling seems to hold regardless of the nature 
�i.e., continuous, tricritical, or first order� of the transition 
�9,10�. Additionally, the slope of this linear scaling varies 
very little with temperature. There does not seem to be any 
published parametric plots of �d�E� as a function c2�E�. As  
discussed in more detail below, we predict that while �d�E� 
will scale nonlinearly with applied field it will scale linearly 
with c2�E�. The slope of this linear scaling is proportional to 
the orientational order and will thus be unusually small in 
systems with unusually small orientational order. Unlike the 
birefringence we predict that the slope of the absolute change 
in layer spacing �d�E� �as opposed to fractional change 
�d�E�� vs c2�E� will not be weakly temperature dependent. 

In what follows we first investigate the response of the 
birefrigence to an applied electric field. The general methods 
described here are also applied to investigating the response 
of the layer spacing. 

A. Response of the birefringence to an electric field applied to 
the Sm-A� phase 

In analyzing the response of the birefringence we use the 
fact that birefringence is proportional to the orientational or
der in the system and find the change in orientational order 
due to an applied field. We define the zero-field orientational 
order as ME=0. It is important to note that this differs from 
M0, given after Eq. �6�, which is defined as the zero-field 
orientational order in the absence of coupling between orien
tational order and layering. As discussed in the analysis of 
the nonchiral zero-field model �18�, the effect of the coupling 
of the orientational order to layering order is to increase the 
orientational order above its zero coupling value M0. Here, 
with our chiral model, we are focusing on the additional 
effect on orientational order due to the application of an elec
tric field. Thus, we use the notation ME=0 to represent the 
zero-field orientational order, which includes the increase 
due to the zero-field coupling of orientational order to layer
ing. This means that ME=0 � M0. As was shown in Ref. �19� 
ME=0 is a nonmonotonic function of temperature. As tem
perature is lowered toward TAC, ME=0 decreases �albeit 
weakly�, a feature which, while unusual, has nonetheless 
been observed experimentally �2,3�. Upon entry to the Sm-C 
phase, ME=0 increases with decreasing temperature. For con
tinuous transitions the rate of increase is larger the closer the 
transition is to tricriticality and for first-order transitions the 
increase is larger the further transition is from tricriticality. 

We define �ME 
as the fractional change in the orienta

tional order due to the application of an electric field, i.e., 
M = ME=0�1+�ME 

�. The response �ME 
is obtained by mini

mizing the free energy with respect to �ME 
. This is made 

tractable by assuming that �ME 
is small and expanding the 

free energy to quadratic order in �ME
. Details of the analysis 

are given in the Appendix. We find that within the Sm-A� 

phase, for small t and �AC, i.e., close to a Sm-A�–Sm-C� 

transition which is close to tricriticality, the fractional change 
in orientational order is given by 

3m 2 c2�E� 
�ME 

= gqE=0���2�1 −  O� ��c2�E� , �22�22�M cM 

2hqE 
2 

where m=1+ =0 is a dimensionless constant and �Mg 
= d2fM /dM2 �M=M0

, where fM is given in Eq. �5�. The zero-
field layering wave vector, qE=0, is distinct from the bare q0, 
in that it includes the effects of the zero-field coupling be
tween orientational and layering orders. The dimensionless 
parameter cM can be thought of as the value of c where the 
scaling of �ME 

with c crosses over from being quadratic to 
quartic. We define cM in the Appendix and show it to be 
O�1�, which makes the quartic contribution negligible in our 
theory, where it is assumed that c�1. It should also be 
pointed that the largest experimentally measured values of c, 
obtained for large fields, are on the order of cmax �0.5 �cor
responding to cmax=sin��max�, where �max �30°�. Thus, at all 
but the largest values of c the scaling of �ME 

with c is qua
dratic, which is consistent with experiment. Most impor
tantly, the above result, Eq. �22�, is valid for both continuous 
and discontinuous c�E� response curves. Of course, the linear 
scaling of �ME 

with c2�E�, implied by Eq. �22�, means that if 
there is a strong or discontinuous response of tilt c to applied 
field E, there will be a correspondingly strong response of M, 
and hence birefringence, to applied field. This is also consis
tent with experiment. 

Having shown that the change in orientational order �and 
hence birefringence� scales linearly with c2�E�, we next con
sider the slope of this scaling, in particular its temperature 
dependence which, as discussed above, is experimentally ob
served to be weak. In most published work �e.g., Refs. 
�6,12�� that has analyzed the change in birefringence as a 
function of tilt, it is the absolute change rather than the frac
tional change of birefringence that is considered. In our 
theory this corresponds to the absolute change in orienta
tional order �M�E�= M − ME=0 which is given by 

2�M � ME=0�T�qE=0�T����T��2c2�E� , �23� 

where we have used �M = ME=0�ME 
and in going from Eqs. 

�22� and �23� we have kept only the leading-order tempera
ture dependence �which we now display explicitly� of the 
c2�E� prefactor. Thus, the temperature dependence of the 
slope of �M�E� vs c2�E� is determined by the temperature

2dependent combination ��T�= ME=0�T�qE=0�T����T��2. Since 
ME=0�T�, qE=0�T� and ���T�� each remain finite within the 
Sm-A� phase, both ��T� and the slope will also remain finite. 
In particular there will be no dramatic change in the slope as 
the Sm-A�–Sm-C� transition is approached from above. 
Given that the temperature dependence of ME=0�T� is weak, 
any change in the slope should be due to a change in the 

2combination qE=0�T����T��2. We have already argued that 
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���T�� increases monotonically as the Sm-A�–Sm-C� transi
tion is approached from above. It is generally observed ex
perimentally that as the Sm-A�–Sm-C� transition is ap
proached from above, there is a monotonic dilation of the 
layer spacing, which corresponds to a monotonic decrease in 
qE=0�T�. Thus, we speculate that the temperature changes in 

2 �T� and ���T��2 offset each other which leads to only a qE=0 
weak temperature dependence of the slope of the birefrin
gence vs c2�E�. 

B. Response of layer spacing to an electric field applied to the 
Sm-A� phase 

To analyze the change in layer spacing due to the appli
cation of a field, we first obtain the change in the wave 
vector q=2� /d. As with the orientational order we define 
qE=0 to be the zero-field wave vector. This is distinct from q0, 
the zero-field wave vector in the absence of coupling be
tween orientational order and layering. Since the wave vector 
only appears as q2 it is convenient to define a fractional 
change �qE 

in q2 due to the application of an electric field, 
2 2i.e., q =qE=0�1+�qE 

�. In finding �qE 
we follow the same 

method as described in Sec. V A  and relegate the details to 
the Appendix. Within the Sm-A� phase, close to tricriticality, 
i.e., for small �AC, we find  

3�a1� c2�E� 
�qE 

= ME=0�1 +  O� ��c2�E� , �24�22K cq 

where, as in Ref. �18�, a layer contraction �as opposed to 
dilation� requires a1 to be negative. As with cM, the dimen
sionless parameter cq can be thought of as the value of c 
where the scaling of �qE 

with c crosses over from being 
quadratic to quartic. We also define cq in the Appendix, 
showing it to be O�1�, which for the same reasons as out
lined above, allows us to neglect the quartic contribution. 

Using the above equation and the relationship between 
layer spacing �d� and wave vector �q=2� /d�, we next seek 
the contraction in the layer spacing. This contraction is 
equivalent to the fractional change in the layer spacing �d 
= �dE=0−d� /dE=0, where dE=0 is the zero-field value of the 
layer spacing in the Sm-A� phase. We find that the contrac
tion is given by 

3�a1� 
�d = ME=0c2�E� . �25� 

4K 

Since c�E� is a nonlinear function of E �and is not ��E� the 
above equation implies that the contraction �d�E� will also 
be a nonlinear function of E, and if c�E� is discontinuous, 
then ��E� will also be discontinuous. However, the above 
equation predicts that, like the birefringence, �d�E� will scale 
linearly with c2�E�, regardless of the nature of the transition. 
Thus, for small tilt angle �, which implies c��, the frac
tional change in layer spacing scales like �2. In addition, our 
theory predicts that this fractional contraction is also propor
tional to the size of the orientational order ME=0. Thus, de 
Vries systems which have unusually small orientational order 
will, under the application of an electric field, exhibit an 
unusually small layer contraction, as shown in Fig. 3�b�. 

PHYSICAL REVIEW E 80, 011703 �2009� 

Since ME=0�T� is, as discussed in Sec. V A, only weakly 
temperature dependent, the slope of the �d�E� vs c2�E� 
should also be weakly temperature dependent. However, the 
slope of the absolute change in layer spacing dE=0−d 
��d�E� vs c2�E� should not be weakly temperature depen
dent. This is because �d�E�=d�T��d�E� and d�T� has been 
shown experimentally to exhibit a noticeable monotonic in
crease as the Sm-A�–Sm-C� transition is approached from 
above. Thus, we expect that as temperature is lowered there 
should be a noticeable increase in the slope of �d�E� vs 
c2�E�. 

VI. SUMMARY 

In summary, we have analyzed a generalized Landau 
theory for chiral smectics, one that tracks orientational, lay
ering, tilt, and biaxial order parameters as well as layer spac
ing. A combination of small orientational order and large 
layering order leads to Sm-A�–Sm-C� transitions that are ei
ther continuous and close to tricriticality or first order. The 
model predicts that the change in layer spacing at the zero-
field transition will be proportional to the orientational order. 
It also predicts that in systems having zero-field transitions 
that are continuous and close to tricriticality or first order, the 
increase in birefringence upon entry to the Sm-C� phase will 
be especially rapid. Thus, both the small change in layer 
spacing and the rapid increase in birefringence can be attrib
uted to the system possessing a combination of small orien
tational order and large layering order. This is consistent with 
the observation that de Vries materials usually possess un
usually small orientational order, which in turn means that 
strong layering order is required for stabilization. 

The model also predicts that as a result of the zero-field 
Sm-A�–Sm-C� transition being either continuous and close to 
tricriticality or first order, the electroclinic response of the tilt 
will be unusually strong. In the case of a system that has a 
zero-field first-order Sm-A�–Sm-C� transition, the electro
clinic response tilt will exhibit a jump. Thus, as with the 
zero-field features of de Vries materials, our model indicates 
that the strong electrical response is a result of a combination 
of small orientational order and strong layering order. 

The equation governing the response of the tilt is com
pletely analogous to that derived by Bahr and Heppke to 
describe a field-induced critical point near a Sm-A�–Sm-C� 

transition �17�. However, our derivation of the response 
equation from a more basic generalized Landau theory al
lows us to incorporate the effects of the layering and orien
tational orders, which we can in turn relate to the strength 
and nature of the tilt response. In addition, it also allows us 
to derive the electroclinic response of the orientational order 
�and thus, birefringence� and the layer spacing. We find that 
the change in birefringence scales quadratically with the 
electrically induced tilt. This means that an unusually strong 
tilt response implies an unusually strong response of the bi
refringence, as is the case in de Vries materials. The qua
dratic scaling is also consistent with experiment. Similarly, 
we find that the electrically induced change in layer spacing 
also scales quadratically with tilt, although the scaling is also 
proportional to orientational order. 
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KARL SAUNDERS 

Thus, the theory predicts that a system with small orien
tational order and strong layering order will exhibit a com
bination of strong electro-optic response �in both reorienta
tion of the optical axis and change in birefringence� and 
small layer change. Such a combination is technologically 
desirable for ferroelectric liquid crystal �FLC� based liquid 
crystal devices. 
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APPENDIX: FIELD-INDUCED CORRECTIONS TO THE
 

ORIENTATIONAL ORDER AND TO THE LAYERING
 


WAVE VECTOR
 


In this appendix we provide further details of the method 
by which we find the fractional changes �ME 

and �qE 
to the 

orientational order and to the layering wave vector, respec
tively, due to the application of an electric field in the Sm-A� 

phase. This is done near a Sm-A�–Sm-C� transition �continu
ous or first order� that is close to tricriticality. 

1. Correction to the zero-field orientational order 

As discussed in Sec. V A  we are interested in finding the 
correction to the zero-field value of the orientational order 
ME=0. This zero-field value already includes the increase due 
to the zero-field coupling of orientational order to layering. 
In the zero-field Sm-A� phase the tilt is zero and the zero-
field value ME=0 was found �18� by analyzing the part of the 
free energy that does not include tilt, i.e., fc=0= fM + f� + fM�. 
Specifically, we Taylor expanded fc=0�M� about M0, the 
value of the orientational order in the absence of coupling to 
layering, i.e., the value that minimizes fM. This gave 

fc=0 � fc=0�M0� + f�M��M0��ME=0 − M0� 

1 
+ 

2! 
f�M�M0��ME=0 − M0�2, �A1� 

where f� �M�=dfM� /dM and f�M�M�=d2fM /dM2. We have M�
neglected the term �fM� ��M0� which contributes terms higher 
order in coupling compared to f�M�M0�. Minimization of the 

fM� ��M0�
above fc=0 then gave ME=0= M0− 

M�M0� .f�
When a field is applied to the Sm-A� phase, a tilt is in

duced and the tilt-dependent part of the free energy becomes 
nonzero. Thus, to find the correction to ME=0, we Taylor 
expand the full free energy f = fc=0+ fc+ fEC about ME=0. Do
ing so gives 

��ME=0� + fECf � fc=0�ME=0� + �fc � �ME=0��ME=0�ME 

1 2 2+ f�=0�ME=0�ME=0�ME
, �A2�c2! 

M�E�where �ME 
�E�= −1,  f��M�=dfc /dM, f�EC�M�=dfEC /dM,cME=0 
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and fc�=0�M�=d2 fc=0 /dM2. As above, we neglect the term 
� �ME=0� which contributes terms higher order in cou�fEC 

pling compared to f �ME=0�. Minimization of f now gives c�=0 

�f � �ME=0����ME=0� + fECc
�ME 

�E� �  − . �A3� 
f�=0�ME=0�ME=0c

Keeping only terms to lowest order in coupling coefficients, 
f�=0�ME=0��  f�M�M0���M. The dependence of �ME 

�E� on Ec

enters via the dependence of �fc+ fEC� on E and c�E�. Since 
we seek to relate the correction �ME 

�E� to c�E�, it is useful to 
express �fc+ fEC� just in terms of c�E� and not E explicitly. 
This can achieved using Eq. �13� for E in terms of c, giving 

1 1 1 
fc + fEC = −  rcc

2�E� − ucc
4�E� − vcc

6�E� . �A4� 
2 4 6 

To obtain �ME 
�E�, as given in Eq. �A2�, we must differenti

ate fc+ fEC with respect to M which enters via the coeffi
cients rc�M ,q2�, uc�M ,q2�, and vc�M ,q2�. These coefficients 
were introduced after Eq. �8�, but it is convenient to present 
them again, 

rc�M,q2� = 3a�q2�q2���2M��M,q2� , 

uc�M,q2� = 9��M,q2�hq4���2M2, 

vc�M,q2� = 
81 

sq6���2M3, �A5� 
4 

where a�q2�, ��M ,q2�, and ��M , q2� are given by 

a�q2� = a0 + a1�q2 − q2
0� , 

b���2 + �g + 2hq2�M 
��M,q2� = 1 −  , 

a�q2� 

g wM −1 

��M,q2� = 1 −  − 1 . �A6� 
2hq2 gq2��2� 

Differentiating Eq. �A4� with respect to M, inserting the re
sult into Eq. �A3� and keeping terms to lowest order in cou
plings, t and �AC, i.e., close to a Sm-A�–Sm-C� transition 
which is close to tricriticality, we find 

3m c�E� 2 c�E� 4 

�ME 
�E� �  gq2���2 1 −  + c2�E� ,� � � � � �

2�M cM cM1 

�A7� 

where m=1+ 2hq2 

is a dimensionless constant, and g 

1/22g 
cM = � � ,

3hq2 

1/44mg 
cM1 = 4 . �A8� 

27ME=0sq

If g is of the same order as hq2 then cM is O�1�. This is not 
unreasonable since g and h are both coupling constants, 
which we take to be small and of the same order. Similarly, 
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for M �MTC, which is of the same order as the coupling 
constants, cM1 �1. Thus, for the small c values assumed for 

� c�E� �2our theory and observed experimentally, the cM 
and 

� c�E� �4 contributions are small and the scaling of �ME 
�E� with cM1 

c�E� is quadratic. Note that in going from Eqs. �A7� and �24� 
we omit the c6�E� term and replace M with ME=0. 

2. Correction to the zero-field wave vector 

In this part of the appendix we present details of our 
q2�E�analysis of the fractional change, �qE 

�E�= −1,  in  q2. As  2qE=0 

with the orientational order, we are seeking the correction to 
2the zero-field value qE=0 which already includes the correc

tion due to the zero-field coupling of orientational order to 
layering. The method we use to obtain �qE 

�E� is completely 
analogous to that used above to find �ME 

�E�. Taylor expand
2ing the free energy f about qE=0 and minimizing with respect 

to �qE 
�E�, we find  

2 2�f��qE=0� + fEC ��c � �qE=0�E� � − , �A9��qE 2 2f�=0�qE=0�qE=0c

where f��q2�=dfc / d�q2�, � �q2�= 2�, and f �q2�c fEC dfEC /d�q c�=0 
=d2fc=0 / d�q2�2. Keeping only terms to lowest order in cou

2 2pling coefficients, f�=0�qE=0�� f���q0�=K���2. We again use c
2Eq. �A4� for fc+ fEC but now we are interested in the q 

dependence of the coefficients rc�M ,q2�, uc�M ,q2�, and 
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vc�M ,q2�, which are given by Eqs. �A5� and �A6�. Differen
tiating Eq. �A4� with respect to q2, inserting the result into 
Eq. �A9� and keeping terms to lowest order in couplings, t 
and �AC, i.e., close to a Sm-A�–Sm-C� transition which is 
close to tricriticality, we find 

3�a1� c�E� 2 c�E� 4 

�E� �  M�1 +  � � − � � �c2�E� ,�qE 2K cq cq1 

�A10� 

where m=1+ 2hq2 

is a dimensionless constant, and g 

1/2�a1� 
cq = � � ,

3gqE 
2 

=0M 

1/44�a1� 
cq1 = � � . �A11� 

27M2 4sq 

For M �MTC, which is of the same order as the small cou
pling constants, both cM and cM1 are �1. Thus, as with the 
correction to orientational order, for the small c values as
sumed for our theory and observed experimentally, the 
� c�E� �2 and � c�E� �4 contributions are small and scaling of cq cq1 

�qE 
�E� with c�E� is quadratic. Note that in going from Eqs. 

�A10� and �24� we omit the c6�E� term and replace q with 
qE=0. 

�1� For an excellent review of de Vries materials, see J. P. F. La
gerwall and F. Giesselmann, ChemPhysChem 7, 20  �2006�.
 

�2� J. P. F. Lagerwall, F. Giesselmann, and M. D. Radcliffe, Phys.
 
Rev. E 66, 031703 �2002�. 

�3� U. Manna, J. K. Song, Y. P. Panarin, A. Fukuda, and J. K. Vij, 
Phys. Rev. E 77, 041707 �2008�. 

�4� C. C. Huang, S. T. Wang, X. F. Han, A. Cady, R. Pindak, W. 
Caliebe, K. Ema, K. Takekoshi, and H. Yao, Phys. Rev. E 69, 
041702 �2004�. 

�5� N. Hayashi, A. Kocot, M. J. Linehan, A. Fukuda, J. K. Vij, G. 
Heppke, J. Naciri, S. Kawada, and S. Kondoh, Phys. Rev. E 
74, 051706 �2006�. 

�6� J. V. Selinger, P. J. Collings, and R. Shashidhar, Phys. Rev. E 
64, 061705 �2001�. 

�7� R. B. Meyer, Mol. Cryst. Liq. Cryst. 40, 33  �1977�. 
�8� S. Garoff and R. B. Meyer, Phys. Rev. Lett. 38, 848 �1977�. 
�9� For experimental data showing the tilt response ��E� and bire

fringence response �n�E� in a system with a continuous 
Sm-A�–Sm-C� transition, see, for example, Ref. �6�. 

�10� For experimental data showing the tilt response ��E� and bire
fringence response �n�E� in a system with a first-order 
Sm-A�–Sm-C� transition, see, for example, Ref. �12�. 

�11� M. S. Spector, P. A. Heiney, J. Naciri, B. T. Weslowski, D. B.
 

Holt, and R. Shashidhar, Phys. Rev. E 61, 1579 �2000�.
 


�12� N. A. Clark, T. Bellini, R. Shao, D. Coleman, S. Bardon, D. R.
 

Link, J. E. Maclennan, X. H. Chen, M. D. Wand, D. M. Walba, 
P. Rudquist, and S. T. Lagerwall, Appl. Phys. Lett. 80, 4097 
�2002�. 

�13� Y. Panarin, V. Panov, O. E. Kalinovskaya, and J. K. Vij, J. 
Mater. Chem. 9, 2967 �1999�. 

�14� P. J. Collings, B. R. Ratna, and R. Shashidhar, Phys. Rev. E 
67, 021705 �2003�. 

�15� A. Fukuda, Proceedings of the 15th International Display Re
search Conference of the SID �Society for Information Display, 
San Jose, California, 1995�, p. 61; S. Inui, N. Iimura, T. Su
zuki, H. Iwane, K. Miyachi, Y. Takanashi, and A. Fukuda, J. 
Mater. Chem. 6, 671 �1996�. 

�16� S. T. Lagerwall, P. Rudquist, and F. Giesselmann Proceedings 
of the 22nd International Liquid Crystal Conference �Jeju, 
South Korea, 2009�. 

�17� Ch. Bahr and G. Heppke, Phys. Rev. A 41, 4335 �1990�. 
�18� K. Saunders, Phys. Rev. E 77, 061708 �2008�. 
�19� K. Saunders, D. Hernandez, S. Pearson, and J. Toner, Phys. 

Rev. Lett. 98, 197801 �2007�. 
�20� It should be noted that here, and throughout this article, expo

nents are calculated within mean-field theory, and do not in
clude the effects of fluctuations. For example, it is known that 
when fluctuation effects are included in analysis of the three-
dimensional XY transition, � scales like �1− T

T �� , with � 
C 

�0.35, whereas in mean-field theory �=0.5. The use of mean-
field theory is justified by the fact that virtually all continuous 
AC transitions are observed to be mean field like. 

�21� We deviate slightly from the notation used in �18�, dropping 
the subscript 0 on the b, g, h, and s coefficients. We also use rn 

and rs, instead of tn and ts, for the coefficients of M2 and ���2, 

011703-15 



 

 

 
 

 

 
 

 
 

 

  

 

 

 

 

 

  

 

KARL SAUNDERS PHYSICAL REVIEW E 80, 011703 �2009� 

respectively. This is done to avoid confusion with the reduced 
temperature t. 

�22� See for example, C. C. Huang and J. M. Viner, Phys. Rev. A 
25, 3385 �1982�. 

�23� C. C. Huang and S. C. Lien, Phys. Rev. A 31, 2621 �1985�. 
�24� Of course, different materials will also have different values of 

�. It is not clear how strongly these parameters will vary from 
material to material. 

�25� M. Krueger and F. Giesselmann, Phys. Rev. E 71, 041704 
�2005�. 

�26� In a separate analysis, which we do not present here, we have 
found that the layering order at the Iso-Sm-A transition is in
deed larger in systems with smaller orientational order. How
ever, we have also found that for a given decrease in orienta
tional order, the increase in layering required at the 
Sm-A–Sm-C transition was larger than the increase in layering 
at the Iso-Sm-A transition. This would imply that a wider tem
perature window for the Sm-A phase will result as the orien
tational order is reduced. 
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