RAPID COMMUNICATIONS

PHYSICAL REVIEW B

VOLUME 34, NUMBER 7

1 OCTOBER 1986

Effects of second sound on acoustic transmission at the solid-liquid *He interface

M. J. Moelter, M. B. Manning, and C. Elbaum
Department of Physics and Metals Research Laboratory, Brown University,
Providence, Rhode Island 02912
(Received 23 May 1986)

We have calculated the reflection and transmission coefficients of acoustic waves propagating
across a solid-liquid interface of “He, using an extension of the treatment of Castaing and
Nozieres in which we include pressure changes associated with second sound. These calculations
account well for the experimental results obtained over the temperature range 0.83 K=<7 <1.46
K and provide an alternative explanation to the one we offered previously for the lack of agree-
ment between experiment and the theory of Castaing and Nozieres.

Crystal growth from the melt has been studied for many
years.! Recently, particular attention has been directed
toward the problem of growth of quantum crystals.
Phenomenologically, growth can be described by J =k Ay,
where J is the mass freezing per unit time, Ay is the differ-
ence in chemical potential between liquid and solid, and &
is a kinetic coefficient. In a classical system where growth
is diffusion and/or nucleation dependent, k increases with
temperature, typically according to an Arrhenius law. For
quantum solids, such as helium, Andreev and Parshin®
proposed an entirely different growth process in which the
solid-liquid interface has a very high mobility, and at
T =0 K the interface remains rough, thus the process of
growth is continuous and reversible, i.e., without dissipa-
tion. So at 7 =0 K the coefficient k is infinite; however,
as the temperature increases, thermal excitations in the
liquid and solid interact with the interface and cause dissi-
pation. Therefore, in contrast to classical systems, the
coefficient k, for rough interfaces in the case of helium,
decreases with increasing temperature.

This proposal led to several theoretical and experimental
investigations of helium crystal growth.3~!® Of particular
interest to this work was the realization*’ that a sound
wave propagating from the liquid to solid, in a medium
such as helium, could cause rapid freezing and melting for
a highly mobile interface. The pressure changes would be
taken up by the advancing or receding interface and sound
transmission between the two phases would be substantial-
ly reduced or even suppressed entirely. The reduction in
transmission provides a method for studying the growth ki-
netics with ultrasonic techniques.

We have recently reported measurements of the tem-
perature dependence of the reflection and transmission
coefficients of high-frequency (10 MHz) sound waves at
the rough *He superfluid-solid interface.!® In our work, as
well as previous studies® of transmission alone, it was ob-
served that sound incident from liquid into solid was
transmitted much less efficiently than would be expected
from standard acoustic impedance mismatch theory.'!
Furthermore, our measurements of reflection, along with
those of transmission, allowed us to calculate the relative
acoustic energy loss at the interface, yielding results not in
agreement with existing theoretical predictions.* To ac-
count for our observations we proposed a phenomenologi-
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cal interpretation based on a relaxation process which was
consistent with the energy-loss data. We present here an
alternative explanation based on an extension of the theory
of Castaing and Nozieres* (CN). This extension accounts
for our reflection data as well as the relative acoustic ener-
gy loss.

The theory of CN which treats the interaction of sound
with He-4 superfluid-solid interface cannot be applied
directly to our measurements. Their treatment considers
the melting and freezing of the crystal in response to the
sound (pressure) wave. The latent heat produced on freez-
ing is considered to be carried away by a second-sound
(temperature) wave in the superfluid phase. Their ap-
proach does not include a pressure contribution due to the
second sound wave as they take the thermal expansion
coefficient equal to zero. As a result they have a relation
between R, the reflection coefficient, and 7, the transmis-
sion coefficient, given by 1 +R =1. Our data are not con-
sistent with this result, in fact discrepancies as large as
50% exist (see Figs. 1 and 2).

We present here an expanded, but similar, approach to
that of CN in which we include the effect of pressure asso-
ciated with second sound. The boundary conditions can be
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FIG. 1. Transmission coefficient 7 vs temperature. X’s are
measured values (from Ref. 10). Horizontal dashed lines indi-
cate range of values expected from acoustic impedance
mismatch theory (see Ref. 11).
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FIG. 2. Absolute value of the reflection coefficient |R | vs
temperature. X’s are measured values (from Ref. 10), O’s are
values obtained from present theory. Theoretical values to the
left of vertical dashed line are negative. See text for details.
Horizontal dashéd lines indicate the range of values expected
from acoustic impedance mismatch theory (see Ref. 11).

written as follows:

P\=P;, (1
J =k —p2) =p(vy—vin) , 2)
Pntntpsvs+ (p2— pvin =pov3 3)
Un =Vint - 4

Where P;, p;, and p; are the pressure, chemical potential
per unit mass, and density of phase i (i =1 =liquid,
i =2=solid), J is the mass freezing per unit time, pn and
ps are the normal and superfluid densities, v, and v, are
the normal and superfluid particle velocities, v, is the par-
ticle velocity in the solid, v the velocity of the interface,
and k is the kinetic growth coefficient.

For ordinary (first) sound in a superfluid v, =u,
=8p/(picy) where 8p is the pressure amplitude and ¢, the
speed of first sound in the liquid. The particle velocities
for second sound in a superfluid are given by
va=¢;C18T/(s,T) and v, = —p,c;C,6T/(pys,T), where
OT is the temperature amplitude, c; the speed of second
sound in the liquid, C; the specific heat per unit mass of
the liquid, s, the entropy per unit mass in the liquid, and 7
the temperature.'!>!3 We can also make use of the thermo-
dynamic identity: du=dp/p—sdT. The entropy of the
solid, 52, can be taken as a reference which we take equal
to zero, then L =s,T is the latent heat (this is equivalent
to saying that the temperature of the two phases is the
same at the interface). The values of the solid and liquid
entropies only appear as their difference so the latent heat
is the quantity which appears in the results.

In contrast to the treatment of CN we take the pressure
in the liquid to be composed of three rather than two
terms. Two of these are due to the incident and reflected
waves, as used by CN. In order to account for the “miss-
ing” pressure amplitude, however, we also include a contri-
bution to the pressure field from the second sound wave via
the thermal expansion coefficient: 8p'=p,c?asT, where
a=(1/V)(dV/dT), is the isobaric thermal expansion
coefficient. Assuming an initial pressure (first sound)
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wave of 8po and resulting temperature (second sound)
wave 67T, we obtain the following results:

t=2z,/lz\+2z,(1 —n)+2,2,¢] , (5)
R ’“[22(1 —T]) —2Z) _212261/[Z]+22(1 —T])+2122§], (6)
8To/8po=2zn/{lz1+2,(1 =) +z,2,Epicid} . )

We have used the definition of the acoustic impedance
z;=p;c; where p; and ¢; are the mass density and sound
velocity of phase i, and following the notation of CN we
have defined

E=k (o= p)/p1p)* /N1 + KL/ (pyc;C T, (8)
and we introduce
n=ctaLpips¢/leiCy(pa—py)] )]

with all other variables as above.
With these new expressions for R and t we can calculate
the relative acoustic energy loss:

4z,23[E(1 —n) —n/z,]
[z\+z,(1 =) +2,228)%
(10)

e=1—|R|*=||*21/z,=

(Note that for all of the above equations taking @ =0 im-
plies that n=0 and the results all reduce to those of CN.)
We can now compare these theoretical predictions with
measured quantities. It is clear from Egs. (5)-(7) that
once & and 7 are known the values of R, 7, and 8T ¢/8po
can be determined. Equation (9) contains physical quanti-
ties which are all known!4~!® except for £. By inserting the
definition of 7, Eq. (9), into Egs. (5)-(7) and (10) they
can all be expressed in terms of known quantities with the
one unknown & By using the measured values of the
transmission coefficient, 7, we can obtain £ for all of the
temperatures investigated via Eq. (5). [In principle, the
same could have been done with the reflection data via Eq.
(6), except that we only measure the absolute value of R
and cannot use this relation.] By putting & into Egs. (6),
(7) and (10) we are able to predict &, R, and §7¢/8p, for
the present treatment,

The expression for §To/8po, Eq. (7), gives a relation be-
tween the amplitude of the incident pressure (first sound)
wave 8po and the amplitude of the temperature (second
sound) wave generated at the interface §T. The values of
8T o/8po vary as a function of temperature, as expected
from the temperature dependnce of & and the other ma-
terial parameters. (Since the externally generated 8po was
essentially constant for all temperatures the temperature
dependence is mostly in §To.) The values ranged from a
minimum of 7.4x107% Kcm?/dyn to a maximum of
2.05x1077 Kcm?/dyn. For our experiment we estimate
the amplitude of our incident pressure wave at
8po=2x10* dyn/cm?. This gives values of 867, from a
minimum of 1.48 mK to a maximum of 4.1 mK. These
values are consistent with those of other workers.!3

The theoretical values for | R | and & obtained from the
present treatment are shown as circles in Figs. 2 and 3,
respectively. As seen in Fig. 3 the measured values of ¢
have the largest uncertainty at the lower temperatures and
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FIG. 3. Relative acoustic energy loss ¢ vs temperature. X’s
are measured values (from Ref. 10), O’s are values obtained
from present theory. See text for details.

this is where the largest disagreement with the present
theory occurs. At the higher temperatures theory and ex-
periment are in close agreement. While the quantitative
agreement for |R| (Fig. 2, circles) is not quite as good,
the general trend is well reproduced. In fact we gain some
new information from this approach. Equation (6) gives
the value of R for a given £. We have taken the absolute
value for comparison with the data; however, for all tem-
peratures to the left of the vertical dashed line in Fig. 2 the
reflection coefficient R is less than zero. From this we
infer that our data also were less than zero; however, in
our experiments we measured only absolute values and this
was not apparent. Hence, our data combined with the
theory suggest that at low temperatures R is less than zero
and at higher temperatures R is greater than zero (with a
crossing at approximately 1.3 K).

[This is not surprising as seen from the following argu-
ment. As discussed above for 7— 0 the growth coeffi-
cient k — oo, In this case the interface acts as if it were
the boundary between an elastic medium and vacuum so
we expect that =0 and R = — 1. On the other hand, we
expect that at higher temperatures the growth coefficient
is small and the behavior of R should approach that ex-
pected from acoustic impedance mismatch, which predicts
R >0 for.a wave incident from a medium of low im-
pedance to one with higher impedance. So we expect
R <0 for low temperatures and R >0 at high tempera-
tures, with a crossing (R =0) in between; this behavior is
not inconsistent with our data.]

As mentioned above when the temperature rises it is
predicted®’ that the interaction of the interface with the
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thermal excitations (phonons and rotons) in the bulk
phases will cause dissipation and hence lower the value of
the growth coefficient as

(Km)  '=aT*+ A exp(—A/kgT) , an

where we introduce the notation of Ref. 3, k =p,mK, with
m the atomic mass, a and A4 constants, A the roton energy
gap, and kp Boltzmann’s constant. The first term in Eq.
(11) is that due to phonons, and the second arises from in-
teractions with rotons. Using Eq. (8) we evaluated k for
the values of £ determined from the transmission data.
For our temperature region the effects due to phonons are
less significant than those due to rotons, so we fit our
values of k to just the roton term:

(Km) '=Aexp(—17.8/T) ,

where A=7.8 K was chosen for comparison with other re-
sults.'” We obtain 4 =5.3(%0.4)x10° cm/s which is to
be compared with the results of Castaing et al.>'" of
A =4.6(£0.9)x10° cm/s for their ultrasonic experiment.
Finally, we note that Keshishev et al.>!” made measure-
ments of the growth coefficient in crystallization wave ex-
periments and got a best fit with A=7.8 K and
A =3.3%10° cm/s. It should be noted that the value of the
roton energy gap from neutron scattering experiments is
approximately 7.2 K for these temperatures and pres-
sures.!> [Note that if we take A=7.2 K in order to agree
with the neutron data we obtain 4 =3.3(%0.2)x10°
cm/s.] It is clear that fitting an exponential over such a
small range in temperature is difficult at best and these re-
sults should be considered with caution.

We have presented an extension of the theory of Casta-
ing and Noziéres which includes a contribution to the pres-
sure field due to second sound. The extended theory re-
sults in satisfactory agreement with our data for the reflec-
tion and transmission coefficients as well as the relative
acoustic energy loss. The agreement shows that this for-
mulation is an alternative to our previous interpretation'®
of the experimentally observed failure of the relation
1+ R =1. (We note also that our data, together with the
extended theory, imply that the reflection coefficient R is
negative at low temperatures and becomes positive as the
temperature is increased.) Finally, the values of the
growth coefficient k, determined from our data, agree with
those of previous studies.

We acknowledge helpful discussions with Professor
Humphrey Maris who encouraged this approach. This
research was supported through National Science Founda-
tion Grant No. DMR8304224.

IW. K. Burton, N. Cabrera, and F. C. Frank, Philos. Trans. R.
Soc. 243, 299 (1951); J. C. Brice, The Growth of Crystals
from the Melt (Wiley, New York, 1965); K. A. Jackson, in
Progress in Solid State Chemistry, edited by H. Reiss (Per-
gamon, New York, 1967), Vol. 4.

2A. F. Andreev and A. Ya. Parshin, Zh. Eksp. Teor. Fiz. 75,
1511 (1978) [Sov. Phys. JETP 48, 763 (1978)].

3K. O. Keshishev, A. Ya. Parshin, and A. B. Babkin, Zh. Eksp.
Teor. Fiz. 80, 716 (1981) [Sov. Phys. JETP 53, 362 (1981)].

4B. Castaing and P. Nozieres, J. Phys. (Paris) 41, 701 (1980).

5B. Castaing, S. Balibar, and C. Laroche, J. Phys. (Paris) 41,
897 (1980).

ST. E. Huber and H. J. Maris, Phys. Rev. Lett. 47, 1907 (1981).

7J. Bodensohn, P. Leiderer, and D. Savignac, in Phonon Scatter-



34 EFFECTS OF SECOND SOUND ON ACOUSTIC TRANSMISSION . . .

ing in Condensed Matter, edited by W. Eisenmenger,
K. Lassman, and S. Dottinger (Springer, New York, 1984).

8A. F. Andreev and V. G. Knizhnik, Zh. Eksp. Teor. Fiz. 83, 416
(1982) [Sov. Phys. JETP 56, 226 (1982)].

9R. M. Bowley and D. O. Edwards, J. Phys. (Paris) 44, 723
(1983).

10M. B. Manning, M. J. Moelter, and C. Elbaum, J. Low Temp.
Phys. 61, 447 (1985).

Consider a pressure wave propagating at normal incidence
from medium 1 to medium 2, the reflection and transmission
coefficients are given by R =(z,—2z,)/(z;+z,) and
1=2z,/(z,+2z) with z; =p,c; where p; and c¢; are the density
and velocity of sound in medium i, respectively.

RAPID COMMUNICATIONS

4927

12See, for example, J. Wilks, The Properties of Liquid and Solid
Helium (Oxford Univ. Press, Oxford, 1967), Chaps. 3 and 8.

I3N. Kurti and J. MclIntosh, Philos. Mag. 46, 104 (1955); G. F.
Fritz and G. L. Pollack, Phys. Rev. A 2, 2560 (1970); B. N.
Esel’son, M. 1. Kaganov, E. Ya. Rudavskii, and 1. A. Serbin,
Usp. Fiz. Nauk, 112, 591 (1974) [Sov. Phys. Usp. 17, 215
(1974)1.

14E_ R. Grilly, J. Low Temp. Phys. 11, 33 (1973).

15J. S. Brooks and R. J. Donnelly, J. Chem. Phys. Ref. Data 6,
51 (1977).

16D S. Greywall, Phys. Rev. B 18, 2127 (1978).

17B. Castaing, J. Phys. (Paris) Lett. 45, 233 (1984).



