

Discrete Alarm Clock

by

Travis Moore and Collin Barth

Senior Project

ELECTRICAL ENGINEERING DEPARTMENT

California Polytechnic State University

San Luis Obispo

Spring 2011

2

Table of Contents

Table of Contents ..2

List of Tables / Figures..3

Acknowledgements...3

Abstract...3

I. Introduction..4

II. Background ...6

III. Requirements ..7

IV. Use Cases ...9

V. Project Design ...11

VI. Design Plans..15

VII. Development and Construction..19

VIII. Problems ...24

IX. Conclusion...28

X. Bibliography...30

XI. Appendices..31

A. Specifications...31

B. Parts List and Cost...32

C. Schedule – Time Estimates..33

D. Circuit Layout ...34

E. Project Code for AVR Studio..35

3

List of Tables / Figures

 Table I: MAIN UNIT INPUTS ...12

 Table II: IR REMOTE BUTTON FUNCTIONS13

Acknowledgements

• Dr. Hugh Smith, Cal Poly

• Dr. John Oliver, Cal Poly

• AVRfreaks.net

Abstract

 The standard alarm clock, as used daily by millions worldwide, has

clear room for modification and improvement. This paper documents an

implementation that rectifies many of these flaws. Improvements include

adjustable snooze length, an IR remote for ease of use, and an RF headset

for discrete alarm use or potential incorporation into a device much like a

hearing aid. The processes involved in creating a digital alarm clock, as well

as the obstacles met in the implementation of the enhanced design, are

detailed within.

4

I. Introduction

Our project began with an investigation into the standard household

digital alarm clock, an identification of its flaws, and a vision of how it could be

improved. This project develops an alarm clock that is easy to customize,

easy to use from any location in a room, and practical to use without

disturbing another person sleeping in the same room. This ability to use the

alarm function discretely is the inspiration for the project.

 After brainstorming solutions to the issues with current alarm clocks,

we decided upon three main adjustments we could make to produce an

improved version of our own. We decided that the addition of a remote

control, an optional earpiece, and a customizable snooze time would improve

the current state of alarm clocks. Our design incorporates an Infrared (IR)

remote able to snooze the alarm as well as turn it off, and a Radio Frequency

(RF) portion to simulate an earpiece able to isolate the sounding of the alarm

as desired by the user. We created an alarm clock from the ground up using

ATmega microcontrollers, in order to add the aforementioned improvements.

 This undertaking incorporated the knowledge we have gained from

many of our courses here at Cal Poly, while relying on the creative problem

solving and other skills that we have developed throughout our experience

here. Our programming practice from our CPE classes was relied upon

5

heavily in order to manipulate the microcontrollers that are running our clock

and its accompanying systems. The topics and methods we covered in our

circuit design courses were used to produce the functioning RF and IR

circuitry in our final clock design. We also followed basic soldering and

electrical principles while constructing the housing for our clock. Our main

goal in this project was to continue what we started here at Cal Poly on day

one, and ‘Learn by Doing!’

6

II. Background

Before designing our project, a list of flaws with current alarm clocks

had to be compiled and evaluated. We immediately realized that one aspect

of alarm clocks that could be improved was the disturbance created for

everyone in the same room as the clock. While that is sometimes the

intended result, in a majority of cases an alarm is set to wake up one person

and is an inconvenience to others in the same room. This scenario is played

out most often in two common situations, couples sleeping in the same bed,

and college roommates sleeping in the same room. Another issue we wanted

to address was the difficulty of using an alarm clock from anywhere other than

within an arm’s reach. A solution to this problem would be more of a luxury

than a necessary improvement. Finally, we decided to improve upon a

feature already available on most alarm clocks, the snooze button. All

snooze buttons we have encountered have a predetermined length of time,

and it seems that a customizable snooze time would be a desirable option for

our clock.

 We decided to develop our own functioning alarm clock via ATmega

microcontrollers and incorporate buttons, switches, a radiofrequency (RF)

transmitter/receiver pair, and an infrared (IR) remote and receiver.

7

III. Requirements

Discrete Digital Alarm Clock:

• Fully functional digital clock with an alarm function

• RF receiver circuit used to “simulate” a discrete headset or RF

hearing aid

• IR remote to control basic functions of the clock, such as putting the

alarm to sleep, and snoozing the alarm

• Adjustable Snooze time that can be set between 1 and 30 minutes

• Controls on the clock so that the alarm can sound through either

the headset or the speaker on the main clock unit, or through both

the headset and the speaker

• Main digital clock unit running from a 120V, 60Hz AC wall socket

• Simulated headset running on a 6V battery pack

• LEDs on the clock screen to display an AM/PM indicator, the state

of the alarm, and whether the headset is engaged

• ‘Alarm Set’ button to put the alarm to sleep when it is sounding, or

to set the alarm time when used in conjunction with the hour/minute

buttons

• ‘Time Set’ button to set the clock time when used in conjunction

with the hour/minute buttons

8

• ‘Snooze’ button to turn on the snooze function when the alarm is

sounding, or used in conjunction with the minute button to set the

snooze delay

• ‘Hour’ and ‘Minute’ buttons to increase the hours and minutes

during time setting functions, incrementing at a rate of around 2Hz

• ‘Alarm On/Off’ switch to control the operating state of the alarm

• ‘Headset On/Off’ switch to control the operating state of the

headset

9

IV. Use Cases

In this section, we discuss a number of use cases that describe the full use of

our modified alarm clock.

1) User desires to use the product as a standard clock with no alarm

function. Plug the unit into a wall outlet. Press and hold the ‘Time

Set’ button while adjusting the time with the ‘Hour’ and ‘Minute’

buttons. Ensure ‘Alarm’ and ‘Earpiece’ switches are in the ‘off’

position.

2) User desires to use the product as an alarm clock, without the headset,

the remote, or the snooze function. Plug the unit into a wall outlet.

Press and hold the ‘Time Set’ button while adjusting the time with the

‘Hour’ and ‘Minute’ buttons. Press and hold the ‘Alarm Set’ button

and adjust the displayed time to match the desired alarm time with the

‘Hour’ and ‘Minute’ buttons. Ensure ‘Alarm’ switch is in the ‘on’

position and ‘Headset’ switch is in the ‘off’ position. When alarm

sounds, press ‘Alarm Set’ to put alarm to sleep until alarm time next

day. Alarm will only sound on the main clock speaker.

3) User desires to use the product as an alarm clock with a snooze

function, without the headset, or the remote. Operate unit as

described in (2). After setting alarm time, press and hold ‘Snooze’

10

button while pressing ‘Minute’ until desired snooze length appears on

screen. When alarm sounds, press ‘Snooze’ to delay sounding of

alarm by set time or press ‘Alarm Set’ to put alarm to sleep until alarm

time next day.

4) User desires to use the product as an alarm clock as previously

described but with the headset sounding and not the main speaker.

Operate unit as described in cases (2)-(3), but ensure ‘Alarm’ switch is

in the ‘off’ position and ‘Headset’ switch is in the ‘on’ position. The

alarm will sound only in the RF headset.

5) User desires to use the product as an alarm clock with previously

stated functions with both the headset and the main speaker. Operate

unit as described in cases (2)-(3), but ensure ‘Alarm’ switch is in the

‘on’ position and ‘Headset’ switch is in the ‘on’ position. The alarm will

sound in both the RF headset and the main clock speaker.

6) User desires to use the product as an alarm clock with any of the

previously stated functions and the IR remote as well. Operate unit as

described in cases (2)-(5). IR remote can be used to snooze the alarm

or put it to sleep. Remote button ‘1’ will put the alarm to sleep if it is

pressed while the alarm is sounding. Remote button ‘2’ will snooze

the alarm for the set time if pressed while the alarm is sounding.

11

V. Project Design

Our design consists of three breakout boards, each of which contains

circuitry and a microcontroller that contribute different functions to the

Discrete Digital Alarm clock. An AVR ATmega32 microcontroller is mounted

on each board to give us complete control of the system’s operations. Two of

the boards are located in the main clock unit, and the third is used to simulate

the RF headset. In the main clock unit, one microcontroller acts as the

central hub of the entire system. This board will be solely responsible for

controlling and multiplexing the display, keeping track of the time and alarm,

sending out RF signals to the headset, receiving button and switch inputs,

and sending signals between the other microcontroller located in the main

clock unit. The second microcontroller in the main unit is used to receive IR

signals from the remote, and control the speaker in the alarm clock. Signals

sent between these two microcontrollers coordinate certain tasks to keep the

clock running as one unit, such as the sounding of the alarm and the actions

controlled by the IR remote. Using two microcontrollers on this end was

necessary due to the number of I/O pins needed for the 7-segment clock

display and the various buttons and switches controlling our device. Splitting

up the processing due to the limited I/O pins on the ATmega32

microcontrollers turned out to work in our favor, as we were able to keep

12

operations separate that consume large portions of available power on each

chip. The third microcontroller is used to simulate the RF headset, and only

handles the circuitry dealing with the RF receiver and the buzzer to sound the

alarm.

 The main clock unit runs on a 120V, 60Hz AC supply, and the

simulated RF headset is powered by a 6V battery pack. These power options

provide a realistic scenario as most digital alarm clocks are powered from the

wall outlet, and many small hearing devices are powered off small coin cell

batteries than can range anywhere between 1V and 6V.

 User input to the Discrete Digital Alarm Clock will come from the use of

5 buttons and 2 switches on the main clock unit or from the 2 buttons on the

IR remote. The functions controlled on the main unit are outlined in Table I.

Table I: MAIN UNIT INPUTS AND FUNCTIONS

Button(s) pressed Function

Alarm Set Alarm will be turned off if it is sounding, otherwise Alarm

Time will be displayed

Snooze Alarm will be snoozed if it is sounding, otherwise

Snooze length will be displayed

Hour No function if used alone

Minute No function if used alone

13

Time Set No function if used alone

Time Set + Hour The current clock time will be increased by one hour at

2Hz

Time Set + Minute The current time will be increased by one minute at 2Hz

Snooze + Minute The snooze delay will be increased by one minute at

2Hz

Snooze + Hour Hour has no function when pressed with snooze;

snooze time will be displayed as usual.

Alarm Set + Hour The alarm time will be increased by one hour at 2Hz

Alarm Set + Minute The alarm time will be increased by one minute at 2Hz

In addition to the switches and buttons on the main clock unit, an IR

remote can be used to control some of the functionality of the Discrete Digital

Alarm Clock. Table II outlines the usage of the buttons on the IR Remote.

Table II: IR REMOTE BUTTON FUNCTIONS

Button Pressed Function

1 Put the alarm to sleep when sounding

2 Snooze the alarm when sounding

14

15

VI. Design Plans

Implement the clock display: One of the first steps in building this

project was to reverse engineer the 7-segment display taken from a

commercial digital alarm clock. We used the display from an existing clock

because of difficulty finding individual clock display large enough to see

clearly from any distance greater than a couple feet, which is a necessary

feature in an alarm clock display. In order to reverse engineer the display, we

had to figure out what segment each of the 18 pins on the display header

controlled, depending on which of two reference pins is supplying voltage at

that time. We then had to figure out how each of the four digits was

multiplexed to display the time. Appendix D shows the circuitry connecting

the clock display to the microcontroller.

Create a function to accurately increment the clock: One of the

most important issues with creating a digital alarm clock is creating an

accurate clock. In order to do this, we used the internal oscillator on an

ATmega32 microcontroller and a timer-overflow based interrupt to increment

our clock after a calculated number of clock cycles. Since this interrupt is the

priority our clock stays accurate to the micro second.

Keep track of the time and display it on the screen: Once the timer

was implemented, we could implement a method to keep track of the time.

16

We used three different eight bit values to keep track of the seconds, minutes,

and hours of the current time. Each of these values will roll over when they

reach their maximum values (seconds and minutes at 59 and hours at 12).

Once the seconds reach a value of 60, they are reset to 0 and the minutes

are increased, the same idea is used with the minutes affecting the hours.

When the hours reach a value of 12 they are reset to 1 and the AM/PM flag is

toggled. The initial startup time is 12:00:00 AM as with most manufactured

digital alarm clocks.

Send signals between the RF transmitter and receiver

One of the biggest parts of this project was the RF communication between

the main clock unit and the simulated RF headset. We started by using the

UART capabilities of the microcontrollers to both transmit and process the

data we were trying to send. In the lab we were able to examine the

waveforms on both the sending and receiving ends to ensure that the proper

data was being transmit. While our sent and received data was nearly

identical, we could not overcome the noise and timing issues that arose and

chose to eventually abandon using UART transmission because of these

setbacks. We created our own bit patterns to transmit and receive and

eliminated error with complex bit checking sequences. Appendix D shows

the circuitry connecting the RF receiver to the microcontroller.

17

Send signals between IR transmitter and receiver

When we first started the IR portion of the project, we hooked up the IR

receiver to the microcontroller and used a TV remote control to check if we

were properly receiving the signals. We then created some circuitry to drive

the IR LED we planned on using to generate our IR signal. We quickly

realized (as explained later) that the IR remote was not possible using the

hardware we had because the IR LED did not have the range we needed.

We ended up using a four button remote and decoding the signals using an

oscilloscope and the IR receiver. We used a microcontroller to analyze the

incoming IR signals and distinguish between the buttons being pressed.

Appendix D shows the circuitry connecting the IR receiver with the

microcontroller.

Put all of the working pieces together

At this point in the project we had all of the necessary parts of our project

working separately so it was time to combine them. This was the most

difficult part of the project due to the complicated timing issues associated

with the different components. Separately, the time was based only on the

necessary functions running on each microcontroller. When combined, the

addition of other system’s interrupt service routines changed the timing used

to calibrate the IR and RF transmissions. Multiple weeks of work testing and

tweaking our timing was necessary to have everything configured and

working together, and it took until the deadline of our project window.

18

Implement all the buttons on the clock

With all of the wireless components of the project completed, the hardware

could be added to the main clock unit to provide the necessary user

interaction. We used a total of five buttons and two switches to make the

clock functional. We had to test and implement another timer and interrupt

service routine in order to increase the hours and minutes at a steady pace

while adjusting the clock time, alarm time, and snooze delay. The switches

are used to control the on or off state of the main clock’s alarm and of the

headset’s alarm.

Implement the alarm function

With all of the basic components together, buttons and switches could be

used to implement the alarm functionality of the clock. This stage was tackled

last because the RF and IR signals could be used to control many of the

functions in the alarm during testing. Once the alarm goes off, the RF signals

to turn on the headset are transmitted if the headset is to be used. The IR

remote can be used to snooze or turn off the alarm.

19

VII. Development and Construction

Initial Step: The first step in starting this project was to familiarize

ourselves with the AVR ATmega microcontrollers and AVR Studio 4 which

was used to program them. Our initial test consisted of turning LEDs on a

breadboard on and off to ensure we understood proper timing and how to set

specific pins as inputs and outputs. Our development plan was to create

separate circuits on breadboards for the three main sections of our overall

digital clock; the clock display, the RF transmitter/receiver, and the IR

receiver. Three different microcontrollers were used to separately control and

test the circuits set up on each breadboard, each programmed from a

separate project file in AVR Studio.

Designing the Display: The first circuit we started building was the 7-

segment display control; utilizing a display screen from a professionally

manufactured clock. Using the results we obtained from our initial testing of

the display, we were able to crudely induce different digits to display through

use of the ATmega32. This process lead to the realization that the display

would require much more circuitry than originally envisioned because of the

amount of current needed to drive all of the segments. We planned to use

NPN transistors to ensure the cathodes of our test LEDs were being driven to

ground and to use the microcontroller to provide the current necessary to

20

drive the display. The display requires much more current than the

ATmega32 can provide though, so a high current Op-Amp was inserted as a

voltage follower to provide the necessary driving force.

The Clock Module: A necessity of this project is an accurate timer to

control the clock. We were able to implement one using the internal

oscillators on the ATmega32 microcontroller and internal interrupts. The

clock timer was setup to increment the seconds as the highest priority

interrupt on the chip using the most reliable time keeping method available

with our hardware. An interrupt service routine (ISR) is triggered once a

second using timer counter overflows. A separate set of functions was

designed to increase the minutes and hours, while keeping track of the

current time.

Buttons and Switches: In order to utilize the alarm and snooze

functions of the clock a user interface is necessary. We selected buttons and

switches as our medium, along with our IR remote. In the Discrete Digital

Alarm Clock, buttons are used to set the clock time, alarm time, snooze delay,

turn off the alarm, and snooze the alarm. To make the clock time, alarm time,

and snooze delay reasonably adjustable, the display must show the item

being updated and automatically increase the time for ease of use. This

required another timer on the microcontroller be used to allow for a

manageable speed of continuous adjustment of the hours and minutes for the

clock time, alarm time, and snooze delay. The timer is setup to increase at

21

half-second intervals, and the display value increments every time the timer

count increases.

The Alarm Functionality: The alarm function was integrated into the

existing clock module once it was accurately keeping track of time. Once a

user has set the alarm time, the function is used to compare the current time

with the alarm time, and a flag is set when they are equal. This flag is used to

sound the alarm or signal the RF transmissions to the headset.

The Snooze Functionality: The snooze function was implemented

only after there was a working alarm system. After the snooze delay is set

and the snooze is activated, a function quiets the alarm and delays the alarm

time by the specified amount. The snooze function can be used as many

times as desired before the alarm is put to sleep with the alarm set button.

RF Transmitter and Receiver: The RF Transmitter and Receiver are

used to communicate between the main clock and the headset. This is to

signal to the headset to sound when the alarm goes off. Initial plans were to

use UART to communicate between the microcontrollers and the RF

instruments. This approach was abandoned due to issues with noise filled

data lines as discussed in the Problems section. Our final implementation of

RF communication consists of manually sending out bits on the transmitting

side in a pattern of our choice. A series of manual checks is made for each

bit on the receiving side to identify and interpret our signals. This allowed for

a more accurate transmission of data and ensured the integrity of the data

22

being sent by avoiding noise and interference from other sources. Using this

method we are able to consistently turn the RF headset on and off in

accordance with the alarm’s activity.

IR Remote and Receiver: An IR Remote can also be used to snooze

or put the alarm to sleep. The first step of implementing the IR portion of this

project was to decipher the IR codes coming from the remote. Once we

understood the codes from the remote, we setup test cases on the receiving

side to interpret the signals. A function was created to test the stream of bits

coming from the IR Receiver. When the incoming sequence does not match

the codes the function returns in preparation for the next sequence. The

function returns a different value depending on which valid code was

received, and this information is used to set flags for later processing.

System Integration: Once all the separate components were working

in a standalone configuration, they were integrated together. The first step of

integration was synchronizing the alarm functionality with the RF transmitter

and receiver. When the alarm is triggered, a RF transmitter sends the sound

signal to the receiver if the headset feature is turned on. The second step in

integration was setting up the IR remote to signal functions on the alarm.

Signals were added to the main clock microcontroller from the IR side in order

to trigger events that the microcontroller would process in coordination with

buttons and switches on the clock. We run the speaker for the main alarm

clock off the IR microcontroller in order to avoid drawing large currents from

23

our main microcontroller, because that interference was affecting our clock’s

function and the RF data we transmit.

Assembly: Once the entire system was working as designed, final

assembly began. The first step of this was to solder all of the components

onto soldered breadboards for a permanent configuration. One board was

used for the simulated RF headset, and two were used in the main clock unit.

Soldering the components to breadboards ensured that there would be no

lose connections during operation, and made the unit much more portable.

One of the last steps in the assembly was to create the clock unit where the

circuits would reside and provide a place to mount the display, buttons, and

switches for the discrete digital alarm clock. We fashioned a body for our

clock out of wood that we purchased, cut, and stained. We included a

Plexiglas cover for the box to show the circuitry inside the clock. As a final

step, the circuits were secured inside the clock unit and the buttons and

switches were mounted.

24

VIII. Problems

Driving the 7-Segment Display: One of the first major problems we

encountered occurred while attempting to drive the clock display that we

reverse engineered. Our initial thinking was that the ATmega32

microcontroller could drive each of the cathodes to ground and two pins could

provide current for the two anodes of the display, because this is what was

needed to run the display. We quickly learned that the display required much

more current than we initially thought. The two anodes of the display required

over 40mA of current, much more than the microcontroller could supply, so

we had to find another solution. We devised a simple circuit to supply current

by using two NPN transistors to drive two high current Op-Amps that would

supply the current and voltage necessary for the display. Once we

implemented this circuit into our design, we realized that the cathodes of the

displays were not being driven to ground because again the microcontroller

could not sink the amount of current needed. In order to remedy this

situation, we used NPN transistors on each of the cathodes that had their

emitters connected to ground, and the collectors wired to the cathodes. The

microcontroller could now easily turn on each of the transistors and properly

drive each of the LEDs to ground so they could turn on when needed.

25

RF Transmitter and Receiver: The RF Transmitter and Receiver

caused us the most trouble in this project. The hardware that we used was

extremely limited in its noise filtering and required us to take a different

method than we initially anticipated. We started this part of the project by

using the UART transmission on both the transmitting and receiving side, but

quickly had to abandon that approach. The UART transmitter is designed to

quickly transmit one byte of data by storing the byte in the data register,

placing it into a shift register after space is made, and sending it out one bit at

a time. This worked fine on the transmitting side, but on the receiving side

excess noise ruined the data collection. On the detection of a high to low

transition, the receiving UART side immediately starts reading in data, bit by

bit, until it has filled up the data register. When the receiver detected a high

to low transition in the noise, it would automatically begin collecting data,

causing our functions to start collecting data before the actual start bytes

were being sent. Because of this, our data was often invalid causing our error

detection scheme to ignore it.

 Our final solution to this problem, after various attempts at modifying

the data to prevent interference from noise, was to ‘bit-bang’ the data

interaction on both the transmitting and receiving sides. Bit-banging allowed

us to manually control what data we sent and received, bit by bit, instead of a

byte at a time. By looking at both the transmitting and receiving signals, we

could create signals that would be less affected by noise, and create our own

26

error checking scheme that way. Although these signals were still affected by

noise, we were able to slow down our bit rate and effectively cancel out the

noise on our signal to ensure that we collected valid data.

Timing Issues: We encountered a number of different timing issues

on the main microcontroller. This chip is in charge of the timing for the clock

display, RF transmission, and IR reception. Our main priority was the timer

used for the keeping track of time because of the high importance of an

accurate clock. However, because this took the highest priority, many of the

other timers and controls that were running were skewed when this interrupt

service routine executed. We had to ensure that other tasks would not be

affected by this. We ran different timers to control the various functions of the

clock allowed, which allowed us to multiplex the display at the same time the

clock was running without problems. In addition, we moved the IR receiver to

another microcontroller to avoid constant errors in our reception of the IR

signal. We also moved the responsibility of sounding the buzzer for the alarm

to this supplementary microcontroller to ensure that the current needed to

activate the speaker would not interfere with the main display of our clock. To

allow these microcontrollers to communicate with one another, we put in two

output lines from the IR receiving microcontroller to the main microcontroller

that multiplexed the various remote commands. In addition, a notification

signal from the main microcontroller notified the IR receiving side when the

27

alarm should be on or off so that the buzzer could be turned on or off

accordingly.

Breakout Board Malfunction: Our final problem with the

implementation of our design occurred on the day before we were to present

our finished product. The breakout board be used for our RF microcontroller

had apparently developed a short or a bad connection somewhere near the

ATmega chip, causing the chip to become useless. We also fried a backup

chip we attempted to program in the same DIP socket. Luckily, we had two

extra microcontrollers and were able to salvage our project by placing the RF

circuitry on a breadboard and avoiding the suspect breakout board all

together.

28

IX. Conclusion

Travis Moore: This project was designed to show how an everyday alarm

clock could be turned into a discrete alarm clock using technology readily

available. For example, a hearing aid could be turned into a RF headset for a

comfortable alarm for someone who already wears one because they are

hearing impaired or for someone who wishes to wake up without disturbing

others nearby. Throughout the course of this project we incorporated

different ideas and knowledge obtained through classes at Cal Poly. We

used microcontrollers to run the tasks needed to create a functioning digital

alarm clock, created and analyzed circuits used, and examined different

methods of wireless communication. This project effectively utilized the skills

I have learned as an Electrical Engineer and put them to use in a project that

can easily be expanded and marketed. Throughout the process of doing this

project I encountered many problems I did not realized existed and

discovered methods to overcome then; a skill that will always be useful later

in life. Working on this project opened my mind to other ideas and projects

that I can do, many of which will involve and be concentrated on things

learned while building this Discrete Digital Alarm Clock.

29

Collin Barth: Entering Cal Poly as a freshman I was very excited to find out

what I would ‘Learn by Doing’ in my time at this school. I spent most of my

first three years here as a Computer Engineering student, and while I did

have a number of labs accompanying my classes, I didn’t get to experience

as many hands on projects as I would have liked. Since switching into the EE

course path and experiencing the circuits classes and their labs I have gained

valuable experience working with circuits and generating the expected

results. The hundreds of hours of programming practice I got in my CPE

classes proved to be very valuable in this project, as well as the practice

analyzing and developing circuits in my EE classes. This project showed me

that just by applying the learning I have done at Cal Poly to problems I

encounter in the rest of my life, I can generate remarkable results. We

experienced quite a bit of difficulty bringing this whole project together,

especially in the final week. I definitely gained a better perspective of how to

approach large tasks in my future career, and a confidence when it comes to

diagnosing and resolving issues in my projects, as long as I have allotted

enough time to address them. This project will prove to be an invaluable

experience and a great stepping stone into the electrical engineering field.

30

X. Bibliography

"AVR Timers - An Introduction. | EXtreme Electronics." EXtreme Electronics.

18 Sept. 2008. Web. 02 June 2011.

<http://extremeelectronics.co.in/avr-tutorials/avr-timers-an-

introduction/>.

Hewes, John. "Transistor Circuits." The Electronics Club. 2010. Web. 20 May

2011. <http://www.kpsec.freeuk.com/trancirc.htm>.

"RF Receiver Help." AVR Freaks. 5 Jan. 2011. Web. 17 May 2011.

<http://www.avrfreaks.net/index.php?name=PNphpBB2>.

31

XI. Appendices

A. Specifications

RF Link Transmitter - 315MHz

 http://www.sparkfun.com/datasheets/Wireless/General/MO-SAWR.pdf

RF Link 2400bps Receiver – 434 MHz

http://www.sparkfun.com/datasheets/Wireless/General/MO-RXLC-

A%20data%20sheet.pdf

IR Receiver Breakout

 http://www.sparkfun.com/datasheets/Sensors/Infrared/tsop853.pdf

AVR ATmega32

 http://www.atmel.com/dyn/resources/prod_documents/doc2503.pdf

AVR ATmega164P

 http://www.atmel.com/dyn/resources/prod_documents/doc8011.pdf

32

B. Parts List and Cost

Part Model Number Quantity
Per Unit

Cost Cost

Microcontrollers ATMega32A 3 $4.50 $13.50

Soldered breadboards n/a 3 $2.50 $7.50

RF Transmitter WRL-08946 1 $3.95 $3.95

RF Receiver WRL-08949 1 $4.95 $4.95

IR Receiver SEN-08554 1 $9.95 $9.95

Resistors 10kΩ 18 $0.10 $1.80

Resistors 270kΩ 2 $0.10 $0.20

40 pin DIP sockets 3 $0.90 $2.70

NPN Transistors BC184C 18 $0.20 $3.60

Op-Amp 1 $3.00 $3.00

Power JET 2 $1.10 $2.20

DAC DAC121S101 1 $11.00 $11.00

DC Buzzer 1 $1.50 $1.50

Speaker 1 $1.50 $1.50

7-Segment Display 1 $8.00 $8.00

Push buttons 5 $2.50 $12.50

Various wires 1 $6.00 $6.00

Wood panel 1 $4.65 $3.65

Plexiglas Sheet 1 $2.25 $2.25

 Total Cost $99.75

33

C. Schedule – Time Estimates

34

D. Circuit Layout

Main and IR Microcontrollers:

35

RF Microcontroller:

E. Project Code for AVR Studio

The C code for each of our project files and our two header files begins on the

following page.

36

/***

Travis Moore and Collin Barth

The Discrete Digital Alarm Clock

Electrical Engineering Senior Project

 Spring 2011

***/

/***

GlobalInclude.h

This file contains all the declarations used in this project

***/

extern unsigned char b_AlarmSounding; //Alarm is sounding if a 1

extern unsigned char b_Snooze; //Alarm should be snoozed if a 1

extern unsigned char b_AlarmOn; //Alarm is activate if a 1

extern unsigned char b_HeadsetOn; //Headset is activate if a 1

extern unsigned char b_SetAlarm;//If the alarm is being set

extern unsigned char b_SetSnooze; //If the snooze is being set

extern unsigned char Increase_Sec;

extern unsigned char Seconds;

extern unsigned char Minutes;

extern unsigned char Hours;

extern unsigned char Alarm_Minutes;

extern unsigned char Alarm_Hours;

extern unsigned char Snooze_Alarm_Seconds;

extern unsigned char Snooze_Alarm_Minutes;

extern unsigned char Snooze_Alarm_Hours;

extern unsigned char Snooze_Minutes;

extern unsigned char b_Clock_AM; //Set to a 1 if the clock is AM

extern unsigned char b_Alarm_AM; //Set to a 1 if the clock is AM

extern unsigned char b_Snooze_AM; //Set to a 1 if the clock is AM

void Add_Snooze(void);

/***

Travis Moore and Collin Barth

The Discrete Digital Alarm Clock

Electrical Engineering Senior Project

 Spring 2011

***/

/***

BitMask.h

This file contains I/O functions for the ATmega microncontrollers

***/

// Copyright 2009, Tony Givargis.

#ifndef __avr__

#define __avr__

#include <avr/interrupt.h>

#include <avr/pgmspace.h>

#include <avr/io.h>

#define XTAL_FRQ 8000000lu

#define SET_BIT(p,i) ((p) |= (1 << (i)))

#define CLR_BIT(p,i) ((p) &= ~(1 << (i)))

#define GET_BIT(p,i) ((p) & (1 << (i)))

void ini_avr(void);

void wait_avr(unsigned short msec);

#endif

37

/***

Travis Moore and Collin Barth

The Discrete Digital Alarm Clock

Electrical Engineering Senior Project

 Spring 2011

***/

/***

Digital_Clock.c

This file controls all the main functions of the clock

 It initializes all the timers, I/O ports, interrupts, etc

 It checks the status of the buttons, and sends and receives

 signals

***/

#include <GlobalInclude.h>

#include "BitMask.h"

#include <avr/io.h>

#include <util/delay.h>

#include <avr/interrupt.h>

void Send_Packet(uint8_t cmd);

void USART_Init(void);

void Init_Timers(void);

void Init_IO(void);

void Increase_Mins(void);

void Increase_Hrs(void);

void Increase_Alarm_Mins(void);

void Increase_Alarm_Hrs(void);

void Increase_Snooze_Mins(void);

void Clear_Alarm(void);

void Clear_Snooze(void);

void Display_Alarm(void);

void Display_Snooze(void);

int Check_Alarm(void);

unsigned char Message_Sent = 1;

void RF_Transmit(uint8_t data);

//Define all global variables

unsigned char b_SetAlarm = 0;

unsigned char b_AlarmSounding = 0; //Alarm is sounding if a 1

unsigned char b_AlarmOn = 0; //Alarm is activate if a 1

unsigned char b_HeadsetOn = 0; //Alarm is activate if a 1

unsigned char b_Snooze = 0; //Alarm should be snoozed if a 1

unsigned char b_SetAlarm;// = 0; //If the alarm is being set

unsigned char b_SetSnooze = 0; //If the snooze is being set

unsigned char Increase_Sec = 0;

unsigned char Seconds = 0;

unsigned char Minutes = 0;

unsigned char Hours = 12;

unsigned char Alarm_Minutes = 0;

unsigned char Alarm_Hours = 1;

unsigned char Snooze_Alarm_Seconds = 0;

38

unsigned char Snooze_Minutes = 5;

unsigned char Snooze_Alarm_Minutes = 0;

unsigned char Snooze_Alarm_Hours = 0;

unsigned char b_Clock_AM = 0;

unsigned char b_Alarm_AM = 0;

unsigned char b_Snooze_AM = 0;

int main(void)

{

 Init_Timers();

 Init_IO();

 //Enable global interrupts

 sei();

 while(1)

 {

 if((b_AlarmOn == 1) || (b_HeadsetOn == 1))

 {

 if(Check_Alarm())

 {

 //For the buzzer

 if(b_AlarmOn)

 {

 CLR_BIT(PORTB, 1);

 }

 else

 {

 SET_BIT(PORTB, 1);

 }

 if(b_HeadsetOn)

 {

 RF_Transmit(2); //Turn on

 _delay_ms(1000);

 Message_Sent = 0;

 }

 }

 else

 {

 if((Message_Sent == 0) && (b_AlarmSounding == 0))

 {

 RF_Transmit(1); //Turn off

 _delay_ms(1000);

 Message_Sent = 1;

 }

 if(b_AlarmSounding && b_AlarmOn)

 {

 CLR_BIT(PORTB, 1);

 }

 else

 {

 SET_BIT(PORTB, 1);

 }

 }

 }

 else

 SET_BIT(PORTB, 1);

 }

}

void RF_Transmit(uint8_t data)

{

 int i=0;

 //This should be double the time of the data

 //to insure that we don't double check

 if(data == 1)

39

 {

 for(i=0;i<20;i++)

 {

 if(i%2 == 1)

 {

 CLR_BIT(PORTB, 0);

 _delay_ms(30);

 }

 else

 {

 SET_BIT(PORTB, 0);

 _delay_ms(15);

 }

 }

 }

 else if(data == 2)

 {

 for(i=0;i<40;i++)

 {

 if(i%2 == 1)

 {

 CLR_BIT(PORTB, 0);

 _delay_ms(30);

 }

 else

 {

 SET_BIT(PORTB, 0);

 _delay_ms(15);

 }

 }

 }

 else

 {

 CLR_BIT(PORTB, 0);

 }

}

void Init_Timers(void)

{

 //8 bit timer for lcd screen

 TCCR0 |= (0<<CS02)|(1<<CS01)|(0<<CS00);

 TIMSK|=(1<<TOIE0);

 TCNT0 = 0;

 //16 bit timer for increasing time

 TCCR1B|=(0<<CS02)|(1<<CS01)|(1<<CS00);

 TIMSK|=(1<<TOIE1);

 TCNT1= 65276; //49911;

 //8 bit timer for increasing seconds

 TCCR2 |= (1<<CS22)|(1<<CS21)|(1<<CS20);

 TIMSK|=(1<<TOIE2);

 TCNT2 = 0;

}

void Init_IO(void)

{

 DDRA = 0xFF;

 DDRB = 0x3F;

 DDRC = 0xFF;

 DDRD = 0x80;

 //Enable pull up resistors for buttons

 SET_BIT(PORTD, 6); //Set button

 SET_BIT(PORTD, 5); //Minute button

 SET_BIT(PORTD, 4); //Hour button

 SET_BIT(PORTD, 3); //Alarm button

40

 SET_BIT(PORTD, 2); //Snooze button

 SET_BIT(PORTD, 1); //IR input1 msb

 SET_BIT(PORTD, 0); //IR input2 lsb

 //enable pull up resistors for switches

 SET_BIT(PORTB, 6); //On/off Heaset

 SET_BIT(PORTB, 7); //On/off Alarm

 CLR_BIT(PORTB, 0); //For RF Transmit line

 SET_BIT(PORTB, 1); //For output to IR ucontroller for sound

}

ISR(TIMER2_OVF_vect)

{

 /*///

 This is for the IR "interrupts" from the other ucontroller

 ///*/

 if(GET_BIT(PIND, 0) == 0)

 {

 if(GET_BIT(PIND, 1) == 0)

 {

 //This is the third button

 }

 else

 {

 //This is the first button

 if(b_AlarmSounding == 1)

 {

 b_AlarmSounding = 0;

 return;

 }

 }

 }

 else if(GET_BIT(PIND, 1) == 0)

 {

 //This is the second button

 if(b_AlarmSounding == 1)

 {

 b_Snooze = 1;

 Add_Snooze();

 b_AlarmSounding = 0;

 return;

 }

 }

 /*///

 Settings for the alarm on/off and headset on/off

 ///*/

 if(GET_BIT(PINB, 7) == 0)

 {

 //Sound the speaker

 b_AlarmOn = 1;

 if(GET_BIT(PINB, 6) == 0)

 {

 //Sound the headset with the speaker

 b_HeadsetOn = 1;

 }

 else

 {

 b_HeadsetOn = 0;

 }

 if(!b_AlarmSounding)

41

 {

 SET_BIT(PORTB, 1);

 }

 }

 else if(GET_BIT(PINB, 6) == 0)

 {

 //Sound just the headset, not the speaker

 b_HeadsetOn = 1;

 b_AlarmOn = 0;

 if(!b_AlarmSounding)

 {

 SET_BIT(PORTB, 1);

 }

 }

 else

 {

 //Don't make any sounds, the alarm is off

 b_HeadsetOn = 0;

 b_AlarmOn = 0;

 SET_BIT(PORTB, 1);

 }

 /*///

 This sets the clock time

 ///*/

 if(GET_BIT(PIND, 6) == 0)

 {

 b_SetAlarm = 0;

 if(GET_BIT(PIND, 5) == 0)

 {

 Increase_Mins();

 }

 else if(GET_BIT(PIND, 4) == 0)

 {

 Increase_Hrs();

 }

 }

 /*///

 This sets the alarm time

 ///*/

 else if(GET_BIT(PIND, 3) == 0)

 {

 if(b_AlarmSounding == 1)

 {

 CLR_BIT(PORTB, 0);

 SET_BIT(PORTB, 1);

 b_AlarmSounding = 0;

 return;

 }

 b_SetAlarm = 1;

 if(GET_BIT(PIND, 5) == 0)

 {

 Increase_Alarm_Mins();

 }

 else if(GET_BIT(PIND, 4) == 0)

 {

 Increase_Alarm_Hrs();

 }

 }

 /*///

 This sets the snooze delay

 ///*/

 else if(GET_BIT(PIND, 2) == 0)

 {

 if(b_AlarmSounding == 1)

 {

42

 b_Snooze = 1;

 Add_Snooze();

 b_AlarmSounding = 0;

 SET_BIT(PORTB, 1);

 return;

 }

 b_SetSnooze = 1;

 if(GET_BIT(PIND, 5) == 0)

 {

 Increase_Snooze_Mins();

 }

 }

 else

 {

 b_SetAlarm = 0;

 b_SetSnooze = 0;

 }

 TCNT2 = 0;

}

43

/***

Travis Moore and Collin Barth

The Discrete Digital Alarm Clock

Electrical Engineering Senior Project

 Spring 2011

***/

/***

LCD_Display.c

This file controls all of the writing to the LCD Screen,

 clock functions, and the alarm methods

***/

#include <avr/io.h>

#include <util/delay.h>

#include <bitmask.h>

#include <avr/interrupt.h>

#include <GlobalInclude.h>

#define F_CPU 1000000UL

/***

* Initialization for variables for the LCD Screen

* -Define values for both sets of pins for each digit

***/

//Define the digits for the lCD display

//Those with _1 use Vcc pin 15, _2 use Vcc pin 16

unsigned char digit1_2 = 0; //Pins C1, C2

unsigned char digit2_1 = 0; //Pins C2, C3, C4, C5

unsigned char digit2_2 = 0; //Pins C2, C3, C4, C5

unsigned char digit3_1 = 0; //Pins C6, C7 and A0, A1

unsigned char digit3_2 = 0; //Pins C6, C7 and A0, A1

unsigned char digit4_1 = 0; //Pins A1, A2, A3, A4

unsigned char digit4_2 = 0; //Pins A1, A2, A3, A4

/***

* Declare some functions

***/

void output_15(); //Pin A6

void output_16(unsigned char Minutes, unsigned char Hours); //Pin A7

void set_time(); //Increases the time if needed, sets the bits for the display

void Increase_Mins(void);

void Increase_Hrs(void);

void Increase_Alarm_Mins(void);

void Increase_Alarm_Hrs(void);

void Increase_Snooze_Mins(void);

int Check_Alarm(void);

short int Count_Clock = 0;

unsigned char Clear_Wait = 0;

void Increase_Mins(void)

{

 Minutes++;

 if(Minutes == 60)

 {

 Minutes = 0;

 }

 Seconds = 0;

}

void Increase_Alarm_Mins(void)

{

 Alarm_Minutes++;

 if(Alarm_Minutes == 60)

 {

 Alarm_Minutes = 0;

 }

}

44

void Increase_Hrs(void)

{

 Hours++;

 if(Hours == 12)

 {

 if(b_Clock_AM == 0)

 {

 b_Clock_AM = 1;

 }

 else

 {

 b_Clock_AM = 0;

 }

 }

 if(Hours == 13)

 {

 Hours = 1;

 }

 Seconds = 0;

}

void Increase_Alarm_Hrs(void)

{

 Alarm_Hours++;

 if(Alarm_Hours == 12)

 {

 if(b_Alarm_AM == 0)

 {

 b_Alarm_AM = 1;

 }

 else

 {

 b_Alarm_AM = 0;

 }

 }

 if(Alarm_Hours == 13)

 {

 Alarm_Hours = 1;

 }

}

void Add_Snooze(void)

{

 SET_BIT(PORTB, 1);

 Snooze_Alarm_Minutes = Minutes;

 Snooze_Alarm_Hours = Hours;

 Snooze_Alarm_Seconds = Seconds;

 b_Snooze_AM = b_Clock_AM;

 Snooze_Alarm_Minutes += Snooze_Minutes;

 if(Snooze_Alarm_Minutes >= 60)

 {

 Snooze_Alarm_Minutes -= 60;

 Snooze_Alarm_Hours++;

 if(Snooze_Alarm_Hours == 12)

 {

 if(b_Snooze_AM == 0)

 {

 b_Snooze_AM = 1;

 }

 else

 {

45

 b_Snooze_AM = 0;

 }

 }

 if(Snooze_Alarm_Hours == 13)

 {

 Snooze_Alarm_Hours = 1;

 }

 }

 SET_BIT(PORTB, 1);

}

int Check_Alarm(void)

{

 if(b_SetAlarm == 0)

 {

 if(b_Snooze == 1)

 {

 if(b_Snooze_AM == b_Clock_AM)

 {

 if(Snooze_Alarm_Seconds == Seconds)//if(Seconds <= 1)

 {

 if(Snooze_Alarm_Hours == Hours)

 {

 if(Snooze_Alarm_Minutes == Minutes)

 {

 b_AlarmSounding = 1;

 b_Snooze = 0;

 return 1;

 }

 }

 }

 }

 }

 else

 {

 if(b_Alarm_AM == b_Clock_AM)

 {

 if(Seconds <= 1)

 {

 if(Alarm_Hours == Hours)

 {

 if(Alarm_Minutes == Minutes)

 {

 b_AlarmSounding = 1;

 return 1;

 }

 }

 }

 }

 }

 }

 return 0;

}

void Increase_Snooze_Mins(void)

{

 Snooze_Minutes++;

 if(Snooze_Minutes >= 30)

 {

 Snooze_Minutes = 1;

 }

}

ISR(TIMER1_OVF_vect)

{

 Seconds++;

 if(Seconds == 60)

46

 {

 Minutes++;

 Seconds = 0;

 }

 if(Minutes == 60)

 {

 Hours++;

 Minutes = 0;

 }

 if((Hours == 12) && (Minutes == 0) && (Seconds == 0))

 {

 if(b_Clock_AM == 0)

 {

 b_Clock_AM = 1;

 }

 else

 {

 b_Clock_AM = 0;

 }

 }

 if(Hours == 13)

 {

 Hours = 1;

 }

 TCNT1 = 49911; //65276; ;Reset timer value(2nd value is for 1s long minutes,

for quick testing)

}

ISR(TIMER0_OVF_vect)

{

 switch(Clear_Wait)

 {

 case 1:

 CLR_BIT(PORTA, 6);

 if(b_SetAlarm == 1)//Set_Alarm == 1)

 {

 //output_15();

 set_time(Alarm_Hours, Alarm_Minutes);

 }

 else if(b_SetSnooze == 1)

 {

 set_time(0, Snooze_Minutes);

 }

 else

 {

 set_time(Hours, Minutes);

 }

 output_15();

 break;

 case 5:

 output_15();

 break;

 case 6:

 SET_BIT(PORTA, 7);

 break;

 case 7:

 CLR_BIT(PORTA, 7);

 break;

 case 11:

 if(b_SetAlarm == 1)

 {

 output_16(Alarm_Minutes, Alarm_Hours);

 }

 else if(b_SetSnooze == 1)

 {

 output_16(Snooze_Minutes, 0);

47

 }

 else

 {

 output_16(Minutes, Hours);

 }

 break;

 case 12:

 SET_BIT(PORTA, 6);

 Clear_Wait = 0;

 break;

 default:

 Clear_Wait = Clear_Wait;

 }

 Clear_Wait++;

 TCNT0 = 120;

}

void set_time(int Hours, int Minutes)

{

 if(Hours >= 10)

 {

 digit1_2 = 3; //Pins 2 and 3

 }

 else

 {

 digit1_2 = 0;

 }

 switch(Hours%10)

 {

 case 1:

 digit2_1 = 99;

 digit2_2 = 6; //Pins 3,4,5,6

 break;

 case 2:

 digit2_1 = 14; //Pins 3,4,5,6

 digit2_2 = 5; //Pins 3,4,5,6

 break;

 case 3:

 digit2_1 = 6; //Pins 3,4,5,6

 digit2_2 = 7; //Pins 3,4,5,6

 break;

 case 4:

 digit2_1 = 5; //Pins 3,4,5,6

 digit2_2 = 6; //Pins 3,4,5,6

 break;

 case 5:

 digit2_1 = 7; //Pins 3,4,5,6

 digit2_2 = 3; //Pins 3,4,5,6

 break;

 case 6:

 digit2_1 = 15; //Pins 3,4,5,6

 digit2_2 = 3; //Pins 3,4,5,6

 break;

 case 7:

 digit2_1 = 0; //Pins 3,4,5,6

 digit2_2 = 7; //Pins 3,4,5,6

 break;

 case 8:

 digit2_1 = 15; //Pins 3,4,5,6

 digit2_2 = 7; //Pins 3,4,5,6

 break;

 case 9:

 digit2_1 = 7; //Pins 3,4,5,6

 digit2_2 = 7; //Pins 3,4,5,6

 break;

 default:

48

 digit2_1 = 11; //Pins 3,4,5,6

 digit2_2 = 7; //Pins 3,4,5,6

 }

 if(Minutes >= 50)

 {

 digit3_1 = 10;

 digit3_2 = 14;

 }

 else if(Minutes >= 40)

 {

 digit3_1 = 6;

 digit3_2 = 12;

 }

 else if(Minutes >= 30)

 {

 digit3_1 = 14;

 digit3_2 = 6;

 }

 else if(Minutes >= 20)

 {

 digit3_1 = 12;

 digit3_2 = 7;

 }

 else if(Minutes >= 10)

 {

 digit3_1 = 6;

 digit3_2 = 0;

 }

 else

 {

 digit3_1 = 14;

 digit3_2 = 11;

 }

 switch(Minutes%10)

 {

 case 9:

 digit4_1 = 7;

 digit4_2 = 7;

 break;

 case 8:

 digit4_1 = 15;

 digit4_2 = 7;

 break;

 case 7:

 digit4_1 = 0;

 digit4_2 = 7;

 break;

 case 6:

 digit4_1 = 15;

 digit4_2 = 3;

 break;

 case 5:

 digit4_1 = 7;

 digit4_2 = 3;

 break;

 case 4:

 digit4_1 = 5;

 digit4_2 = 6;

 break;

 case 3:

 digit4_1 = 6;

 digit4_2 = 7;

 break;

 case 2:

 digit4_1 = 14;

 digit4_2 = 5;

 break;

49

 case 1:

 digit4_1 = 0;

 digit4_2 = 6;

 break;

 default:

 digit4_1 = 11;

 digit4_2 = 7;

 }

}

void output_15()

{

 //Set the light for AM/PM

 if((b_SetAlarm == 1) && b_Alarm_AM)

 {

 CLR_BIT(PORTB, 4);

 }

 else if(b_Clock_AM && (b_SetAlarm == 0))

 {

 CLR_BIT(PORTB, 4);

 }

 else

 {

 SET_BIT(PORTB, 4);

 }

 //Set the light for alarm on

 if(b_AlarmOn)

 {

 SET_BIT(PORTC, 0);

 }

 else

 {

 CLR_BIT(PORTC, 0);

 }

 //Clear the light for headset on

 if(b_HeadsetOn)

 {

 SET_BIT(PORTC, 1);

 }

 else

 {

 //For digit 1

 CLR_BIT(PORTC, 1);

 }

 SET_BIT(PORTA, 5); //For the Colon

 switch(digit2_1)

 {

 case 15:

 SET_BIT(PORTC, 2);

 SET_BIT(PORTC, 3);

 SET_BIT(PORTC, 4);

 SET_BIT(PORTC, 5);

 break;

 case 14:

 SET_BIT(PORTC, 2);

 SET_BIT(PORTC, 3);

 SET_BIT(PORTC, 4);

 CLR_BIT(PORTC, 5);

 break;

 case 11:

 SET_BIT(PORTC, 2);

 CLR_BIT(PORTC, 3);

 SET_BIT(PORTC, 4);

 SET_BIT(PORTC, 5);

 break;

50

 case 7:

 CLR_BIT(PORTC, 2);

 SET_BIT(PORTC, 3);

 SET_BIT(PORTC, 4);

 SET_BIT(PORTC, 5);

 break;

 case 6:

 CLR_BIT(PORTC, 2);

 SET_BIT(PORTC, 3);

 SET_BIT(PORTC, 4);

 CLR_BIT(PORTC, 5);

 break;

 case 5:

 CLR_BIT(PORTC, 2);

 SET_BIT(PORTC, 3);

 CLR_BIT(PORTC, 4);

 SET_BIT(PORTC, 5);

 break;

 default:

 CLR_BIT(PORTC, 2);

 CLR_BIT(PORTC, 3);

 CLR_BIT(PORTC, 4);

 CLR_BIT(PORTC, 5);

 }

 //SET THE MINUTE BITS (10s place)

 switch(digit3_1)

 {

 case 14:

 SET_BIT(PORTC, 6);

 SET_BIT(PORTC, 7);

 SET_BIT(PORTA, 0);

 CLR_BIT(PORTA, 1);

 break;

 case 12:

 SET_BIT(PORTC, 6);

 SET_BIT(PORTC, 7);

 CLR_BIT(PORTA, 0);

 CLR_BIT(PORTA, 1);

 if(digit4_1 == 14 || digit4_1 == 15 || digit4_1 == 11)

 {

 SET_BIT(PORTA, 1);

 }

 else

 {

 CLR_BIT(PORTA, 1);

 }

 break;

 case 10:

 SET_BIT(PORTC, 6);

 CLR_BIT(PORTC, 7);

 SET_BIT(PORTA, 0);

 CLR_BIT(PORTA, 1);

 if(digit4_1 == 14 || digit4_1 == 15 || digit4_1 == 11)

 {

 SET_BIT(PORTA, 1);

 }

 else

 {

 CLR_BIT(PORTA, 1);

 }

 break;

 case 6:

 CLR_BIT(PORTC, 6);

 SET_BIT(PORTC, 7);

 SET_BIT(PORTA, 0);

 CLR_BIT(PORTA, 1);

 break;

51

 default:

 CLR_BIT(PORTC, 6);

 CLR_BIT(PORTC, 7);

 CLR_BIT(PORTA, 0);

 CLR_BIT(PORTA, 1);

 }

 //SET THE MINUTE BITS (1s place)

 switch(digit4_1)

 {

 case 15:

 SET_BIT(PORTA, 1);

 SET_BIT(PORTA, 2);

 SET_BIT(PORTA, 3);

 SET_BIT(PORTA, 4);

 break;

 case 14:

 SET_BIT(PORTA, 1);

 SET_BIT(PORTA, 2);

 SET_BIT(PORTA, 3);

 CLR_BIT(PORTA, 4);

 break;

 case 11:

 SET_BIT(PORTA, 1);

 CLR_BIT(PORTA, 2);

 SET_BIT(PORTA, 3);

 SET_BIT(PORTA, 4);

 break;

 case 7:

 CLR_BIT(PORTA, 1);

 SET_BIT(PORTA, 2);

 SET_BIT(PORTA, 3);

 SET_BIT(PORTA, 4);

 break;

 case 6:

 CLR_BIT(PORTA, 1);

 SET_BIT(PORTA, 2);

 SET_BIT(PORTA, 3);

 CLR_BIT(PORTA, 4);

 break;

 case 5:

 CLR_BIT(PORTA, 1);

 SET_BIT(PORTA, 2);

 CLR_BIT(PORTA, 3);

 SET_BIT(PORTA, 4);

 break;

 default:

 CLR_BIT(PORTA, 1);

 CLR_BIT(PORTA, 2);

 CLR_BIT(PORTA, 3);

 CLR_BIT(PORTA, 4);

 }

}

void output_16(unsigned char Minutes, unsigned char Hours)

{

 //For AM/PM Indicator

 CLR_BIT(PORTB, 4);

 //Clr the light for alarm on

 CLR_BIT(PORTC, 0);

 switch(digit1_2)

 {

 case 3:

52

 SET_BIT(PORTC, 1);

 SET_BIT(PORTC, 2);

 break;

 default:

 CLR_BIT(PORTC, 1);

 }

 switch(digit2_2)

 {

 case 7:

 if(Hours >= 10)

 {

 SET_BIT(PORTC, 2);

 }

 else

 {

 CLR_BIT(PORTC, 2);

 }

 SET_BIT(PORTC, 3);

 SET_BIT(PORTC, 4);

 SET_BIT(PORTC, 5);

 break;

 case 6:

 if(Hours >= 10)

 {

 SET_BIT(PORTC, 2);

 }

 else

 {

 CLR_BIT(PORTC, 2);

 }

 SET_BIT(PORTC, 3);

 SET_BIT(PORTC, 4);

 CLR_BIT(PORTC, 5);

 break;

 case 5:

 if(Hours >= 10)

 {

 SET_BIT(PORTC, 2);

 }

 else

 {

 CLR_BIT(PORTC, 2);

 }

 SET_BIT(PORTC, 3);

 CLR_BIT(PORTC, 4);

 SET_BIT(PORTC, 5);

 break;

 case 3:

 if(Hours >= 10)

 {

 SET_BIT(PORTC, 2);

 }

 else

 {

 CLR_BIT(PORTC, 2);

 }

 CLR_BIT(PORTC, 3);

 SET_BIT(PORTC, 4);

 SET_BIT(PORTC, 5);

 break;

 default:

 if(Hours >= 10)

 {

 SET_BIT(PORTC, 2);

 }

 else

 {

53

 CLR_BIT(PORTC, 2);

 }

 CLR_BIT(PORTC, 3);

 CLR_BIT(PORTC, 4);

 CLR_BIT(PORTC, 5);

 }

 switch(digit3_2)

 {

 case 15:

 SET_BIT(PORTC, 6);

 SET_BIT(PORTC, 7);

 SET_BIT(PORTA, 0);

 SET_BIT(PORTA, 1);

 break;

 case 14:

 SET_BIT(PORTC, 6);

 SET_BIT(PORTC, 7);

 SET_BIT(PORTA, 0);

 CLR_BIT(PORTA, 1);

 break;

 case 12:

 SET_BIT(PORTC, 6);

 SET_BIT(PORTC, 7);

 CLR_BIT(PORTA, 0);

 CLR_BIT(PORTA, 1);

 break;

 case 11:

 SET_BIT(PORTC, 6);

 CLR_BIT(PORTC, 7);

 SET_BIT(PORTA, 0);

 SET_BIT(PORTA, 1);

 break;

 case 7:

 CLR_BIT(PORTC, 6);

 SET_BIT(PORTC, 7);

 SET_BIT(PORTA, 0);

 SET_BIT(PORTA, 1);

 break;

 case 6:

 CLR_BIT(PORTC, 6);

 SET_BIT(PORTC, 7);

 SET_BIT(PORTA, 0);

 CLR_BIT(PORTA, 1);

 break;

 case 0:

 CLR_BIT(PORTC, 6);

 CLR_BIT(PORTC, 7);

 CLR_BIT(PORTA, 0);

 CLR_BIT(PORTA, 1);

 break;

 default:

 CLR_BIT(PORTC, 6);

 CLR_BIT(PORTC, 7);

 CLR_BIT(PORTA, 0);

 CLR_BIT(PORTA, 1);

 }

 switch(digit4_2)

 {

 case 7:

 CLR_BIT(PORTA, 1);

 SET_BIT(PORTA, 2);

 SET_BIT(PORTA, 3);

 SET_BIT(PORTA, 4);

 if(Minutes == 0 || Minutes == 3 || Minutes == 7 || Minutes == 8

|| Minutes == 9 || Minutes == 20 ||

 Minutes == 23 || Minutes == 27 || Minutes == 28 ||

Minutes == 29)

54

 {

 SET_BIT(PORTA, 1);

 }

 break;

 case 6:

 CLR_BIT(PORTA, 1);

 SET_BIT(PORTA, 2);

 SET_BIT(PORTA, 3);

 CLR_BIT(PORTA, 4);

 if(Minutes == 1 || Minutes == 4 || Minutes == 21 || Minutes ==

24)

 {

 SET_BIT(PORTA, 1);

 }

 break;

 case 5:

 CLR_BIT(PORTA, 1);

 SET_BIT(PORTA, 2);

 CLR_BIT(PORTA, 3);

 SET_BIT(PORTA, 4);

 if(Minutes == 2 || Minutes == 22)

 {

 SET_BIT(PORTA, 1);

 }

 break;

 case 3:

 CLR_BIT(PORTA, 1);

 CLR_BIT(PORTA, 2);

 SET_BIT(PORTA, 3);

 SET_BIT(PORTA, 4);

 if(Minutes == 5 || Minutes == 6 || Minutes == 25 || Minutes ==

26)

 {

 SET_BIT(PORTA, 1);

 }

 break;

 case 0:

 CLR_BIT(PORTA, 1);

 CLR_BIT(PORTA, 2);

 CLR_BIT(PORTA, 3);

 CLR_BIT(PORTA, 4);

 break;

 default:

 CLR_BIT(PORTA, 1);

 CLR_BIT(PORTA, 2);

 CLR_BIT(PORTA, 3);

 CLR_BIT(PORTA, 4);

 }

}

55

/***

Travis Moore and Collin Barth

The Discrete Digital Alarm Clock

Electrical Engineering Senior Project

 Spring 2011

***/

/***

IR_Receiver.c

This file contains the code controlling second internal

microcontroller, which hadles the IR signal reception

 as well as the main clock’s speaker function

***/

#include <avr/io.h>

#include <util/delay.h>

#include <bitmask.h>

#include <avr/interrupt.h>

#ifndef F_CPU

//define cpu clock speed if not defined

#define F_CPU 1000000UL

#endif

void IR_Init(void);

void Check_IR(void);

int main(void)

{

 IR_Init();

 while(1)

 {

 if(GET_BIT(PIND, 6) == 0)

 {

 _delay_ms(4);

 if(GET_BIT(PIND, 6) == 0)

 {

 Check_IR();

 }

 }

 else

 {

 CLR_BIT(PORTD, 7);

 }

 }

}

void IR_Init(void)

{

 DDRD = 0xB0;

 SET_BIT(PORTD, 6); //enable pull up resistor on port 6 , the input

}

void Check_IR(void)

{

 _delay_us(38000);

 //SET_BIT(PORTD, 7);

 //_delay_ms(1);

 if(GET_BIT(PIND, 6) == 0)

 {

 //CLR_BIT(PORTD, 7);

 //Button pressed is either 2 or 4

 _delay_us(3400);

 if(GET_BIT(PIND, 6) == 0)

56

 {

 //Button is 4

 SET_BIT(PORTD, 5);

 //_delay_ms(1);

 }

 else

 {

 //Button is 2

 SET_BIT(PORTD, 4);

 //_delay_ms(1);

 }

 }

 //Button pressed must be either 1 or 3

 else

 {

 _delay_us(3250);

 if(GET_BIT(PIND, 6) == 0)

 {

 //Button is 3

 CLR_BIT(PORTD, 5);

 }

 else

 {

 //Button is 1

 CLR_BIT(PORTD, 4);

 }

 }

}

57

/***

Travis Moore and Collin Barth

The Discrete Digital Alarm Clock

Electrical Engineering Senior Project

 Spring 2011

***/

/***

RF_Receiver_32.c

This file controls the RF receiver chip. It figures out the

 incoming RF codes, removes the noise, and filters out the

 necessary signals that we are looking for

***/

#include <avr/io.h>

#include <avr/interrupt.h>

#include <util/delay.h>

#include <bitmask.h>

#ifndef F_CPU

//define cpu clock speed if not defined

#define F_CPU 1000000UL

#endif

unsigned char DetectSync();

void Main_Init(void);

unsigned char CheckHigh(void);

unsigned char CheckLow(void);

void SoundAlarm(void);

unsigned char Alarm_Sounding = 0;

unsigned char FirstCheck(void);

int Alarm(void);

int check = 0;

int main(void)

{

 Main_Init();

 while(1)

 {

 int result = 0;

 result = DetectSync();

 if(result == 1)

 {

 SET_BIT(PORTB, 2);

 CLR_BIT(PORTB, 1);

 _delay_ms(500);

 Alarm_Sounding = 1;

 }

 else if(result == 2)

 {

 Alarm_Sounding = 0;

 SET_BIT(PORTB, 1);

 CLR_BIT(PORTB, 2);

 CLR_BIT(PORTB, 0);

 _delay_ms(500);

 }

 else

 {

 CLR_BIT(PORTB, 2);

 CLR_BIT(PORTB, 1);

 }

58

 if(Alarm_Sounding == 1)

 {

 check = Alarm();

 if(check > 0)

 {

 if(check == 2)

 {

 Alarm_Sounding = 0;

 SET_BIT(PORTB, 1);

 CLR_BIT(PORTB, 2);

 CLR_BIT(PORTB, 0);

 _delay_ms(2000);

 }

 }

 }

 }

 return 0;

}

int Alarm(void)

{

 int result = 0;

 CLR_BIT(PORTC, 1);

 result = DetectSync();

 if(result == 0)

 {

 for(int j=0; j<30; j++)

 {

 result = DetectSync();

 if(result == 0)

 {

 SET_BIT(PORTC, 0);

 _delay_ms(1);

 }

 else

 {

 j=30;

 SET_BIT(PORTC, 1);

 CLR_BIT(PORTC, 0);

 return result;

 }

 }

 for(int j=0; j<30; j++) //Outputs Buzzer soind instead of

constant noise

 {

 result = DetectSync();

 if(result == 0)

 {

 CLR_BIT(PORTC, 0);

 _delay_ms(1);

 }

 else

 {

 j=30;

 SET_BIT(PORTC, 1);

 return result;

 }

 }

 }

 else

 {

 SET_BIT(PORTC, 1);

 CLR_BIT(PORTC, 0);

 return result;

 }

59

 return 0;

}

unsigned char CheckHigh(void)

{

 if(GET_BIT(PIND, 5) == 0)

 {

 return 0;

 }

 else

 return 1;

}

unsigned char CheckLow(void)

{

 if(check == 0)

 {

 SET_BIT(PORTC, 2);

 check = 1;

 }

 else

 {

 CLR_BIT(PORTC, 2);

 check = 0;

 }

 if(GET_BIT(PIND, 5) == 0)

 {

 SET_BIT(PORTA, 1);

 return 1;

 }

 else

 {

 CLR_BIT(PORTA, 1);

 return 0;

 }

}

unsigned char FirstCheck(void)

{

 if(CheckLow()) {

 _delay_ms(2);

 if(CheckLow()) {

 _delay_ms(2);

 if(CheckLow()) {

 _delay_ms(2);

 if(CheckLow()) {

 _delay_ms(2);

 if(CheckLow()) {

 _delay_ms(2);

 if(CheckLow()) {

 _delay_ms(2);

 if(CheckLow()) {

 _delay_ms(2);

 if(CheckLow()) {

 _delay_ms(2);

 if(CheckLow()) {

 _delay_ms(2);

 if(CheckLow()){

 _delay_ms(2);

 //20 ms time elapsed

 return 1;

 }

 }else

60

 return 0;

 }else

 return 0;

 }else

 return 0;

 }else

 return 0;

 }else

 return 0;

 }else

 return 0;

 }else

 return 0;

 }else

 return 0;

 }else

 return 0;

}

//This function will return a 1 if we receive a complete Sync byte

unsigned char DetectSync()

{

 unsigned char average = 0;

 unsigned char averageSTOP = 0;

 if(FirstCheck() == 0)

 {

 return 0;

 }

 if(CheckLow())

 {

 _delay_ms(17);

 }

 else

 {

 return 0;

 }

 if(!(CheckLow()))

 {

 _delay_ms(2);

 if(!(CheckLow()))

 {

 _delay_ms(2);

 if(!(CheckLow()))

 {

 _delay_ms(19);

 if(CheckLow())

 {

 _delay_ms(4);

 if(CheckLow())

 {

 _delay_ms(4);

 if(CheckLow())

 {

 _delay_ms(4);

 if(CheckLow())

 {

 while(CheckLow());

 }

 else{return 0;}

 }

 else{return 0;}

 }

 else{return 0;}

 }

61

 else{return 0;}

 }

 else{return 0;}

 }

 else{return 0;}

 }

 else{return 0;}

 _delay_us(8800);

 for(int i=0;i<9;i++)

 {

 average += (CheckHigh());

 _delay_us(24800);

 average += (CheckLow());

 _delay_ms(3);

 average += (CheckLow());

 _delay_us(24800);

 }

 _delay_ms(25);

 for(int i=0; i<50; i++)

 {

 averageSTOP += (CheckHigh());

 _delay_ms(1);

 }

 if(averageSTOP>45)

 {

 return 2;

 }

 else if(average>15)

 {

 return 1;

 }

 else

 {

 return 0;

 }

}

void Main_Init(void)

{

 //define port A,B,C as output

 DDRA=0xFF;

 DDRB=0xFF;

 DDRC=0xFF;

 //define port D as input

 DDRD=0x00;

 //Port D, 5 will be used as the Rx input, disable pullup resistor

 SET_BIT(PORTD, 5);

 //Make sure speaker is off

 CLR_BIT(PORTB, 0);

 //LED for Alarm OFF

 CLR_BIT(PORTB, 1);

 //LED for Alarm ON

 CLR_BIT(PORTB, 2);

}

