

Multihierarchical XQuery for document-centric XML

Ionut E. Iacob and Alex Dekhtyar

ABSTRACT
Text has a non-hierarchical structure. Not surprisingly, searching for information in the content of a document often yieldsresults that overlap the structure
within the document. It is often of a great interest to relate such results to the embedded document structure.

In this work we present an extension of the XQuery language over multihierarchical document-centric XML documents. We illustrate the benefits of
using multihierarchical XQuery for text-and-structure searches in document-centric XML documents More specifically, multihierarchical XQuery allows
representing relationships between textsearch results and document structure even for cases wheresuch search results overlap markup boundaries
and even incases when only one markup hierarchy is considered.

1. INTRODUCTION
Originally designed as a language for document markup,XML has seen the number and variety of its uses go farbeyond the original intent. Recent

development of XMLrelated standards, such as XML Schema and XQuery [3] isdriven more by the use of XML as an underlying representation for data
management applications. With incorporation of XML into major database management systems, andwith continued adoption of XML as the medium
for business applications, the continued use of XML for documentannotation often flies under the radar.

At the same time, document-processing and document-annotation applications that rely on XML are gaining popularity. The readability of XML and
the availability of freeprocessing tools are just two of the reasons for this popularity.

Use of XML for document markup poses a number ofunique challenges. Complex document annotations give riseof multihierarchical markup = use
of markup from multipleschemas to annotate the same text[15, 9]. This, in turn, leads to problems with markup representation and storage.

Another set of problems is associated with querying document-centric XML. Unlike data-centric XML data, the content of document-centric XML
documents has meaning andvalue even when all markup is removed (typically, XML isused to annotate existing texts). User information needsrange
from requests that need to be represented as markupqueries over multiple domains, to text searches that completely ignore markup boundaries.

In this paper, we discuss the means of expressing and implementing some of the typical information needs related todocument-centric (and
sometimes, multihierarchical) XML.Our contribution is threefold: (i) we extend XQuery withsearch capabilities over multihierarchical documents; (ii) we
present an XQuery enhancement for text search using regular expressions; (iii) we show that the extension of XQuery for multihierarchical documents has
applications beyond multihierarchical markup: complex text searches over single-hierarchy XML documents may greatly benefit from XQueryextensions
to reveal important relationships between the text search results and the document structure. Althoughour implementation of the XQuery extension relies
on anappropriate data structure representation of multihierarchical markup, we emphasize that both the data structure andthe extended XQuery are
generalizations of the DOM datastructure and XQuery language respectively. The XQueryextension we present can be straightforwardly implementedon
top of DOM representation of XML documents whilepreserving the advantages of the extended XQuery.

The rest of the paper is organized as follows. In Section 2we briefly present a few case studies that motivate this work.The data structure model for
the multihierarchical XMLand the appropriate path language to navigate this datastructure are described in Section 3. In Section 4 we describe the
extended XQuery for querying multihierarchical XMLand we present the related work and conclusions in Section 5.

2. XML QUERIES IN ELECTRONIC EDITIONS
The problem of multiple (concurrent) markup hierarchiesoften occurs in document encodings when one wants to encode a wide variety of

features in a single XML document. A typical example is building image-based electronic editions of manuscripts [13]. Such electronic editions of
historic documents and document collections are beginning to emerge as important new digital resources for humanities scholars and the general
public. These editions can provide numerous scholars with anytime first-hand access to digital images and the content of unique and fragile material
that is not otherwise widely available for study.

We illustrate the problem of overlapping hierarchies in document-centric XML in the following example. Figure 1 shows an image of a manuscript
(Cotton Otto A vi, King Alfred's translation of Boethius "Consolation of Philosophy", a 10th century Old English manuscript.), the content of the
manuscript fragment, and encodings of four groups of manuscript features: physical manuscript organization (<line>), document structure (<vline> =
verse lines, <w> = words), editorial restorations of the manuscript content (<res>), and manuscript condition (<dmg> = damages). There are two
main reasons for representing the encodings as different XML documents:
(i) each encoding corresponds to a semantically independent markup hierarchy, dictated by the nature of the application and (ii) there is overlap in the
scope of some markup (see, for instance, <line> and <w> markup) so all markup cannot be naturally represented as well-formed XML (In [6] we show
that representing such markup using "hacks" in XML comes with a steep price at query processing time).

The problem of representing documents with multiple markup hierarchies has been addressed by us in [10, 9]. Section 3 summarizes our results. For
the rest of this section we discuss a few querying scenarios that are likely to occur for such documents. Then, in Section 4, we present our solutions for
the problems presented here.

XQuery is an attractive language for the document encoding community because it combines in itself both the querying and the XML transformation
capabilities. The latter feature is extremely important as document encoding community is actively using XSL transformations for documentpresentation.
The three querying scenarios presented below appear in practice and involve both the need to search the documents and the need to present the search
resultsappropriately.

I. Searching for nodes in a hierarchy and their relationships with nodes in other hierarchies. Searching for
words is a common task in processing document encodings.However, just retrieving individual words without surrounding context is insufficient under
many circumstances. It isoften the case that the words in the search result need to beshown within their "surroundings", such as the manuscript lines
where they appear. Alternatively, the search for wordscan be conducted based not only on their spelling but also oncertain structural properties, such as,
words which are damaged in the manuscript. Such information needs require notonly querying the markup, but also presenting the results in a way that is
immediately understandable to the scholarsstudying the manuscript. For example, consider the following two search questions:

1. Find and display lines containing the word singallice.

2. Find and display lines containing words that are totally or partially damaged and highlight such words.

The first query seems to be straightforward. However, there is a subtle problem about it, as shown in Figure 1. In this figure, the word singallice is split
between two manuscript lines. The second query raises some problems also: <w> and<dmg> markup are in different hierarchies, and therefore a
relationship between them needs to be determined.

II. Searching for (sub)strings of the text content of element nodes. Another common task in document encodingprocessing is
searching for substrings. Here, the queries canbe formulated in a variety of ways: search for words starting/ending with a given substring, search for
words containing a certain substring, search for specified consecutivewords in a phrase. In general, such queries for strings orsubstrings can be
captured by a regular expression. However, the substring text can be split by XML markup in theencoding. As is the case with the previous types of
queries,presentation of the search results may play an important role here. Consider the following query:

1. Find all words that contain the substring unawe, display such words and highlight the substring matching(s).

As opposed to the first set of queries in L, this query appears to target a single document hierarchy: the one thatcontains <w> markup. However, while
XQuery has capabilities of identifying such words, highlighting matchings is nota straightforward task (XSLT 2.0 [12] has the ability of text matching and
iteratingover matching/non-matching substrings).

III. Searchingfor (sub)strings of the text content of element nodes in a certain relationship with other element
nodes. Finally, the last situation we consider is more general than the previous situation: in addition to highlighting the matched (sub)strings, we have
to highlight parts of the (sub)string based on how they are marked up in the encoding.

For instance, we consider the following query:

1. Find all words that contain the substring unawe, display such words and highlight (display in bold) thesubstring and italicize (parts of) matched
substrings that were restored (that is, covered by <res> markup).

It is clear that the query requires searching over multiplehierarchies as <w> and <res> are in different hierarchies.
Before we proceed to answer these queries (Section 4), wedescribe the data model we use for multihierarchical documents and the extension of

XQuery we define on top of thisdata structure.

3. MULTIHIERARCHICAL XML
Multihierarchical markup has been subject of attentionever since the inception of SGML [14]. Up until recently,most of the work on dealing with it had
been done by document processing experts [15] (See [5] for a survey of early research on multihierarchical markup). However, almost all workon
multihierarchical markup was limited to finding properserialization syntax for representing multiple hierarchies in a single XML document. In [6] we have
shown that thisapproach tends to lead to inefficient solutions.
Our work on multihierarchical markup addresses the problem of its management at the level of representation. In this section we briefly outline our work
to date [5, 10, 9] on representation and querying multihierarchical XML documents.Multihierarchical document-centric XML. A Concurrent Markup
Hierarchy (CMH) is a collection (Di, ... ,Dn)of DTDs (5Or other XML schema descriptions), and an XML element r, such that r, called the root of the
hierarchy, is present in each DTD, no other XMLelements are shared by different DTDs, and in each Di allelements x =~ r are reachable from r[5].
Concurrent markuphierarchies specify the markup that will be used to createmultihierarchical documents.

A multihierarchical XML document d over a CMH H, isa collection of XML documents di, ... , dn, and a string S,such that for all 0 G i G n, di is an
encoding of S usingmarkup from the DTD Di, with root r [5].
KyGODDAG. XML documents are parsed into a datastructure called DOM tree, using DOM parsers. Applications use DOM API to access the parsed
XML[4]. In [10,9] we proposed a data structure called KyGODDAG (Sperberg-McQueen and Huitfeldt proposed a data structure called GODDAG,
Generalized Ordered DescendantDAG, to be used for storage of multihierarchical document-centric markup[16]. Due to lack of a formal definition in [16],
we we under impression that the structure proposed byus in [10, 9] was an instance of GODDAG. Personal communication with C.M. Sperberg-
McQueen made us realize that it was, in fact, a different data structure, which we now callKyGODDAG) to beused in place of a DOM tree for storage
and access to multi-hierarchical documents. Consider a multihierarchical XML document d = (S, (di, ... , dn,)). Let S = li • l2 • ... • ls be a partition of S
(Here, • is the operation of string concatenation), into leaves, longest substrings such that nomarkup in any of the di,... do breaks any substring l; (that is,
markup appears only at the substring boundaries). Then,a KyGODDAG Gd is a directed acyclic graph Gd = (N, E),where N = U inodes(di) U {li, ... ,ls},
and the set of edgesconsists of the following. First, if ni, n2 C nodes(d), then(ni, n2) C E iff (ni, n2) is in the DOM tree of di. Second, if n is a text node in
some di and l is a leaf node, then (n, l) C E iff l C_ content (n).

Informally, a KyGODDAG for a multihierarchical XMLdocument is a data structure that unites the DOM trees forall hierarchies at the root element,
and creates a layer of leaf nodes that are connected to the text nodes from eachhierarchy, which contain their content. The KyGODDAGdata structure
for the encodings in Figure 1 is represented in Figure 2 (for the sake of simplicity, two KyGODDAG rootswere represented in the figure; they actually
represent thesame KyGODDAG node). In the figure, element nodes are labeled by their names followed by a number representing the order of the
respective element node among nodes with the same name (for instance, dmgi , dmg2, etc.). The textnodes are labeled with ti, t2, etc. following the
documentorder and the leaf nodes are represented by boxes labeled with numbers.
Path Expressions. In [9] we proposed a path expression language for multihierarchical XML documents and described its semantics over KyGODDAG.
The language is anextension of XPath with a number of new axes for traversal of the KyGODDAG between different hierarchies, and anumber of new
node test that allow for simple access to content in individual hierarchies. All XPath axes are preserved in the extended language. XPath axes applied
to non-rootnodes return nodes within the same DOM tree componentof the KyGODDAG. When applied to the root, they returnnodes in all
components. New axes can be broken into two

categories: multihierarchical versions of traditional XPathaxes: xdescendant, xancestor, xfollowing, xpreceding, and newaxes for representing markup
overlap: preceding-overlapping, following-overlapping, overlapping.

To provide formal definitions of the new axes we need the following notation. Let d, Gd = (N, E) be a multihierarchical XML document and its
KyGODDAG. Let x be anode in some hierarchy di of d. We let ancestor(x) anddescendant(x) be respectively the ancestor and descendantnodes of x in
its hierarchy. Then we let leaves(x) denote the set of leaf nodes in the node set descendant(x). Leafnodes li, ... ,ls of Gd come with a linear order: l; < lk iff
j < k . Given a set L of leaf nodes, max(L) and min(L)denote the maximum and the minimum leaf node in set L w.r.t. the above mentioned linear order.
The semantics of the new axes is specified as follows [9].

DEFINITION 1 (EXTENDED PATH AXES). We define the following extended path axes over KyGODDAG:

• xancestor(n) = {m E NJ m E~ descendant(n) U {n} and leaves(n) C leaves(m)};

• xdescendant(n) = {m E NJ m E~ ancestor(n) U {n} and leaves(n) D leaves(m)};

• xfollowing(n) = {m E NJ max(leaves(n)) < min (leaves (m))};

• xpreceding(n) = {m E NJ min(leaves(n)) > max (leaves (m))};

•	 preceding — overlapping(n) = {m E NJleaves(n) n leaves(m) =~ Ol and

min(leaves(n)) E (min (leaves (m)),max(leaves(m))] and max(leaves(n)) > max(leaves(m))};

•	 following — overlapping(n) = {m E NJleaves(n) n leaves(m) =~ Ol and

max(leaves(n)) E [min (leaves (m)),max(leaves(m))) and min(leaves(n)) < min (leaves (m))};

• overlapping(n) = following — overlapping(n) U preceding — overlapping(n).

The new node tests are described below(the String parameter is a comma-separated list of hierarchy names):

DEFINITION 2 (EXTENDED NODE TESTS). We define the following node test extensions for path expressions over KyGODDAG:

•	 text(String): the node test is evaluated to true if andonly if the context node is a text node in the specifiedhierarchy (hierarchies).

•	 node(String): the node test is evaluated to true if andonly if the context node is any node type in the specifiedhierarchy (hierarchies).

•	 *(String): the node test is evaluated to true if and only if the context node is a element node in the specifiedhierarchy (hierarchies)

•	 leaf(): the node test is evaluated to true if and only if the context node is of type leaf.

KyGODDAG node order. Before we proceed to extending XQuery we need to extend the underlying data model. In particular, we need to define
iterations over the extendedaxes evaluation (node sets from multiple hierarchies) andcomparisons between nodes, possibly from different
hierarchies. We define the order of nodes in a KyGODDAG in away similar to XQuery's document order [3] as follows.

DEFINITION 3 (NODE ORDER IN KYGODDAG). The relative order of KyGODDAG nodes is stable and subject to the following constrains:

1 . the root node is the first

2 . if two nodes are in the same hierarchy, then they follow the order in the respective hierarchy's DOM

3 . if two nodes are in different hierarchies then their order corresponds to their hierarchies order (stable but implementation dependent).

Implementation. The framework for management of multihierarchical document-centric XML document had been implemented as part of the
Edition Production and Presentation Technology (EPPT) (Available at: http://beowulf.engl.uky.edu/—eft/) for image-based electroniceditions of
text documents. It was presented in [7, 8].

4. XQUERY FOR MULTIHIERARCHICALXML
In this section we show how to use the extended XQuery to answer the questions posed in Section 2. Due to spaceconstraints and to the fact

that some queries require HTMLpresentation of the search results, we skip the HTML wrapping around the XQuery query (in order to produce a
validHTML document). This would be a straightforward exercise, however.

For each of the following queries we assume that the default document is the KyGODDAG in Figure 2. That is, anypath that starts with "/" is
an absolute path starting at theKyGODDAG root. Moreover, for the rest of this section weconsider that all functions are internal and, for
simplicity,we drop the namespace "fn".

Before we get started with the queries, we give the defini-
tion of a new extended XQuery internal function, analyze-string(),which we use for text searching with regular expressions in
a similar way to XSLT 2.0 [12].

DEFINITION 4. We define

fn:analyze- string ($node as xs:node(), $pattern as xs:string) as xs:node()

such that each of the following happens:

1. a new KyGODDAG hierarchy is created and a hierarchy name is assigned to this hierarchy (say, rest);

2. the content of the input node $node is wrapped by a tag <res> in the hierarchy rest;

3.	 the regular expression $pattern is matched against the content of the input node $node and each matching string is tagged with <m>,
also a node in hierachy rest and a descendant of <res>;

4. the regular expression $pattern may be given as a well-formed XML fragment (such as "xxx<a>xxxxxx"), in which case: (i) each start tag
is replace by "(", eachend tag is replaced by ")"; (ii) the resulted regular expression is matched against the content of $node, theneach
regular expression's group matching is tagged with the markup the group was originated from; (iii) all newmarkup is in rest hierarchy and
descendant of <res>node;

5.all temporary hierarchies generated by an execution of this funtion are deleted after the entire query is evaluated.

EXAMPLE 1. For instance, let's consider that we apply

the function analyze-stringO on input node <w>unawendendne</w>and input pattern . *un<a>awe. *.

The evaluation will produce the following markup (whichwill be, temporary, part of the KyGODDAG):

<res><m>un<a>awe</m>ndendne</res>

The function defined above presents the advantage of matching text while matching groups can be clearly marked. Moreover, by creating a new
"virtual" hierarchy, the search results can be exploited in the context of the existing hierarchy/hierarchies. Since the search results are likely to overlap
existing markup boundaries, the use of the function even in the context of a single hierarchy makes sense if the extendedXQuery axes are used (the
virtual results hierarchy is likely to overlap the existent hierarchy).

In the following we present the extended XQuery queriesfor the searches formulated in Section 2.

I. Queryingfor nodes in a hierarchy and their relationships with nodes in other hierarchies
1. Find and display lines containing the word singallice.

for $l in /descendant::line
[xdescendant::w[string(.) = 'singallice'] or

overlapping::w[string(.) = 'singallice']] return string($l)

Output:

gesceaftum unawendendne singallice sibbe gecynde Da

2 . Find and display lines containing words that are totally or partially damaged and highlight such words.

for $l in /descendant::line[xdescendant::w[xancestor::dmg or xdescendant::dmg oroverlapping::dmg]]

return (for $leafin $l/descendant::leaf() return

if ($leaf[ancestor::w and

ancestor::dmg]) then{$leaf}

else $leaf

,
)

Output:

gesceaftum unawendendnesin

gallice sibbe gecyndeDa

II. Querying for (sub)strings of the text content of element nodes
1. Find all words that contains the substring unawe, display such words and highlight the substring matching(s).

or $w in /descendant::w
[matches(string(.)),".*unawe.*"]
return (
let $res := analyze-string(

$w, ".*unawe.*")

for $n in $res/child::* return if ($n/parent::m) then

f$t}

else $t

,
)

Output:unawendendne

III. Querying for (sub)strings of the text content of element nodes in a certain relationship with other element
nodes

1. Find all words that contains the substring unawe, display such words and highlight (bold) the substringmatching(s) and italicize (parts of)

matchings thatwere restored (that is, covered by <res> markup).

or $w in /descendant::w

[matches(string(.)),".*unawe.*"]

return (

let $res := analyze-string(

$w, ".*unawe.*")

for $leafin $res/descendant::leaf() return if ($leaf/xancestor::m

and $leaf/xancestor::res) then<i>f$t}</i>

else if ($leaf/xancestor::m) thenf$t}

else $t

,
)

Output:<i>unawe</i>ndendne

Implementation. We have implemented the extended XQuerywith support for multihierarchical XML in Java. We usedthe grammar from [3], enhanced
with support for extendedXPath axes and extended node tests, and the Java Compiler Compiler (JavaCC version 3.2, verb,https://javacc.dev.java.net/)
parser generator to generate a Java parser

for XQuery expressions.

A side effect of using the function analize-string() is the appearance of a temporary markup hierarchy while theextended XQuery is processed. In
our implementation, thedocument nodes introduced while processing an XQuery expression with analize-string() exist only during XQueryexpression
evaluation. Moreover, the output of such anXQuery expression evaluation is either a string or a sequenceof strings (This is also a consequence of
the fact that we found this).

5. RELATED WORK AND CONCLUSIONS
The importance of full-text querying for XML is clearlyemphasized in [2] as well as in the W3C's working drafts for XQuery 1.0 and XPath 2.0 Full-Text

[1]. Our work attempts to deal with situations where such full-text search results overlap document markup boundaries. Such situations are likely to
appear when searching for text in document-centric XML documents. We propose a complete solution to determine relationships between such search
results anddocument structure.

The work of Jagadish et al. [11] is a complete treatment of the multi-hierarchical data-centric XML problem: representation, processing, and querying.
The authors highlight the importance of a proper query language for multiple XMLhierarchies and leverage path expressions used in XQuery for
searching XML. The XQuery language extension thatJagadish et al. propose increases the power of XQuery to take advantage of their Multi-Colored
Trees (MCT) datastructure for multiple data-centric XML hierarchies whilepreserving the original XQuery semantics when querying asingle XML
hierarchy. Unfortunately, MCTs do not supportoverlapping markup.

In our work of extending XQuery over concurrent markuphierarchies (with possible overlapping structures) representedas KyGODDAG, the following
steps were taken: (i) we defined new axes and new semantics for accessing parts of XMLwith concurrent markup represented as a KyGODDAG [9]; (ii)
we extended the XPath node test model to take intoaccount multiple hierarchies and new node types of KyGODDAG; (iii) we defined a stable order over
the nodes inKyGODDAG. Also, we presented an enhancement of XQueryfor searching text using regular expressions and we argued that XQuery for
overlapping hierarchies has potential applicability for searching text in XML documents and transforming XML data in other representations (XML,
HTML,etc.). We have implemented the extended XQuery in Javaand it serves as a main search and results presentation engine for the Edition
Production and Presentation Technology(EPPT), a platform for preparing image-based electroniceditions of manuscripts.

Our future work plans involve efficient implementationof extended XQuery over multihierarchical document structures and continuing our study of its
applicability for full-text searches[1].

6. REFERENCES
[1] S. Amer-Yahia, C. Botev, S. Buxton, P. Case,

J. Doerre, D. McBeath, M. Rys (Eds.), and
J. Shanmugasundaram (inv.exp.). XQuery 1.0 and XPath 2.0 Full-Text.

http://www.w3.org/TR/xquery-full-text/, 2005. W3CWorking Draft November 2005.

[2] S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit.FleXPath: flexible structure and full-text querying forXML. In Proceedings of the 2004 ACM
SIGMODinternational conference on Management of data,

pages 8394. ACM Press, 2004.

[3] S. Boag, D. Chamberlin, M. F. Fern~andez,

D. Florescu, J. Robie, and J. Sim~eon (Eds.). XQuery1.0: An XML Query Language.

extension useful in the context of formatting XQuery expression evaluation results in HTML.
http://www.w3.org/TR/xquery/, Nov 2005. W3CCandidate Recommendation.

[4]	 M. Champion, S. Byrne, G. Nicol, and L. Wood (Eds.). Document Object Model (DOM) Level 1Specification. http://www.w3.org/TR/REC-DOM-
Level-1/, Oct1998. World Wide Web Consortium Recommendation,REC-DOM-Level-1-19981001.

[5]	 A. Dekhtyar and I. E. Iacob. A Framework forManagement of Concurrent XML Markup. Data andKnowledge Engineering, 52(2):185-215, 2005.
[6]	 A. Dekhtyar, I. E. Iacob, and S. Methuku. SearchingMulti-Hierarchical XML Documents: the Case ofFragmentation. In 16th International

Conference onDatabase and Expert Systems Applications (DEXA),volume 3588, pages 576 — 585, 2005.

[7]	 I. E. Iacob and A. Dekhtyar. A framework forprocessing complex document-centric XML withoverlapping structures. In SIGMOD '05:

Proceedingsof the 2005 ACM SIGMOD international conferenceon Management of data, pages 897-899. ACM Press,2005. Software demo.

[8]	 I. E. Iacob and A. Dekhtyar. Processing xmldocuments with overlapping hierarchies. InProceedings, Joint Conference on Digital Libraries

(JCDL), page 409, June 2005. software demo.

[9]	 I. E. Iacob and A. Dekhtyar. Towards a QueryLanguage for Multihierarchical XML: RevisitingXPath. In In Proc. of the International Workshop on

the Web and Databases (WebDB), pages 49-54, 2005.
[10] I. E. Iacob, A. Dekhtyar, and K. Kaneko. Parsing Concurrent XML. In Proceedings, 6th ACMInternational Workshop on Web Information andData

Management (WIDM 2004), Washington, DC.,November 2004.
[11] H. V. Jagadish, L. V. S. Lakshmanan,

M. Scannapieco, D. Srivastava, and N. Wiwatwattana.Colorful XML: one hierarchy isn't enough. InProceedings of the 2004 ACM SIGMOD
internationalconference on Management of data, pages 251-262.ACM Press, 2004.

[12] M. Kay (Ed.). XSL Transformations (XSLT) Version2.0. http://www.w3.org/TR/xslt20, Nov 2005. W3CCandidate Recommendation.
[13] K. Kiernan, J. Jaromczyk, A. Dekhtyar, D. Porter,K. Hawley, S. Bodapati, and I. Iacob. The ARCHwayproject: Architecture for research in

computing forhumanities through research, teaching, and learning.Literary and Linguistic Computing, 2004. forthcoming.

[14] A. Renear, E. Mylonas, and D. Durand. Refining our

Notion of What Text Really Is: The Problem of

Overlapping Hierarchies. Research in Humanities

Computing, 1993. N. Ide and S. Hockey, (Eds.).

[15] C. M. Sperberg-McQueen and L. Burnard(Eds.).Guidelines for Text Encoding and Interchange (P4). http://www.tei-c.org/P4X/index.html, 2001.
The TEIConsortium.

[16] C. M. Sperberg-McQueen and C. Huitfeldt.GODDAG: A Data Structure for OverlappingHierarchies. In Principles of Digital Document

Processing, DDEPIPODDP 2000, Munich, pages139160, Sept. 2000.

Figure 1: An Old English manuscript and four encodings of different manuscript features

gesceaftum unawendendne singallice sibbe gecynde ϸa
<r> <line>gesceaftum unawendendne

sin</line><line>gallice sibbe gecynde ϸa</line></r>
<r> <vline> <w>gesceaftum</w> <w>unawendendne</w>
</vline> <vline> <w>singallice</w> <w>sibbe</w> <w>
gecynde</w> </vline> <vline> <w>Da</w> </vline> </r>

<r> <res>gesceaftum una</res>wendendne
s<res>in</res>
<res>gallice sibbe gecyn</res>de ϸa</r>

<r>gesceaftum una<dmg>w</dmg>endendne singallice

 sibbe gecyn<dmg>de ϸa</dmg></r>

