

Human Detection

By

Jong Park

Senior Project

ELECTRICAL ENGINEERING DEPARTMENT

California Polytechnic State University

San Luis Obispo

June, 2011

2

Table of Contents Page

Abstract...…...4

I. Introduction………………………………………………………..….5

II. Related Works……………………………………………….…….......6

III. Requirement………………………………………………………...…9

IV. Methods Overview…………………………………………..………10

V. Test Plans…………………………………………………………….13

VI. Implementation………………………………………………………14

VII. Test Results…………………………………………………………..22

VIII. Conclusion…………………………………………………………...23

IX. Bibliography…………………………………………………………24

Appendices

A. Matlab Code………………………………………………………….…25

3

List of Tables and Figures Page

Table

1. Table 1 : The result of the test…………………………………………18

2. Table 2 : Test result…………………………………………………….22

Figures7

1. Figure 1 : Example of edge detection……………………………………..7

2. Figure 2 : Example for k means clustering………………………………..8

3. Figure 3: K means clustering used on HSV image………………………..8

4. Figure 4: Procedures………………………………………………………9

5. Figure 5 : RGB to HSV image…………………………………………...10

6. Figure 6 : Hue component only image…………………………………...11

7. Figure 7 : Sample RGB image for the test……………………………….15

8. Figure 8 : HSV image……………………………………………………16

9. Figure 9 : Hue only image……………………………………………….17

10. Figure 10 : Possible candidate of human selected……………………….17

11. Figure 11 : Histogram of the vertical projection of hue component

image…………………………………………………………………….18

12. Figure 12 : Histogram of the horizontal projection of hue component

4

image…………………………………………………………………….18

13. Figure 13 : Sample image for the 2
nd

 test……………………………….19

14. Figure 14 : The image after selection procedure…………………..……20

15. Figure 15 : Saturation image…………………………………………….20

16. Figure 16 : Image with low saturation………………………………..…21

5

Abstract

This report presents a method and test results for human detection in

mountain area especially from long range. In many cases of human detection

procedures involve shape recognition procedures using template images or edge

detection. However, there is a limitation of using such methods in mountain area

due to the fact other objects like trees and grass may cover most of body parts. My

method involves HSV transformations and clustering based on local maxima

which is faster and accurate for my goal

6

I. Introduction

My project was started based on the automated helicopter project for

rescue mission to the place that cannot be easily reached. The subject of human

detection is not something new. There are several different ways such as motions

sensor, heat sensor, moving object sensor. Although, there isn’t yet perfect method

to find human in images because of fact about almost infinite cases of different

shape, color and orientation and also possible mismatch with other objects, its use

can be significant. For example, searching missing person in mountain area can be

very helpful since several mini automated helicopters can be used to quickly

respond to find person in urgent situations or can be used to acquire data for

number of hikers for possible prevention of accidents in mountain area. For that

reason and the interest of computer vision, I intend to find algorithm that suits

several requirements which is discussed in page 8.

7

II. Related Works

 There are several methods for human detection in image processing. One

is edge detection

This method would only work for simple image such as above image. The edge

detection method would find many edges in mountain areas.

Another method would be clustering method such as k means. This method

calculates the distance from clusters to each point and keeps tracking those points

to group together to specified number of clusters. So if RGB image is inserted as a

input, the algorithm will sort each points to specified number of clusters based

RGB value of each point. The sample image is at the next page.

Figure 17 : Example of edge detection

8

As you can see, K means clustering

works pretty well if target object has

clearly different RGB value.

Unfortunately, when sample image

was tested with this method, the

result was unconvincing.

Right image is HSV format image.

Red spots indicate the person. Based on

the image, the person looks apparent, but

after same function that used for figure 2

was used, the result provide the image

that is not much useful.

Figure 18 : Example for k means clustering

Figure 19: k means clustering used on HSV

image

9

There are other methods such as a human face recognition technique using Eigen

vectors. However, mostly it is tested in same background setting. Also, Histogram

of oriented gradient descriptors is a popular choice for object detection. What it

does it that it computes the distribution of intensity gradients or edge directions

then separates human from the background. However, the images for my program

consist person whose body parts can be covered by trees or grasses and many

edges will be detect in mountain areas from rocks and trees which could make this

method inaccurate.

10

III. Requirement

 The program must use relatively low resolution image

 Many cameras don’t have high resolution features

 High resolution image takes lots of memory

 The program must be fast enough to be used in flying objects

 The program is intended to be used for the camera inside of

flying object such as helicopter

11

IV. Methods Overview

1. RGB to HSV: the RGB image will be

simply converted to HSV.

 There are three people in the image and they

have high hue intensity which makes HSV to

be useful.

2. Filter and Selection: as you can see figure 4 images, there must be a filtering

RGB to HSV

Filter and

Selection

Handling

Noise/Error

Segmentation

Figure 20 : RGB to HSV image

Figure 21: Procedures

12

procedure in order to reduce noises then it will select high hue components out

from the image with set or calculated threshold.

The above image show just hue component image. Brighter spots are

correspondent to spots with higher hue values. Appropriate threshold must be set

to select those spots that contain human but no other objects. And it must be the

case that covers the most of picture taken at different setting with different people

3. Handling Noise/Error: the phase above may not remove all the possible spots

that. So, during this phase, the program will determine if selected image is human

or not. In most cases, the error comes from the part of the rocks that is shadowed

by its shape.

Figure 22 : Hue component only image

13

4. Segmentation: once the part of the image is selected as a candidate for human,

it must segment it in order to locate location in the images and number of people

that are in the image.

Further details and codes will be shown in IV. Implementation section

14

V. Test Plans

Images sets for tests were not found online. So test will be conducted

using pictures taken by myself at the bishop mountain in San Luis Obispo. And

the code was developed as I keep testing with example images. The possible

restriction was set in order to develop algorithm.

15

VI. Implementation

The above image will be run by my code. This image is taken at the bishop peak

mountain. The resolution is 600 x 800 pixels. People are marked by the box for

the convenience to locate them (above picture is not the result of my program.) It

would help if the information about the distance from target objects from where

the picture is taken and the possible pixel sizes of human is known. So, my

program is designed with those variables that are controlled by the user. To begin,

the first step is to transform this RGB image to HSV image. Since, I am using

Matlab for writing the program, the built-in function output= rgb2hsv(input); is

used.

Figure 23 : Sample RGB image for the test

16

The above picture is the result of rgb2hsv transform. Although, humans seem

distinguishable in the eyes, running k means clustering would not work (page 6).

And as you can see, there are tiny red spots spread throughout in the image. Those

will be cleared by the median filter. The median filter takes the part of the matrix

and changes the values of all elements to median values. And I chose the size of

matrix to be [10 5] since people in the images are more likely to be vertically

longer.

Figure 24 : HSV image

17

Figure 25 : Hue only image

Figure 26 : Possible candidate of human selected

18

Figure 9 shows filtered HSV image with only hue component. The brighter spot

indicates a pixel with higher hue value. Figure 10 is created by a threshold value

so those three bright spots are selected. In some cases, a threshold value will not

separate human objects from other objects right away like the example above. And

extra work has to be done which will be explained later. The next step is to

separate each of pixels to form groups so number of people can be counted. And it

will be done by histograms. First, figure 10 will be projected to vertical axis and

horizontal axis

Figure 11 shows the histogram for a

projection to vertical axis. X-axis

represents row 1 to 600. I created

the function find local maxima

which isn’t necessarily a peak in

this. Because we don’t want to find

the peak since what we are

interested in is a center location

where pixels are closely grouped.

The program will go from left to

right searching for those local

maxima. Figure 12 is same as

above. But it is histogram of a

projection to the horizontal line.

Figure 27 : Histogram of the vertical

projection of hue component image

Figure 28 : Histogram of the horizontal

Projection of hue component image

19

So, with a list of data that are correspondent to white pixel in figure 10, the

program will go through the loop, comparing each pixel location to the location of

local maxima grouping together to three locations in the example. The result is in

the table below.

Person # Location(row) Location(col)

1 309 418

2 309 535

3 34 662

Table 1: The result of the test

Each location in the table 1 corresponds to that of person’s location in the original

image. This example worked out great; however some examples are trickier. I

mentioned that shadow in the rocks creates the pixel with high hue value which

sometimes does not go away by median filtering and selection by threshold. And

in order to remove a pixel, I will use saturation image. Figure 13 is an example

image for this.

Figure 29 : Sample image for the 2nd test

20

This is the result of phase 3. And there’s a spot at the right upper corner which I

do not want. And I am going to remove it by using the fact that the shadow has

low saturation values.

Figure 30 : The image after section procedure

Figure 31 : Saturation image

21

The image in figure 15 is an image with saturation component only. As you can

see, upper right corner spot has low saturation values. And in order to distinguish

low saturation component, I will use histogram equalization to enhance the image.

After histogram equalization and separating the low saturation sections from the

image, the result looks like figure 16.

Then, the program will compare those spots in figure 14 to figure 16. The

algorithm works like this; if a spot has a similar size for both high hue and low

saturation values or has high values for both hue and saturation, they will be

considered as a person because the image of the human can have both low and

high saturation component. However, if a spot has high hue values but

surrounding area has low saturation values. Then, that spot will be disregarded

from the detection. My program asks users to put 4 inputs. One is input image

which is RGB color form. One is threshold value that separates candidates for

Figure 7 : Image with low saturation

22

possible humans and non-humans. In Most cases, number between 0.5 ~.6 detects

most of humans except those who have low hue components than environment.

Next inputs are min and max. Min is the smallest pixel size for human. It might

best to set 0 if you are unsure. Max is the biggest pixel size for human. This

information depends on how far the camera is. Knowing this information will

increase the possibility of correct detection.

23

VII. Test Results

Total images # of people People found percentage

35 47 32 68%

Table 2 : Test result

This program heavily depends on the input of users. In most cases, people will

be found if they have high hue component which most people do. However,

search can be limited if there’s shadow throughout the mountain or too dark

that colors changes too much. Most daytime would work fine. So far, this

program would not be practical to be used yet. Also, better sample data would

have made the code more accurate.

24

VIII. Conclusion

The test result is not much satisfying. Using HSV transformation to detect

was easier approach. However, the variation of background setting made it

difficult to isolate only humans. There are possible solutions such as

implementing object recognition based on the sample image or template to detect

objects or isolate objects. However, the speed of system could decrease due to

complex procedures. Also, adding features in order to cover few problems that are

only noticeable in few images can be wasting and also decrease the speed. In

order to improve quality of the program, more and the better samples would be

required. Since it is targeted to be used for pictures taken from aerial area, using

samples that are collected in the mountain might not give accurate result.

25

IX. Bibliography

"Part-Based Shape Similarity Project." Shape Similarity Project.

Department of Computer and Information Sciences. Web. 12 June

2011. <http://knight.cis.temple.edu/~shape/partshape/overview/1.php>.

Turic, Hrvoje, Vladan Papic, and Hrvoje Dujmic. A Procedure for

Detection of Humans from Long Distance Images. Tech. 50th

International Symposium ELMAR-2008, 2008. Print.

26

Appendices

A. Matlab Code

function [out] = test(imset, threshold , min ,max)

%this function find the person in rgb image

%rgb to hsv transformation

%imset : original input image

%imset.hsv : HSV image

imset.hsv = rgb2hsv(imset.orig);

%hue only image

%imset.hsv(:,:,1) : hue only image

%[10,5] : dimension of matrix for median filter

%imset.hue : filtered hue image

imset.hue = medfilt2(imset.hsv(:,:,1),[10,5]);

%saturation only image

%imset.hsv(:,:,2): saturation only image

%[10,10] : dimension of matrix for median filter

%imset.sat = filtered saturation image

imset.sat = medfilt2(imset.hsv(:,:,2),[10,10]);

%select only low saturation components

%imset.sat: saturation only image

%imset.sat2 : low saturation image

imset.sat2 = filtlsat(imset.sat);

%select candidate for possible humans

%imset.hue : hue only image

%threshold : value to differenciate possible human and

others

%imset.hue2 : images with possible candidates

imset.hue2 = thresh(imset.hue, threshold);

%segmentation

%imset.hue2

%imset.localmax : location for local maxima of possible

candidate

%imset.groups : all pixels location that belong to the

each local maxim

%found : 1 if local maxim found

[imset.localmax, imset.groups, found] =

detect(imset.hue2);

27

if(found)

 %remove posssible shadows

 %imset.localmax : location for local maxima of

possible candidate

 %imset.groups : all pixels location that belong to

the each local maxim

 %imset.final = final out

 imset.final =

hscompare(imset.sat2,imset.localmax,imset.groups,20);

else

 %nothing found

 imset.final = zeros(size(imset.hue));

end

%count the number of people found

[row,~] = find(imset.final>min&&imset.final<max);

npeople = length(row);

imset.num = npeople;

%send out to the oustide

out = imset;

end

28

function [sat2] = filtlsat(sat)

%this function filter low saturation component using

histogram

%equalization

%sat : saturation only image

%sat2 : low saturaion only image(1 for low saturation)

sat = histeq(sat);

sat2 = (sat<0.07);

end

29

function [hue2] = thresh(hue, threshold)

%select possible human based on threshold

 [m,n] = size(hue);

 hue2 = double((hue>threshold));

 %if there are too many values with high, ignore

image

 if(nnz(hue2)>((m*n)/3))

 hue2(:,:) = 0;

 end

end

30

function [localmax, groups , found] =

detect(img,local)

%segment pixels to group

%img : input img(hue2)

%local : choose to use peak or not

%localmax: array that has a value of 1 for local

maxima(cencentrated point)

%groups: cell that has array of pixels location for

each locam maxima

%found : if nothing found, pass 0

 %create array and cell to store location

information

 [m,n] = size(img);

 localmax = zeros(m,n);

 groups = cell(m,n);

 [row,col] = find(img);

 %generate histograms of image projected to x-axis,

y-axis

 vp = sum(img,2);

 hp = sum(img,1);

 %in a case you would want to use peak value to find

local max

 try

 if(local == 'peak')

 %find locations of local maximum peaks

 [~,vlocs] = findpeaks(vp);

 [~,hlocs] = findpeaks(hp);

 end

 catch ME;

 %find locations of local max(concentrated

point)

 vlocs = locmax(vp);

 hlocs = locmax(hp);

 end

 %compare each point and put it to appropriate local

max

 for i=1:length(row)

 vdiff = abs(vlocs - row(i));

 hdiff = abs(hlocs - col(i));

 [~,vmap] = min(vdiff);

 [~,hmap] = min(hdiff);

 x = vlocs(vmap);

 y = hlocs(hmap);

 if(x~=0&&y~=0)

 [l,~] = size(groups{x,y});

 localmax(x,y) = localmax(x,y) +1;

 groups{x,y}(l+1,1) = row(i);

31

 groups{x,y}(l+1,2) = col(i);

 found = 1;

 else

 found = 0;

 end

 end

end

32

function [locs] = locmax(input)

%Find the local max(highest points) by searching for

start point of

% positiple slope and the last point for the negative

slope

%input : a row represents the location and values

represent number of

%data in the location(projection)

%locs : locatinos of loca max

prev = input(1);

count = 1;

locs = zeros(1);

first=0;

for i=2:length(input)

 current = input(i);

 if(prev==0)

 if(current>0)

 first = i;

 end

 else

 if(current==0)

 last = i;

 locs(count) = round((first+last)/2);

 count = count+1;

 end

 end

 prev = current;

end

end

33

function [final] = hscompare(sat2, localmax, groups,

size)

%this functions compares hue and saturation value and

%produce the result based on the relationship

%if hue is high and saturation is high, the possibility

of

%human goes up. if hue is high and saturation is low,

check for surrounding

%then it makes the decision

%sat2 : filtere saturation image

% localmax : array for local max

% groups : cell that contains list of pixels in local

maxima

% size : size to compare hue and saturation

[m,n] = size(localmax);

[row,col] = find(localmax);

final = zeros(m,n);

%loop through each local max(group of pixels)

for i=1:length(row)

 %get a matrix size of hue component to check with

saturation component

 vc = row(i);

 hc = col(i);

 vmin = min(groups{vc,hc}(:,1));

 vmax = max(groups{vc,hc}(:,1));

 hmin = min(groups{vc,hc}(:,2));

 hmax = max(groups{vc,hc}(:,2));

 vdiff = vmax - vmin;

 hdiff = hmax - hmin;

 %if saturation component is high, decide it to be

human

 check = sat2(vmin:vmax,hmin:hmax);

 if(length(find(check))< length(groups{vc,hc}));

 else

 try %if candidate is at the edge, ignore them

 check = sat2(vmin-size:vmax+size,hmin-

size:hmax+size);

 length(find(check));

 catch ME

 localmax(row(i),col(i)) = 0;

 end

 %check the surromding area for possible low sat

shadows

 if(length(find(check))>(numel(check)/4));

 localmax(row(i),col(i)) = 0;

 end

 end

34

 final = localmax;

end

