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ABSTRACT 

A typical urban traffic network is a 
complicated large-scale stochastic system which 
consists of many interconnected signalized traffic 
intersections. Thls paper develops a decentralized 
real-time adaptive control strategy for the traffic 
networks based on Markov decision theory. 
Computer simulation results of this new approach 
on a five intersection traffic network indicate 
significant improvement over the traditional fully 
actuated control algorithm. 

I. INTRODUCTION 

Setting signal timing at intersections so that 
the traffic in a region containing many intersections 
flows efficiently is a key goal in traffic 
management of urban networks. The conventional 
urban traffic control (UTC) systems operate on the 
fixed timing plans which are generated off-line 
based on the deterministic traffic conditions during 
different time periods of the day (e.g., peak hours, 
off-peak hours), and thus do not respond to the 
fluctuations of the traffic flows in the network. 
TRANSYT-7F (TRAFFIC NETWORK STUDY TOOL) 
[ 11 is a well-known and effective software package 
to implement this methodology. SCOOT (SPLIT, 
CYCLE and OFFSET OFTIMIZATION TECHNIQUE) [2] 
and SCATS (SYDNEY COORDINATED ADAPTIVE 
TMC SYSTEM) [3] are generally considered to be 
"on-line" algorithms, in which the control strategy 
is to "match" the current traffic conditions obtained 
from detectors to the "best" precalculated off-line 
timing plan. Some recent on-going researches 
apply new technologies to achieve real-time 
adaptive traffic signal control, such as artificial 
neural network [SI, rule based expert system [6] ,  
fuzzy logic controller [7], etc. 

The Markov decision process, or the 
controlled Markov process, has been studied by 
many researchers and has found applications in 
many areas. A discrete time, stationary Markov 
control model is defined on (X, A, P, R) where X 

is the state space and every element x E X is called 
a state; A is the set of all possible controls (or 
alternatives); P is a probability measure space, in 
which an element ptj denotes the transition 
probability from state i to state j under alternative 
k; and R is a measurable function, also called a 
one-step reward. 

Choosing a particular alternative results in 
an immediate reward and a transition probability to 
the next step. The ultimate objective is to find the 
supremum (least upper bound) of the total 
expected discounted reward over an infinite period 
of time: 

r, 1 

where r is the one-step transition reward, p (0 5 p 
< 1) is the discount factor, and a is the policy. 
The optimal reward v* is defined as: 

It can be obtained by solving a DPE (dynamic 
programming equation): 

v* = Tv*, 

v* (x, a* ) = [ J( x, a)] 

where T is a contraction mapping and: 

I N 

r(x, a) + pC v(x)p:,, 
j=l 

acA 

It has been proved that the optimal solution 
of the above DPE is unique and can be calculated 
iteratively by the successive approximation method 
[41: 

In the following sections, a new approach 
based on the above Markov decision theory is 
proposed and applied to the traffic signal control 
problem. 
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networks based on Markov decision theory.
Computer simulation results of this new approach
on a five intersection traffic network indicate
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I. INTRODUCTION

Setting signal timing at intersections so that
the traffic in a region containing many intersections
flows efficiently is a key goal in traffic
management of urban networks. The conventional
urban traffic control (UTC) systems operate on the
fixed timing plans which are generated off-line
based on the deterministic traffic conditions during
different time periods of the day (e.g., peak hours,
off-peak hours), and thus do not respond to the
fluctuations of the traffic flows in the network.
TRANSYT-7F (TRAFFIC NETWORK STUDY TOOL)
[1] is a well-known and effective software package
to implement this methodology. SCOOT (SPLIT,
CYCLE and OFFSET OPTIMIZATION TECHNIQUE) [2]
and SCATS (SYDNEY COORDINATED ADAPTIVE
TRAFFIC SYSTEM) [3] are generally considered to be
"on-line" algorithms, in which the control strategy
is to "match" the current traffic conditions obtained
from detectors to the "best" precalculated off-line
timing plan. Some recent on-going researches
apply new technologies to achieve real-time
adaptive traffic signal control, such as artificial
neural network [5], rule based expert system [6],
fuzzy logic controller [7], etc.

The Markov decision process, or the
controlled Markov process, has been studied by
many researchers and has found applications in
many areas. A discrete time, stationary Markov
control model is defined on (X, A, P, R) where X
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is the state space and every element x E X is called
a state; A is the set of all possible controls (or
alternatives); P is a probability measure space, in
which an element P~j denotes the transition
probability from state i to state j under alternative
k; and R is a measurable function, also called a
one-step reward.

Choosing a particular alternative results in
an immediate reward and a transition probability to
the next step. The ultimate objective is to find the
supremum (least upper bound) of the total
expected discounted reward over an infinite period
of time:

J ~ E[t,Wr(X"a,)]
where r is the one-step transition reward, ~ (0 :s; ~
< 1) is the discount factor, and a is the policy.
The optimal reward v* is defined as:

v· (x,a·) == SUP[J(x,a)]
aeA

It can be obtained by solving a DPE (dynamic
programming equation):

v* = Tv*,

where T is a contraction mapping and:

Tv(x) =~[r(x,a) + ~t v(x)P:,j1
It has been proved that the optimal solution

of the above DPE is unique and can be calculated
iteratively by the successive approximation method
[4]:

In the following sections, a new approach
based on the above Markov decision theory is
proposed and applied to the traffic signal control
problem.
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THE DYNAMIC MODEL OF TRAFFIC 
NETWORK 

A small traffic network consisting of two 
four-legged intersections is shown in Fig. 1. In 
each individual intersection, there are eight 
movements and the numbers of movements are 
labeled according to NEMA (National Electrical 
Manufacturers Association) convention. These 
eight movements of each intersection can be 
further classified into two different types, i.e., 
external movement and internal movement. For 
example, movement 1 and 6 are internal 
movements of intersection 1, which receive the 
outputs from intersection 2, movement 3 and 6. 
All the other movements of intersection 1 are 
external movements. 

Intersection I Intersection II 

Figure 1. Two intersections 

Consider a continuous traffic flow process 
which is sampled every At time interval with the 
discrete time index, k. The output of the network 
(i.e., number of vehicles leaving this network) 
q,,, (k) can be defined as a vector: - 

where the element of this vector qout:(k) denotes 
the output queue of the j-th movement (i = 1, 2, 
..., 8) of the i-th intersection (i = 1, 2). qOut (k) 
can be further expressed as a function o f t h e  
current control of the intersection, u(k), and the 
current queue q (k): 

where u(k) and f,,, (k) are also vectors and 

- 
- 9,,t (k) = - f0", (u(k),q(k)) 

- 
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when u{(k) = Green fLti (9 = 
when U; (k) = Red 

where i = 1, 2, and j = 1, 2, ..., 8. h,, is the 
minimum headway; ui (k) is the control signal for 
the j-th movement of the i-th intersection. 

The current queue, q(k), can be written as: 

where q(k-1) is the queue at the previous time 
instant (k-1) and q,,(k) is the input (number of 
vehicles) during time interval [k-1, k). Note that 
for the internal movement, 

where qmi(k) is the input queue of the j-th 
movement of intersection i, and qoUt;(k) is the 
output queue of j-th movement of intersection i. T 
is the minimum travel time between intersection 1 
and 2: 

- q(k) = g(k - 1) + q,,(k) - - - q,,t (k) 

- 

qL, (k) = fL[ P2,Ak - TL,l ),qLm (k - TL,, ,] 

L;,l 
T:,l = - ' 2, l  

4 . 1  4 , 1  

~6 - L", , 1 

where L;,l=L:,l is the distance between 
intersections 2 and 1, v$ is the speed of the first 
vehicle of the platoon moving from intersection 2, 
movement 3 to intersection 1, etc. P2,1 is defined 
as the vehicle turning factor from intersection m, 
movement 1 to intersection i, movement j. For 
this case, P(k) can also be written as a matrix: 

where PI ,(k) represents the turning factor from 
intersection i to intersection j (i, j = 1,2). 

- 

The time duration of the current traffic 
signal, 7, must be bounded between some 
minimum and maximum time period: 

T , , I T I T ,  

In an eight-phase dual-ring control, to 
avoid conflict traffic, only certain signal sequences 
are allowed. Since there are up to 3 admitted 
phases in each ring, when choosing current 
control, three previous control signals need to be 

Figure 1. Two intersections

II. THE DYNAMIC MODEL OF TRAFFIC
NETWORK

Consider a continuous traffic flow process
which is sampled every ~t time interval with the
discrete time index, k. The output of the network
(i.e., number of vehicles leaving this network)
qout (k) can be defined as a vector:

qout (k) = [qout: (k),···,qout~(k),qout~ (k),···,qout~(k)r

when uf(k) = Green
{

'[i ~t]fi (e) = mIll qi(k),-.
out i hnnn

lO when uf(k) = Red

where i = 1, 2, and j = 1, 2, ... , 8. hmin is the

minimum headway; u!(k) is the control signal for
the j-th movement of the i-th intersection.

The current queue, 9. (k), can be written as:
9.(k) = 9.(k -1) + qin (k) - qout (k)

where 9.(k-1) is the queue at the previous time

instant (k-l) and qin (k) is the input (number of
vehicles) during time interval [k-1, k). Note that
for the internal movement,

qk
i
(k) = fk[P~,i (k - T~,i ),q~utm (k - T~,i)]

where qin{ (k) is the input queue of the j-th

movement of intersection i, and qout{ (k) is the
output queue of j-th movement of intersection i. T
is the minimum travel time between intersection 1
and 2:

T3 = L~,l T6 = L~,l
2,1 3 2,1 6

V 2,1 V 2,1

where L~,l= L~,l is the distance between

intersections 2 and 1, Vt1 is the speed of the first
vehicle of the platoon moving from intersection 2,

movement 3 to intersection 1, etc. P~,i is defined
as the vehicle turning factor from intersection m,
movement 1 to intersection i, movement j. For
this case, ~(k) can also be written as a matrix:

~(k) = [::::i~~H:::i~j]
where PuCk) represents the turning factor from

intersection i to intersection j (i, j = 1, 2).

The time duration of the current traffic
signal, 't, must be bounded between some
minimum and maximum time period:

'tmin :::; 't :::; 'tmax

In an eight-phase dual-ring control, to
avoid conflict traffic, only certain signal sequences
are allowed. Since there are up to 3 admitted
phases in each ring, when choosing current
control, three previous control signals need to be

Intersection ITIntersection I

A small traffic network consisting of two
four-legged intersections is shown in Fig. 1. In
each individual intersection, there are eight
movements and the numbers of movements are
labeled according to NEMA (National Electrical
Manufacturers Association) convention. These
eight movements of each intersection can be
further classified into two different types, i.e.,
external movement and internal movement. For
example, movement I and 6 are internal
movements of intersection 1, which receive the
outputs from intersection 2, movement 3 and 6.
All the other movements of intersection 1 are
external movements.

where the element of this vector qout!(k) denotes
the output queue of the j-th movement (j = 1, 2,
... , 8) of the i-th intersection (i = 1, 2). qout (k)
can be further expressed as a function of the
current control of the intersection, y(k), and the
current queue 9. (k):

qout(k) = f out (!!(k)'9.(k»)

where y(k) and fout (k) are also vectors and
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in order to satisfy the sequence 
constraint: 

111. TRAFFIC SIGNAL CONTROL 
USING MARKOV DECISIONS 

To apply Markovian decision control to 
traffic systems, a state space X and a probability 
measure P must be defined. A threshold (number 
of vehicles) is chosen for the queue of each 
movement at an intersection. If the queue length 
of a specific movement is greater than the 
threshold value, then this movement is defined to 
be in its congestion mode; otherwise it is in the 
non-congestion mode. These two modes 
(congestiodnon-congestion) are defined as the two 
states in the state space X. The signal phasing can 
be considered as different alternatives in each state. 
If there are eight independent movements for an 
intersection under eight-phase signal control, then 
the traffic control problem can be formatted as a 
256-state Markov process with 8 alternatives in 
each state. 

The probability matrix _P(k) is a function 
of the current queue, the estimated number of 
arrivals in the next time interval, and the control 
signal. It can be further specified based on 
different arrival patterns. Studies on the 
occurrence of vehicle arrivals at traffic 
intersections found that: (1) the probability of the 
occurrence is related with the average arrival rate 
and the time interval, and do not vary in time; (2 )  
two or more arrivals (of the same movement at the 
same lane) cannot occur at the same time; and (3) 
the chance of an occurrence in (t, t+At] is 
independent of what happens before t. Supported 
by the results of many field tests, Kinzer (1933), 
Adams (1936) and Greenshilds (1947) et. al. 
claimed that under most circumstances, the arrival 
of vehicles for the external movements follows the 
Poisson distribution. Therefore, 

(h  At)” e-AAt 
n! P(n> = 

where n = 1, 2, ..., h is the arrival rate and At is 
the time interval. Assuming that at a specific time 
instant, the current queue length of a specific 
movement i is denoted by ql ,  and there are q: 
vehicles passing through the intersection if the 
control signal of this direction is green, then: 

1, when ui = Gi 

and Si = Ni, Ci ( Ni for non-congestion and Ci 
for congestion); ui = G,, Ri (G, for green signal 
and Ri for red signal). 

For the internal movement, the probability 
can be calculated by Robertson’s platoon 
dispersion formula (if a green signal is given at the 
upstream intersection; otherwise the probability is 
0). For a reference point and a reference direction 
in a traffic network, an upstream intersection is 
defined as the intersection from which the traffic 
flow on the reference point comes; and the 
downstream intersection is defined as the 
intersection to where the traffic flow on the 
reference point goes. 

Robertson’s platoon dispersion is a very 
effective model to describe the inter-network traffic 
flow dynamics. It is based on the fact that the 
vehicles leaving from the upstream intersection are 
grouped into a “platoon” moving to the 
downstream intersection by the upstream green 
light: 

and F = 

where Q1, QP is the traffic volume at the 
downstreamhpstream intersection (veh/hr), 
respectively; a and P are called platoon dispersion 
parameters; to is the initial time when the platoon 
leaves the upstream intersection; T,, is the 
average travel time and T is minimum travel time 
between the two intersections (T, T and to are 
all rounded integers). The probability of a single 
vehicle arriving at the downstream intersection at 
time step n can be derived: 

Ql(t0 + T) = F . Q,(to> + (1- F). Q,(t, + T - 1) 
1 

1 + a P T,, 

a m  

p(n) = (1 - F)” F 

The reward matrix R has the same 
dimension and a similar definition to the 
probability matrix. The control objective herein is 
to minimize the queue length, so the functions of 
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considered in order to satisfy the sequence
constraint:

!!(k) = fu(~(k), 't,!!(k - 't,),!!(k - 't2 ),!!(k - 't3 »)

III. TRAFFIC SIGNAL CONTROL
USING MARKOV DECISIONS

To apply Markovian decision control to
traffic systems, a state space X and a probability
measure P must be defined. A threshold (number
of vehicles) is chosen for the queue of each
movement at an intersection. If the queue length
of a specific movement is greater than the
threshold value, then this movement is defined to
be in its congestion mode; otherwise it is in the
non-congestion mode. These two modes
(congestion/non-congestion) are defined as the two
states in the state space X. The signal phasing can
be considered as different alternatives in each state.
If there are eight independent movements for an
intersection under eight-phase signal control, then
the traffic control problem can be formatted as a
256-state Markov process with 8 alternatives in
each state.

The probability matrix r (k) is a function
of the current queue, the estimated number of
arrivals in the next time interval, and the control
signal. It can be further specified based on
different arrival patterns. Studies on the
occurrence of vehicle arrivals at traffic
intersections found that: (I) the probability of the
occurrence is related with the average arrival rate
and the time interVal, and do not vary in time; (2)
two or more arrivals (of the same movement at the
same lane) cannot occur at the same time; and (3)
~he chance of an occurrence in (t, t+ L1t] is
mdependent of what happens before t. Supported
by the results of many field tests, Kinzer (1933),
Adams (1936) and Greenshilds (1947) et. al.
claimed that under most circumstances, the arrival
of vehicles for the external movements follows the
Poisson distribution. Therefore,

(AL1tte-A.LlI
p(n) = -'-------:...---

n!
where n = 1, 2, ... , A is the arrival rate and L1t is
!he time interval. Assuming that at a specific time
mstant, the current queue length of a specific
movement i is denoted by q i, and there are q i

vehicles passing through the intersection if th~
control signal of this direction is green, then:
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and

where

a(u.) = {I, when u l = G j
1 0, otherwIse

and Sj =Np C j (Nj for non-congestion and Cj
for congestion); u j = G j , R j (G j for green signal
and Rj for red signal).

For the internal movement, the probability
can be calculated by Robertson's platoon
dispersion formula (if a green signal is given at the
upstream intersection; otherwise the probability is
0). For a reference point and a reference direction
in a traffic network, an upstream intersection is
defined as the intersection from which the traffic
flow on the reference point comes; and the
downstream intersection is defined as the
intersection to where the traffic flow on the
reference point goes.

Robertson's platoon dispersion is a very
effective model to describe the inter-network traffic
flow dynamics. It is based on the fact that the
vehicles leaving from the upstream intersection are
grouped into a "platoon" moving to the
downstream intersection by the upstream green
light:
Q1(tO+ T) =F ·Q2(tO) +(1- F)· Q1(tO+ T -1)

andF 1
1 + a P T avg

where Q" Q2 is the traffic volume at the
downstream/upstream intersection (veh/hr),

respectively; a and Pare called platoon dispersion
parameters; to is the initial time when the platoon

leaves the upstream intersection; T is theavg

average travel time and T is minimum travel time

between the two intersections (T, T and t are
avg 0

all ~ounde~ i!1tegers). The probability of a single
vehIcle arrIvmg at the downstream intersection at
time step n can be derived:

pen) = (1- Ft F

The reward matrix R has the same
dimension and a similar definition to the
probability matrix. The control objective herein is
to minimize the queue length, so the functions of



length corresponding to different states are 
chosen to be the elements of the reward matrix: 

. . 
'Ji 

'statel, state2 = fu(qb,qkreshold,Ui) 

Mean 

cov. 

Std. 

Once the transition matrix and the reward 
matrix are obtained, a certain policy of choosing a 
certain alternative in each state, which is the 
optimal strategy we should take, will be obtained 
by maximizing the total expected reward. It has 
been shown that this optimal solution is unique 
and can be calculated iteratively [4]. Thus, the 
problem of choosing signal phasing becomes a 
decision-making problem for a Markov process. 

In real-time traffic control problems, both 
the probability matrix and reward matrix are time- 
varying. In this paper, the sampling time is 
chosen the same as the minimum green extension 
time, A t .  Every At seconds, the P and R 
matrices are calculated; then a decision is made to 
choose the control signal for the next time interval 
based on the current measurement from the 
detector and our estimation. Once the optimal 
policy is found, it is implemented only for At 
seconds. At the next time step, the probability 
matrix and reward matrix are updated and the 
whole decision-making process is repeated. 

200 300 400 500 600 

FAC MAC FAC MAC FAC MAC FAC MAC FAC MAC 

23.10 12.46 28.64 12.96 35.21 14.91 43.25 20.44 62.71 52.33 

2.29 0.95 4.46 2.09 4.34 2.24 4.60 3.96 9.13 38.63 

1.51 0.98 2.11 1.45 2.08 1.50 2.15 1.99 3.02 6.22 

IV. SIMULATION RESULTS 

A complicated traffic network can be 
decomposed into a group of small networks called 
"elementary networks". Fig. 2 shows such a 
small network consisting of five intersections. 

Fig. 2. A typical five intersection traffic network 

The proposed Markovian adaptive control 
algorithm was simulated for this network (with the 
Poisson arrival pattern generated as the external 
inputs) to evaluate its performance in comparison 
to a fully actuated control method. The two 
algorithms were tested on four different arrival 
rates, i.e., h= 200, 300, 400, 500 and 600 
vehicles per hour per movement. For each arrival 
rate, the algorithms were tested on forty different 
sets of random data. The mean, covariance and 
standard deviation of the average steady state delay 
(of the 40 sets of data) were calculated and are 
listed in table 1, where "MAC" stands for the 
Markov adaptive control algorithm, and "FAC" 
stands for the fully actuated control. The means 
(of the 40 sets of data) of the steady state delay are 
also plotted in Fig. 3, where the solid line 
represents the Markov algorithm and the dotted 
line represents the fully actuated control. 

Using the concept of distribution-free order 
statistics, the limits within which at least 90% of 
the probability of the steady state delay obtained 
from simulation are found in Table 2, with 92% 
confidence. In other words, the probability that 
90% of the probability of the delay time lies 
between the lower and upper bound is 0.92. 
These bounds are also plotted in Figure 4. 

Table 1. Mean, covariance, and standard deviation of two algorithms 
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queue length corresponding to different states are
chosen to be the elements of the reward matrix:

R~~tel. state2 = f u (q~,q~reshold'uJ

Once the transition matrix and the reward
matrix are obtained, a certain policy of choosing a
certain alternative in each state, which is the
optimal strategy we should take, will be obtained
by maximizing the total expected reward. It has
been shown that this optimal solution is unique
and can be calculated iteratively [4]. Thus, the
problem of choosing signal phasing becomes a
decision-making problem for a Markov process.

In real-time traffic control problems, both
the probability matrix and reward matrix are time­
varying. In this paper, the sampling time is
chosen the same as the minimum green extension
time, ~t. Every ~t seconds, the P and R
matrices are calculated; then a decision is made to
choose the control signal for the next time interval
based on the current measurement from the
detector and our estimation. Once the optimal
policy is found, it is implemented only for ~t

seconds. At the next time step, the probability
matrix and reward matrix are updated and the
whole decision-making process is repeated.

IV. SIMULATION RESULTS

A complicated traffic network can be
decomposed into a group of small networks called
"elementary networks". Fig. 2 shows such a
small network consisting of five intersections.

~:~

--.J~~:~~L
I'~: ["'~ rrn-

- - - -
--'~fIV

Fig. 2. A typical five intersection traffic network

The proposed Markovian adaptive control
algorithm was simulated for this network (with the
Poisson arrival pattern generated as the external
inputs) to evaluate its performance in comparison
to a fully actuated control method. The two
algorithms were tested on four different arrival
rates, i.e., A= 200, 300, 400, 500 and 600
vehicles per hour per movement. For each arrival
rate, the algorithms were tested on forty different
sets of random data. The mean, covariance and
standard deviation of the average steady state delay
(of the 40 sets of data) were calculated and are
listed in table 1, where "MAC" stands for the
Markov adaptive control algorithm, and "FAC"
stands for the fully actuated control. The means
(of the 40 sets of data) of the steady state delay are
also plotted in Fig. 3, where the solid line
represents the Markov algorithm and the dotted
line represents the fully actuated control.

Using the concept of distribution-free order
statistics, the limits within which at least 90% of
the probability of the steady state delay obtained
from simulation are found in Table 2, with 92%
confidence. In other words, the probability that
90% of the probability of the delay time lies
between the lower and upper bound is 0.92.
These bounds are also plotted in Figure 4.

Table 1. Mean, covariance, and standard deviation of two algorithms

200 300 400 500 600

FAC MAC FAC MAC FAC MAC FAC MAC FAC MAC

Mean 23.10 12.46 28.64 12.96 35.21 14.91 43.25 20.44 62.71 52.33

COy. 2.29 0.95 4.46 2.09 4.34 2.24 4.60 3.96 9.13 38.63

Std. 1.51 0.98 2.11 1.45 2.08 1.50 2.15 1.99 3.02 6.22
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2. Bounds for simulation results 

200 300 400 500 

FAC MAC FAC MAC FAC MAC FAC MAC 

10.57 25 .O 10.68 30.3 12.45 38.7 14.99 Lower 
20.0 limit Fz: 25.6 15.19 32.9 18.40 39.6 19.33 49.0 24.36 

600 

FAC MAC 

55.7 41.98 

68.8 65.46 

70 

arrival rate (veh/hr) 

Figure 3. Mean of two algorithms 

60- 

50 - 

200 250 300 350 400 450 500 550 MO 

arrival rate (veh/hr) 

Figure 4. Bounds for simulation results 

From the above data, it is shown that when 
the traffic intersection is under saturated, the 
Markov algorithm outperforms the traditional one. 
For example, when h I 500, the average steady 
state delay of the Markov controller is only about 
one half of that of the fully actuated controller. 
However, when the intersection becomes saturated 
(e.g., h = 600), a large delay for both algorithms 
is found. 

V. CONCLUSIONS 

The traffic system is a stochastic system. 
In this paper, a new decentralized adaptive control 

scheme with embedded platoon dispersion is 
developed to minimize the queue length and the 
steady state delay of traffic networks. Computer 
simulation results and analysis on a typical 
network with five intersections are also presented. 
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Table 2. Bounds for simulation results

200 300 400 500 600

FAC MAC FAC MAC FAC MAC FAC MAC FAC MAC
Lower

20.0 10.57 25.0 10.68 30.3 12.45 38.7 14.99 55.7 41.98limit
Upper

25.6 15.19 32.9 18.40 39.6 19.33 49.0 24.36 68.8 65.46limit
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Figure 3. Mean of two algorithms
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Figure 4. Bounds for simulation results

From the above data, it is shown that when
the traffic intersection is under saturated, the
Markov algorithm outperforms the traditional one.
For example, when A ~ 500, the average steady
state delay of the Markov controller is only about
one half of that of the fully actuated controller.
However, when the intersection becomes saturated
(e.g., A=600), a large delay for both algorithms
is found.

V. CONCLUSIONS

The traffic system is a stochastic system.
In this paper, a new decentralized adaptive control

scheme with embedded platoon dispersion is
developed to minimize the queue length and the
steady state delay of traffic networks. Computer
simulation results and analysis on a typical
network with five intersections are also presented.
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