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The classical Hall effect presents a surprisingly unusual and challenging problem in electrostatics, 
with boundary conditions that are not of Dirichlet, Neumann, or of mixed Dirichlet and Neumann 
type. These unusual boundary conditions create several difficulties not normally encountered in 
standard problems, and ultimately lead to expansion of the electric potential in a nonorthogonal 
basis set. We derive the boundary conditions for the potential in a rectangular geometry, construct 
a solution for the potential, and discuss the relation between this problem and problems of the 
standard mixed type. We also address a commonly encountered misconception about the current 
distribution. 
I. INTRODUCTION 

The Hall effect was discovered over 100 years ago, and 
has since become a widely used experimental tool for study
ing the transport properties of materials, as well as the basis 
for a large number of technological applications.1 One does 
not need to know the full electrostatic solution to the Hall 
problem in order to extract useful information, since voltage 
differences between suitable pairs of points in the current 
flow suffice to characterize the transport processes.2 The full 
solution to the electrostatic problem is a surprisingly chal
lenging exercise, going beyond the techniques that are most 
frequently used in potential theory problems. 

A typical arrangement of a Hall effect experiment is illus
trated in Fig. 1. A thin, rectangular metal plate lies in the 
x – y plane. The edge at y�H is maintained at electric po
tential V0 and the edge at y��H is maintained at �V0 . 
Thus an electric current will flow in the �y direction. If an 
externally produced uniform magnetic field B is imposed in 
the �z direction, there will be a magnetic force on the mov
ing �positive� charges, directed in the �x direction. This 
gives rise to a charge separation that produces a potential 
gradient in the x direction. The problem, then, is to find an 
analytical expression for the electric potential V(x ,y) every
where in the metal plate. 

Although this problem is stated in simple terms, it turns 
out to have several unusual features. First, it is not immedi
ately clear what conditions must be imposed on V(x ,y) at  
the boundaries x�0 and x�L . Second, once these boundary 
conditions are derived, they result in a boundary-value prob
lem that is not of standard type. Usually we expect to en
counter a Dirichlet problem �V specified everywhere on the 
boundary�, a Neumann problem �normal derivative of V 
specified everywhere on the boundary�, or a ‘‘mixed’’ prob
lem �Dirichlet conditions on part of the boundary and Neu
mann on the remainder�.3 As we shall see, our simple prob
lem falls into none of these classes. Third, as a consequence 
of these unusual boundary conditions we are forced to ex
pand V(x ,y) in terms of nonorthogonal basis functions. Nev
ertheless, a series solution for V(x ,y) can be obtained by 
straightforward methods. This combination of unusual math
ematical features and a simple physical situation will, we 
hope, make the problem of some interest to readers of this 
Journal. Finally, as we show in an Appendix, this problem 
can also be solved by reducing it to an infinite number of 
problems of standard type. 

II. BOUNDARY CONDITIONS AT x�0 AND x�L 

We would like to determine the electric potential V(x ,y) 
everywhere in the conductor. In the steady state there is no 
volume charge density so “–E�0 �E is the electric field�. 
As this is electrostatics, E��“V , so we need to solve 
Laplace’s equation, 

“

2V�0, �1� 

subject to the appropriate boundary conditions. The upper 
and lower edges of the plate are maintained at constant po
tential: 

V�x ,H ��V0 , �2� 

V�x ,�H ���V0 . �3� 

The other physical constraint is that no charge enters or 
leaves the sample through the sides at x�0 and x�L . We  
must now express this condition on the electric current in 
terms of the electric potential to provide us with the bound
ary conditions for the left- and right-hand edges. 

In the case of zero magnetic field, the current density J 
and the electric field E are related by Ohm’s law �throughout 
this analysis we assume linear materials� 

E��J, �4� 

where � is the resistivity of the material. Equation �4� repre
sents a condition of balanced forces. The left side is the 
electrostatic force per unit charge and the right side is the 
negative of the drag force per unit charge. In the presence of 
a magnetic field, B, the magnetic force per unit charge, v�B, 
must be added to the left side of Eq. �4�. The current density 
is related to the drift velocity, v, as  J�nqv, where q is the 
charge and n is the number density of the charge carriers, 
assumed to be constant. Thus the generalization of Eq. �4�, 
valid with a magnetic field present, is 

1 
E� J�B��J.  �5� 

nq 
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Fig. 1. Sample geometry showing the axes, top and bottom boundary con
ditions, and the magnetic field into the page. The points labeled P and Q are 
symmetry points. 

Let us consider the standard problem, in which the mag
netic field is perpendicular to the plane of the conducting 
sheet: B��B0ẑ. In general, within the sample, J may have 
both x and y components. Evaluating the cross product in 
Eq. �5� we obtain 

B0 
��Jx� �0, �6�Ex nq 

Jy

B0
Ey��Jy� Jx�0. �7� 

nq 

Solving Eqs. �6� and �7� for the components of the current 
density we have4 

�Ex��Ey � 
Jx� , �8� 

��1��2 � 

�Ey��Ex � 
Jy� , �9� 

��1��2� 

where ��B0 /�nq .  
The requirement that no current leave through the edges at 

x�0 and x�L means that Jx(0,y)�0 and Jx(L ,y)�0. 
These conditions, along with Eq. �8�, result in 

Ex�0,y ���Ey�0,y �, �10� 

Ex�L ,y ���Ey�L ,y �. �11� 

In terms of the electric potential we have Ex���V/�x and 
Ey���V/�y , so at both x�0 and x�L we require 

�V �V 
�� . �12�

�x �y 

This is the desired boundary condition on V(x ,y) at the left 
and right boundaries. Note that the slopes of all the equipo
tential curves are equal to �� at the places where they meet 
the left- and right-hand edges. 
c)
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Fig. 2. Balance of forces corresponding to Eq. �5�: �a� general situation, �b� 
at the right edge, J is straight down since Jx�0, �c� at the top edge E is 
straight down since y�H is an equipotential. 

The parameter � is also related in a simple way to a pa
rameter called the Hall angle5 �H , defined as the angle be
tween J and E. From the vector triangle6 of Eq. �5�, illus
trated in Fig. 2, we see that the Hall angle is simply 

�H�tan�1�B0 /�nq ��tan�1 � . �13� 

The magnitudes and directions of J and E may well be dif
ferent at different places in the plate. Nevertheless, the angle 
�H between J and E is everywhere the same. 

The vector diagram provides a more physical way of un
derstanding the boundary conditions. Figure 2 illustrates the 
vector triangle at �a� an arbitrary position in the rectangle, �b� 
a point on the right edge, and �c� a point on the top edge. On 
either the left- or right-hand edges J must be parallel to the 
edge, thus E makes an angle �H with respect to the boundary 
�Fig. 2�b��. This is precisely the condition expressed by Eq. 
�11�. The top edge is an equipotential, so E must be perpen
dicular to the boundary �Fig. 2�c��. 

Note that a statement frequently encountered in textbooks7 

stands in need of a correction. It is often asserted that in the 
steady state the magnetic force on the charge carriers just 
balances the horizontal component of the electric force 
�which is due to the Hall potential� and that, consequently, 
the current flows parallel to the y axis. This is so only at the 
left and right edges �as in Fig. 2�. Elsewhere in the plate, J in 
general has an x component and the magnetic force is not 
entirely in the x direction. However, for the case of small 
magnetic field or long, thin samples, it is a reasonable ap
proximation. We shall investigate the current distribution in 
Sec. VI. 

III. STATEMENT OF THE BOUNDARY-VALUE 
PROBLEM 

The mathematical problem is as follows: Find V(x ,y) that 
solves “2V�0 in the region 0�x�L and �H�y�H sub
ject to the boundary conditions: 

V�x ,H ��V0 , �14� 



V�x ,�H ���V0 ,  �15� 

�V �V� �� � , �16� 
�x �y

x�0 x�0 

�V �V� �� � . �17�
�x �y

x�L x�L 

Note that � depends on B0 so the ‘‘no magnetic field’’ case 
corresponds to ��0. 

This is an unusual set of boundary conditions. Typically, 
either the potential �Dirichlet�, or the normal derivative of 
the potential �Neumann�, is known on each boundary, or else 
the problem is of the ‘‘mixed’’ type, with Dirichlet condi
tions on part of the boundary and Neumann on the remain
der. In our case the boundary conditions for the left and right 
edges are given in terms of both partial derivatives of the 
unknown potential, V(x ,y). Note that the problem reduces to 
the standard ‘‘mixed’’ type for ��0. The general (��0) 
problem does not appear to be covered in the standard treat
ments of potential theory.8 

IV. SOLUTION 

We seek solutions of Laplace’s equation that satisfy con
ditions �16� and �17�. Any linear combination of such solu
tions will still satisfy �16� and �17�. The appropriate linear 
combination can then be built up to satisfy Eqs. �14� and 
�15�. We will handle the two forms for solutions of Laplace’s 
equation separately. 

A. Linear solution 

A linear function of x or y will clearly be annihilated by 
the Laplacian operator. The bilinear solution V(x ,y)�(a 
�bx)(c�dy), with a ,b ,c ,d constant, satisfies the differen
tial equation. However, it is easy to see that this form cannot 
satisfy the boundary conditions Eqs. �16� and �17�. Similarly 
V(x ,y)�(a�bx) f (y) or (c�dy)g(x), where f and g are 
arbitrary functions, cannot satisfy Eqs. �16� and �17�. We are  
therefore left with the possibility of a linear function of x 
plus a linear function of y . At the left or right edge, the slope 
of the equipotential curve is �� . Thus the linear solution 
must be of the form 

V�x ,y ��a��x�b ��ay�c ,  

where a ,b ,c are constants. We know from elementary con
siderations that in the absence of a magnetic field the solu
tion is V(x ,y)�V0y /H . The case of ‘‘no magnetic field’’ 
corresponds to ��0 so  a�V0 /H  and c�0. The linear so
lution is therefore of the form 

V0
V�x ,y �� ���x�b ��y � . �18�

H 

B. Harmonic-exponential solutions 

For the nonlinear forms we assume separable solutions of 
the form V(x ,y)�X(x)Y (y). In the usual way, Laplace’s 
equation then separates into two ordinary differential equa
tions: 

d2X 

dx2 ��k2X ,  �19� 
d2Y 
2 �k2Y , �20�

dy 

where the separation constant, k2, is yet to be determined. 
X(x) and Y (y) are, of course, real functions of their argu
ments. 

We can easily show that k must be real, and therefore X is 
a trigonometric function of x and Y is an exponential func
tion of y . To see this put V�XY in Eq. �16� to find 

X0�Y��Y �X0 , �21� 

where the prime denotes differentiation with respect to the 
argument (X��dX/dx ,Y ��dY /dy). The subscript 0 de
notes evaluation at x�0. Differentiating Eq. �21� with re
spect to y we get 

X0�Y ���Y �X0 . �22� 

Substituting Eq. �20� in Eq. �22� we find 

X0�Y ���k2YX0 .  �23� 

Then using Eq. �21� in Eq. �23� to eliminate Y � we have 

X0� 
2 

k2� . �24�� �X0 
� 

Consequently, k2 is real and non-negative. Therefore, k is 
real and from the forms of Eqs. �19� and �20� we see that 
X(x) is trigonometric and Y (y) is exponential. 

For a given value of k , the harmonic-exponential solution 
is then of the form 

ky�Dke�ky�.Vk�x ,y ���Ak cos kx�Bk sin kx ��Cke �25� 

C. Applying the boundary conditions at x�0, L 

We now apply conditions �16� and �17� to determine the 
separation constant k and to restrict the range of possibilities 
for the constants of integration A ,B ,C ,D . First, applying Eq. 
�16� to Eq. �25�, we find  

ky�Dke�kyBk Cke 
�� ky�Dke�ky .  �26�

Ak Cke 

Thus the right side of Eq. �26� cannot be a function of y . 
Hence, either 

Ck�0, Bk���Ak ,  �27� 

or 

Dk�0, Bk��Ak . �28� 

For a specific value of k , the most general solution is a linear 
combination of both possibilities. Thus we have 

kyVk�x ,y ��Rk�cos kx�� sin kx �e 

�ky�Sk�cos kx�� sin kx �e , �29� 

where Rk�AkCk �for the case Dk�0� and Sk�AkDk �for the 
case Ck�0�. 

If we impose condition �17� on Eq. �29� and note that the 
terms in eky and e�ky must satisfy this condition separately, 
we find 

�1��2�sin kL�0. �30� 

Hence sin kL�0 and k is restricted to values kn given by 



	







kn�n�/L , �31�	 

where n�1,2,3,... . 
The most general solution satisfying the boundary condi

tions at the left and right edges is therefore Eq. �18� plus 
expressions of the form of Eq. �29�, with kn restricted by Eq. 
�31�: 	

V0	 	
V�x ,y �� ���x�b ��y �

H 

� � �Rn�cos knx�� sin knx �ek y n 

n�1,2,3,... 

�kny ��Sn�cos knx�� sin knx �e �32�
 

or, recombining terms, 

V0	 knyV�x ,y �� ���x�b ��y �� � �cos knx�Rne
H	 n�1,2,3,... 

�kn kn �kn �Sne y ��� sin knx�Rne y�Sne y �� . �33�
 

D. Exploiting a symmetry 

To proceed further, let us note a symmetry of the system 
of Eqs. �1�, �14�, �15�, �16�, and �17�. These have the prop

erty that V→�V when x→L�x and y→�y . This means, 
for example, that points P and Q in Fig. 1 have potentials 
with the same magnitude but opposite sign. Imposing this 
symmetry on Eq. �33� requires that b��L/2. Furthermore, 
both the cosine and sine terms in the sum of Eq. �33� must 
satisfy the symmetry separately. �Remember that � is a free 
parameter.� Now, since kn�n�/L ,

�L�x ����1 �ncos kn cos knx , 

sin kn�L�x ����1 �n�1 sin knx . 

Requiring that each term in Eq. �33� satisfy the symmetry 
V→�V when x→L�x and y→�y then leads to �from the 
cosine terms�

�kn kn kn �kny��1 �n�Rne y�Sne y ���Rne y�Sne ,

and to �from the sine terms�

�k k k �k y ��1 �n�1�Rne ny�Sne ny ���Rne ny�Sne n .

Adding these two equations, we find 

Sn���1 �n�1Rn .	 	 �34�

Two cases arise:
 


for odd n , Sn�Rn , 
�35�

for even n , Sn��Rn .

Using Eq. �35� in Eq. �33� we arrive at our final form of the 

solution: 

V0 L	 m� m� m� m� 
V�x ,y �� ��� x� ��y �� � Tm�cos� x � cosh� y ��� sin� x � sinh� y � �H 2 m�1,3,... L L L L 

n� n� n� n� 
� � Un�cos� x � sinh� y ��� sin� x � cosh� y � � ,	 	 �36� 

n�2,4,... L L L L 
where Tm�2Rm �for m odd� and Un�2Rn �for n even�. 
From here on we shall use the subscript m to label the odd 
coefficients T1 ,T3 ,. . .  and the subscript n to label the even 
coefficients U2 ,U4 ,. . .  .  

E. Applying the boundary conditions at y��H	 	

We now require that the Tm and Un be chosen so that 
V(x ,y) satisfies the top and bottom boundary conditions 
V(x ,�H)��V0 . Thus we require 

V0 L
 

�V0� � x� �H� � � �	 	H 2	 

m� m� 
� Tm cos x cosh H 	� � � L � � L � 	

m�1,3,... 

m� m� 
�� sin x sinh H	 � � � � �L L 

n� n� 
� � Un��cos� x � sinh� H � 

n�2,4,... L L 

n� n� 
�� sin� x � cosh� H � � . �37�

L L	 	
� � � � 
Adding and subtracting the two versions of Eq. �37� gives 

V0 L 
� � x�

H 2

m� m� 
Tm� � cos� x � cosh� H �

m�1,3,... L L 

n� n� 
�� sin x cosh H �38�� Un � � � � 

n�2,4,... L L 

m� m�


and 

0�� � sin� x � sinh� H �Tm 
m�1,3,... L L 

n�n� 
� � Un cos� x � sinh� H � . �39� 

n�2,4,... L L 

In Eqs. �38� and �39� we have on the left-hand side a func
tion of x and on the right side its expansion in a series of 
sines and cosines of multiples of �x/L . It is important to 
note that these functions of x do not form an orthogonal 
basis on the interval 0�x�L . The functions cos(m�x/L) 
and cos(m��x/L) are orthogonal �for m�m�� on the interval 
0�x�L . Similarly, sin(n�x/L) and sin(n��x/L) are orthogo



nal. But sin(n�x/L) and cos(m�x/L) �with n even and m odd� 
are not. These functions are orthogonal on the interval 
0�x�2L , but are not orthogonal on the interval 0�x�L . 
This is another unusual feature of this simple Hall effect 
problem. The nonorthogonality of the basis functions results 
from the boundary conditions Eqs. �16� and �17�. We must 
be careful in evaluating the expansion coefficients. 

�To understand the nonorthogonality an analogy might be 
helpful. Consider writing a vector in terms of a particular set 
of nonorthogonal basis vectors and then determining the 
components. Let a vector in the plane, A, be written in terms 
of a pair of unit vectors û and v̂ which are at an angle �. We  
can write A� Auû�Avv̂ . To find the coefficient we take the 
dot product of A with the appropriate basis vector. For ex
ample to find Au we have û•A� Auû• û�Avû• v̂�Au 

�Av cos �. We do not get just the coefficient Au ;Av is now 
mixed in as well. The presence of the other coefficient is due 
to the lack of orthogonality. For the usual case with orthogo
nal basis vectors ���/2 and the second term vanishes.� 

Multiply Eq. �38� by cos(m��x/L) and integrate from x 
�0 to  x�L , with the result 

4V0L� 
Tm�

�2Hm2 cosh�m�H/L � 

4� n�H n 
� cosh 2 .� Un � �� cosh�m�H/L � n�2,4,... L n2�m 

�40� 

Multiply Eq. �39� by cos(n��x/L) and integrate from x�0 to  
x�L  to obtain 

�4� m�H m 
Un� sinh 2 .� Tm � �� sinh�n�H/L � m�1,3,... L m2�n 

�41� 

These are our conditions on the coefficients, Tm and Un . 
Note that they involve coupled infinite sums. The odd coef
ficients, Tm , are expressed in terms of the even ones, Un , 
and vice versa. This results from the failure of our basis 
functions to be orthogonal. 

The solution for the potential V(x ,y) is therefore given by 
Eq. �36� with Tm and Un determined by Eqs. �40� and �41�. 

F. Solution to order �2 

For typical metals in experimental situations9 � 
�0.005– 0.1. This suggests that Eqs. �40� and �41� can be 
solved iteratively. Looking at Eq. �40� we see that to first 
order in � we need only the first term. The second term has 
an explicit � and depends on the Un , all of which involve �. 
Therefore, to first order in � the Tm are 

4V0L� 
Tm� . �42�

�2Hm2 cosh�m�H/L � 

Substituting Eq. �42� into Eq. �41�, we find  

�16V0L�2 tanh�m�H/L � 
Un� � . �43�

�3H sinh�n�H/L � m�1,3,... m�m2�n2� 

The potential V(x ,y) is therefore given by Eq. �36� with Tm 

and Un given by Eqs. �42� and �43�. This solution, with the 
coefficients cut off as in Eqs. �42� and �43�, is correct 
through order �2, which is certainly adequate for comparison 
with most experimental results. 

G. Solution to any order in � 

The solution to any order in � may be obtained by itera
tion with Eqs. �40� and �41�. A more systematic approach is 
as follows. Let T denote a vector formed from the Tm , and U 
a vector formed from the Un : 

T�� T1 

0 
T3 

0 
T5 
� , U�� 0 

U2 

0 
U4 

0 
� . �44� 

� � 

Then Eqs. �40� and �41� may be written 

T� T0��U, �45� 

U��T, �46� 

where the components of T0 are 

� 4V0L� 
for m odd 

T0 � �2Hm2 cosh�m�H/L � �47�m 

0 otherwise. 

The matrix elements of � are 

�mn 

� 4� cosh�n�H/L � n 
for m odd and n even2

� � cosh�m�H/L � n2�m 

0 otherwise, 

�48� 

and the matrix elements of � are 

�nm 

� �4� sinh�m�H/L � m 
for m odd and n even2

� � sinh�n�H/L � m2�n 

0 otherwise. 
�49� 

Substituting Eq. �46� into Eq. �45�, we have 

T� T0���T �50� 

or 

�I����T�T0, �51� 

where I is the identity matrix. Thus the solution for T is 

T� �I�����1T0, �52� 

T� �I��������2�����3�¯ �T0. �53� 

Now, as Eqs. �48� and �49� show, both � and � are propor
tional to �. Equation �47� shows that T0 is also proportional 
to �. Hence T only contains elements with odd powers of �. 
And thus, by Eq. �46�, U contains only even powers of �. 
The truncated solution �to order �2� given above, with the 
Tm and Un given by Eqs. �42� and �43� is equivalent to 

T� T0, �54� 
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Fig. 3. Equipotential curves over the whole conductor. From top to bottom 
the contours shown correspond to V�1.0,0.95,...,�0.95,�1.0. The potential 
was determined as discussed in the text with ��0.2, V0�1, H�1, L�1. 

U��T0. �55� 

Although for real experimental situations � is a small param
eter, in principle one may solve the problem by matrix in
version, using Eq. �52�, even for large �. In this case, one 
must truncate the matrices to a finite number of elements in 
advance. 

V. NUMERICAL RESULTS 

To get a physical sense for our solution we evaluate the 
potential and the current density numerically. The solution is 
given by Eq. �36� and the expressions for the coefficients, Tn 

and Um , are given by Eqs. �52� and �46�, respectively. As 
the coefficients are infinite in number we truncated the vec
tors by taking 20 elements in both T and U and the corre
sponding � and � were 20�20 matrices. The sums in Eq. 
�36� went to m�19 and n�20, respectively. Reasonable val
ues of the parameters were chosen to show representative 
behavior. In what follows we let ��0.2, V0�1, H�1, and 
L�1. These last three parameters just set the scale and are in 
arbitrary units. 

Equipotential curves, V�const, for the conductor are 
shown in Fig. 3 for V�1,0.95,...,�0.95,�1. For the case of 
Fig. 4. Equipotential curves for the upper portion of the sample; this is an 
enlargement of Fig. 3 with the same parameters. Top to bottom the contours 
shown correspond to V�0.99,0.98,0.97,... . 

no magnetic field the equipotentials are horizontal lines. 
With a magnetic field the equipotentials are clearly curved. 
The equipotentials get closer together as one approaches the 
upper left and lower right corners. This corresponds to a 
stronger electric field in these regions. However, as expected 
from the boundary conditions, the equipotentials intersect the 
left and right edges at a constant angle, independent of y . 
This can be seen in the close-up of a portion of the conduc
tor, corresponding to the upper part, 0.8�y�1, as shown in 
Fig. 4. From top to bottom the contours correspond to V 
�0.99, 0.98, 0.97,... . 

VI. THE CURRENT DISTRIBUTION 

With Eq. �36� in hand for the potential, it is straightfor
ward to investigate the current distribution. Using Eqs. �8� 
and �9� and taking appropriate partial derivatives of V to get 
the components of E we find 

1 m� 
Jx� � Tm sin�m�x/L �cosh�m�y /L �

� m�1,3,... L 

1 n� 
� � Un sin�n�x/L �sinh�n�y /L �, �56� 

� n�2,4,... L 

V0
Jy�� 

H� 

1 m� 
� � Tm cos�m�x/L �sinh�m�y /L �

� m�1,3,... L 

1 n� 
� � Un cos�n�x/L �cosh�n�y /L �.

� n�2,4,... L 

�57� 

It is possible to perform two easy tests to verify that J as 
calculated is consistent with the original boundary condi
tions. 



First, and most obviously, Jx vanishes at x�0 and x�L . 
This is consistent with the boundary condition illustrated by 
Fig. 2�b�. 

Second, we shall show that at y��H ,  Jx���Jy . This 
means that at the top or bottom edge, the current makes an 
angle �H�tan�1 � with the normal to the boundary, as 
shown in Fig. 2�c�. That this condition is met by Eqs. �56� 
and �57� is not immediately obvious. Therefore, differentiate 
Eq. �37� with respect to x and divide by � to obtain 

V0� 1 m� m� m� 
0� � �sin x cosh H

�H m� 
� 

1,3,... � 
Tm L � � L � � L � 

m� m� 
�� cos x sinh H� � � � �L L 

1 n� n� n� 
Un� � ��sin� x � sinh� H � 

n�2,4,... � L L L 

n� n� 
�� cos� x � cosh� H � � . �58�

L L 

Evaluate Eq. �56� at y��H , and to the resulting equation 
add Eq. �58� to obtain 

V0� � m� 
Jx�x ,�H �� � � Tm cos�m�x/L �

�H � m�1,3,... L 

� n� 
�sinh�m�H/L �� � Un� n�2,4,... L 

�cos�n�x/L �cosh�n�H/L �. �59� 

Comparing Eq. �59� with Eq. �57� evaluated at y��H , we  
see indeed that 

Jx�x ,�H ����Jy�x ,�H � �60� 

for all x . Thus all across the top boundary, the current enters 
at an angle �H from the normal. 

It is worthwhile to note one final point about the y com
ponent of the current. Integrating Eq. �57� across a horizontal 
section gives the net current in the y direction: 

L �V0Lt 
Iy�t � Jydx� ,  �61� 

0 �H 

where t is the thickness of the conducting plate. This is just 
the current we would expect in the absence of a magnetic 
field. This is why the standard elementary treatments, which 
ignore the existence of a transverse current, nevertheless ob
tain reasonable behavior. Although the current is not every
where in the y direction, the net y current does not depend 
on the magnetic field. 

To obtain numerical results for the current density we use 
the same procedure for determining the coefficients Tm and 
Un as described above for the potential calculation. The 
same parameters were also used, ��0.2, V0�1, H�1, and 
L�1. In addition we have let ��1. �This just sets the overall 
scale and we are interested in relative behavior.� We evaluate 
Eqs. �56� and �57� with the coefficients Tm and Un given by 
Eqs. �52� and �46�. In Fig. 5 we show the vector field for the 
current density on a uniform grid of points. The direction of 
the current density, J, at a point is determined by the x and y 
components. The relative magnitude of the current density is 
y
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Fig. 5. Vector field of the current density on a uniform grid. The arrows 
indicate relative magnitude and direction. The three solid lines indicate flow 
lines and correspond to the mean path of a charge. �The flow line is every
where tangent to the local J.� Calculated as described in the text with � 
�0.2, V0�1, H�1, L�1. 

indicated by the length. Along the top edge the magnitude of 
the current varies with position x; however, the current en
ters the sample with the same angle everywhere along the 
top and leaves with the same angle everywhere along the 
bottom. Notice that this implies that more charge enters the 
upper left than the upper right. Correspondingly, more 
charge leaves the lower right than the lower left. Note that 
there is an overall flow of charge from left to right. Also 
shown are three ‘‘streamlines.’’ These flow lines are every
where tangent to the local J and correspond to paths of in
dividual charges. Charge entering along the left edge contin
ues straight down to the bottom. Charge entering in the 
central portion of the top edge follows a curved path with a 
net transport in the x direction. The amount of net left to 
right deflection is the greatest for charges entering at the 
center of the top edge. 

VII. CONCLUSION 

Most textbooks of electromagnetic theory warn the reader 
that if one abandons the standard classes of boundary condi
tions �Dirichlet, Neumann, or ‘‘mixed’’�, the solubility of 
Laplace’s equation is no longer a foregone conclusion. How-



ever, physically plausible examples of nonstandard problems 
appear to be rather few in number. In this paper we have 
presented a solution to a nonstandard boundary value prob
lem that arises naturally in the context of a surprisingly 
simple Hall effect situation. 
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APPENDIX I: REDUCTION OF THE PROBLEM TO 
AN INFINITE NUMBER OF PROBLEMS OF 
STANDARD TYPE 

Because our boundary-value problem is not of standard 
type, it is not immediately obvious from a mathematical 
point of view why it should be soluble. It is therefore worth 
investigating the relation between our problem and problems 
of the standard type. To do so, we shall expand the potential 
in powers of the parameter � and then successively solve it 
to each order. Our problem then reduces to an infinite set of 
‘‘standard’’ problems where the potential or its normal de
rivative is known on the boundaries. Essentially one solves 
the problem to some order in � and uses that solution as 
input for the next higher order. 

Consider Laplace’s equation “2V�0 with the solution 
written 

V�x ,y ��V �0 ��x ,y ���V �1 ��x ,y ���2V �2 ��x ,y ��¯ , 
�62� 

where superscripts indicate the corresponding order of � for 
each term. Now the boundary conditions are V(x ,�H)� 
�V0 and �V/�x���V/�y at x�0, x�L . It is instructive to 
see how this works for the first few terms, 

�V0�V �0 ��x ,�H ���V �1 ��x ,�H � 

��2V �2 ��x ,�H ��¯ �63� 

and 

�V �0 � �V �1 � �V �2 �� �� ��2 �¯��x �x �x 
x�0,L 

�V �0 � �V �1 � �V �2 � 

��� �� ��2 �¯� . 
�y �y �y 

x�0,L 

�64� 

From Eq. �63� we equate the coefficients of successive 
powers of � on each side to obtain 

V �0 ��x ,�H ���V0 , 

V �1 ��x ,�H ��0, �65� 

V �2 ��x ,�H ��0,... . 

Matching powers of � in Eq. �64� we see 
� � 

� � 

� � 

� � 

�V �0 � 

�0,
�x � 

x�0,L
 


�V �1 � �V �0 �
� � � , �66�
�x �y

x�0,L x�0,L
 


�V �2 � �V �1 �
 


� , . . .  .
�x �y

x�0,L x�0,L 

Notice that, for each order in �, the derivative at the left and 
right boundaries, �V/�x , is now a known function of y , 
given in terms of the derivative of the solution at the previ
ous order. 

V (0)(x ,y) solves Laplace’s equation subject to the bound
ary conditions 

V �0 ��x ,�H ���V0 �Dirichlet on top and bottom�, 
�67� 

�V �0 � 

�0 �Neumann on left and right sides�. 
�x � 

x�0,L 

V (0)(x ,y)This can be done by inspection and yields 
�V0y /H . Note this is just the ��0 part of our solution, Eq. 
�36�. 

V (1)(x ,y) solves Laplace’s equation subject to the bound
ary conditions 

V �1 ��x ,�H ��0 �Dirichlet on top and bottom� 

�V �1 � �V �0 � 

� �Neumann on left and right sides�
�x �y

x�0,L x�0,L 

�known function of y 

�V0 /H . �68� 

Solving this problem by standard methods yields 

m�� L
 
V �1 ��x ,y �� � A �1 � sinh� � x�
 � �m� 2H 2 m��1,3,... 

m�� 
�cos y , �69�

2H 

where 

��1 ��m��1 �/2 
�1 � �8V0

A � . �70� m� m�2�2 cosh�m��L/4H � 

This may be compared with the order-� terms of the solution 
given above, in Eqs. �36� and �42�. Denote the order-� part 
of this solution �V1(x ,y). Then from Eq. �36� we have 

V0 L 
V1�x ,y �� x�

H 2 

m� m�
�1 �� � T cos� x � cosh� y � ,m 

m�1,3,... L L 

�71� 

where the T (1) are as given by Eq. �42�:m 

�1 � 
4V0L 

mT �
�2Hm2 cosh�m�H/L � 

. 

As Eqs. �69� and �71� do not look much alike, it is worth
while to show that they are exactly equivalent. 



� � � � 

� 

� � � � 

To see this, let us perform the following expansions. Ex
pand sinh�m��(x�L/2)/2H� from Eq. �69� in terms of the 
functions cos(m�x/L), on the interval 0�x�L , where m 
�1,3,5,... : 

m�� L 
sinh x�

2H 2 

8m�LH cosh�m��L/4H � m� 
�� � 2H2 cos� x � .

� m�1,3,... m�2L2�4m L 

�72� 

Similarly, expanding x�L/2 from Eq. �71� on the interval 
0�x�L in terms of the same cos(m�x/L) yields 

L 4L 1 m� 
x� �� 2 cos x . �73� 

�2 � � �2 m�1,3,... m L 

Finally, expand cosh(m�y/L) from Eq. �71� on the interval 
�H�y�H in terms of the cos(m��y/2H), where m� 
�1,3,5,... : 

2H2m� m�H 16m 
cosh y �cosh 1�� � � � �L L � 

��1 ��m��1 �/2 

� m��m�2L2�4m2H2 � m��1,3,... 

m�� 
�cos� y � � . �74�

2H 

If we substitute Eqs. �73� and �74� into Eq. �71� we obtain 

��1 ��m��1 �/264V0LH 
V1�x ,y �� 

�3 � � 2H2 �m��m�2L2�4mm�1,3,... m��1,3,... 

m� m�� 
�cos x cos y . �75�

L 2H 

And if we substitute Eq. �72� into Eq. �69�, we obtain an 
expression for V (1)(x ,y) which is identical to the right side 
of Eq. �75�. Thus Eq. �69� is indeed equivalent to the first-
order part of Eq. �36�. 

The sequence of problems beginning with Eqs. �67� and 
�68� may be continued to whatever order is necessary. This 
reduces our original problem �posed in Sec. III� to an infinite 
set of standard problems with ‘‘mixed’’ boundary 
conditions.10 From a mathematical point of view, this ex
plains why our nonstandard problem should indeed have a 
stable, unique solution. From a practical point of view, how
ever, the solution of this problem by reduction to a sequence 
of standard problems is infinitely more tedious! 

APPENDIX II: ACHIEVING A UNIFORM CURRENT 
DENSITY 

The complexity of the potential problem is drastically re
duced if we adopt a different geometry. Let the conducting 
plate be a parallelogram, as in Fig. 6. Two edges �1 and 2� 
are parallel to the x axis. The other two edges �3 and 4� make 
an angle with the y axis that is equal to the Hall angle �H 

�tan�1 ��tan�1(B0/�nq). Thus the geometry of the sample 
must be preselected to match the material properties �� and 
n) and the externally imposed magnetic field (B0). 
,y
H,

E

JxB/(nqJ

2

pJ

JxB/(nq)

Fig. 6. Specially chosen parallelogram geometry for the Hall effect as de
scribed in Appendix II. The force triangle corresponding to Eq. �5� is shown 
on all four boundaries. 

Note that now the triangle of forces takes the same orien
tation on all four boundaries. This means that the boundary 
condition for edges 3 and 4 is now Ex�0. We must solve 
Laplace’s equation subject to the boundary conditions 

V�x ,H ��V0 �edge 1� �76� 

V�x ,�H ���V0 �edge 2� �77� 

�V 

�x 
�0 �edges 3 and 4�. �78� 

This is not a problem of the standard type, but in this case 
the solution is trivial: 

V0
V�x ,y �� y �79�

H 

everywhere inside the parallelogram. The equipotentials are 
horizontal lines. 

From Eqs. �8� and �9�, 

�V0
Jx� �80�

H��1��2� 

�V0
Jy� . �81�

H��1��2 � 

Thus J is everywhere constant and parallel to edge 3. The 
magnitude of J is 

V0
J� . �82� 

H��1��2 

The combination 2H�1��2 is, of course, just the slant 
height of the parallelogram, i.e., the length of edge 3, which 



is the actual distance that a charge must travel through the 
material. 

The total current I is obtained by multiplying J by the 
cross-sectional area of the sample �taken perpendicular to J�, 
tL cos �H�tL/�1��2. Thus 

tLV0
I� , �83�

H��1��2� 

which may be compared to Eq. �61�. Although the surface 
areas of the plates shown in Figs. 1 and 6 are the same 
(2HL), the direction of current flow in Fig. 6 produces an 
effective increase in length, and a decrease in width, of the 
conductor. 

So, another way to express the limitations of the tradi
tional elementary treatment is to say that it blurs the distinc
tion between the geometries of Figs. 1 and 6. In the limit of 
long, thin samples and low magnetic fields the two are ap
proximately the same. It is possible that the geometry of Fig. 
6 may have some utility in experimental applications. 
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