
JOXM: Java Object — XML Mapping 

Adam Dukovich, Jimmy Hua, Jong Seo Lee, Michael Huffman, and Alex Dekhtyar
 


 

Abstract 

Java Object XML Mapping (JOXM) is a library that sup­
ports the automated persistence and querying of Java ob­
jects in a native XML database. The goal of this library is to 
provide a suitable alternative to standard object-relational 
mapping (ORM) tools, most notably Hibernate [3]. Unlike 
techniques such as XML-relational persistence, the storage 
mechanism provided by JOXM is transparent, allowing the 
developer to store, retrieve, and query typed Java objects as 
opposed to plain XML data. 

1. Introduction 

The rise of the internet has presented a new paradigm 
of data management that has yet to be satisfactorily ad­
dressed by current technology. In a large number of ap­
plications, semi-structured data comes over the internet in 
XML form. The applications parse it into Document Object 
Model (DOM) and, as necessary, convert DOM trees into 
internal data models, represented by host language object 
instances in main memory. Applications then use object-
relational mapping (ORM) to serialize and persist the data 
in a relational database (see Figure 1). Traditionally, use of 
ORM technologies, such as Hibernate [3], allows software 
developers to assure persistent storage of important applica­
tion data, without the need to incorporate database develop­
ment into the application development process and without 
the associated costs. 

At the same time, we observe that use of ORM to per­
sist XML data (or semi-structured data that was essentially 
derived from XML) do not exploit XML’s advantages as a 
way of encoding data. In a scenario described above, ORM 
software takes on a role of XML shredding software, which 
it might not necessarily be well-suited for. 

Java Object-to-XML Mapping (JOXM) has been de­
signed to replace ORM in software applications where the 
data that needs to be persisted is semi-structured. JOXM re­

places the relational database back-end with a native XML 
DBMS. In our view, for JOXM combines the benefits of us­
ing ORM — abstraction and simplicity of the API and no 
need for database development/administration activities — 
with the benefits of using native XML DBMS — a more 
suitable, and thus, potentially, more efficient storage mech­
anism for persisting semi-structured/XML data. 

2. Problem Statement 

There are three common approaches to handling XML 
data in an XML database application: 

1.	 Place XML data directly into a relational database (e.g. 
blob fields); 

2.	 Convert/Shred XML data model into a relational 
model (e.g. edge method); 

3.	 Store data in a native XML database as indexed con­
tent. 

At present, no one approach seems to have more favor 
than the others in industry. The lack of sophisticated and 
automated tools for storing and processing XML data in 
databases seems to stifle its adoption in application devel­
opment, especially when compared with some of the rich 
tools, such as ORMs like Hibernate, that are available for 
use on relational databases. There are many ORMs for rela­
tional databases; however there has not yet been a success­
ful tool to perform OXM (Object-XML Mapping) that is 
on par with those existing tools for relational databases. At 
present, working with XML and taking advantage of XML 
technology comes at a cost that is similar to that of relational 
databases. A programmer must learn and thoroughly under­
stand XML, as well as how to use a native XML database 
and how to query from that database using XPath, XQuery, 
or XSLT. ORM for XML–OXM–would give us the bene­
fits of ORM in the world of XML database management. 
A programmer would be able to take advantage of both the 



DOMXML 
data 

Internal Data 
Model 

RDBMS 
software application 

ORMparsing 

WWW 

Figure 1. XML data translation to a database. 

ideas behind ORM and the power of XML and use it in de­
veloping software. 

Of these three approaches discussed above, our work 
concentrates on the latter. A native XML database de­
fines a logical model for an XML document/data collection, 
uses native XML index structures as its underlying method 
of storage, and does not rely on any underlying relational 
database for storage. Native XML databases use XPath[7] 
and XQuery [5] as the means of accessing stored XML data, 
and an emerging XQuery Update [6] standard for data ma­
nipulation in the database. 

Currently, there has yet to be developed and documented 
a library sufficient to support the automated storage, re­
trieval and querying of typed Java objects in a native XML 
database. Unlike relational databases, which have seen 
decades of intensive research since the 1970s, truly func­
tional native XML databases have emerged only in the past 
couple of years. Knowledge of their practicality, perfor­
mance, and applicability for use in web-based software ap­
plications remains severely lacking at the present time. 

3 Related Work 

In this section, we will briefly discuss some of the prior 
attempts to perform XML persistence, as well as their 
strengths and weaknesses. 

Hibernate. Hibernate [3] is one of the most popular ORM 
technologies for interacting with relational databases. Its 
popularity derives from its simplicity and abstraction over 
the interactions with the database. Hibernate relieves de­
velopers from writing SQL queries and needing to under­
stand the details of converting data from an in-memory ob­
ject model to the relational database model. Hibernate uses 
relational databases as its backend. For XML data, repre­
sented as Java object instances, Hibernate essentially uses 
shredding to persist them in the database. We believe that 
with large data collections, and with high degree of diver­
sity (semi-structuredness) in the data, such shredding may 

become inefficient. 

Hyperjaxb. Hibernate’s XML-relational mapping tech­
nology is not meant to manipulate or transform (update) 
XML. Similarly, Hyperjaxb [8] addresses the direct need 
to store XML. However, like Hibernate, it stores XML data 
by shredding it into relational databases. Hyperjaxb imple­
ments the Java Architecture for XML Binding (JAXB) [9] 
specification and provides a mechanism to marshal and un­
marshal XML content in and out of a relational database. 
However, this technology relies on compile-time code gen­
eration and adherence to the JavaBean object model. Worse 
yet, like its counterpart in Hibernate, neither of these ap­
proaches allows the abstraction of storage model (XML) 
from the object model (Java objects). 

JaxMe. Only one tool at the current time seems to imple­
ment object mapping to a native XML database. JaxMe [2] 
implemnts the JAXB specification by marshaling and un­
marshaling XML data to an XML database. However, this 
project has disadvantages that discourage its use. It is cur­
rently unstable and is on 0.5.2 release. It also requires pre-
known schema definitions to generate JAXB-enable objects. 
JaxMe was built with JAXB in mind, XML databases were 
an afterthought and it fails to abstract the persistence layer 
from the object model. 

XML:DB API The XML:DB API [11] is a standard for 
providing a way of gaining access to data in an XML 
database. XML:DB can be viewed as being the XML equiv­
alent to ODBC (for relational databases), and its use is pro­
moted by the XML:DB Initiative. The XML:DB API spec­
ification is currently in a working draft and defines two lev­
els of conformance, core level 0 and core level 1. The core 
level 0 is the base API which provides for the concepts of 
resources and services. Core level 1 consists of the specifi­
cation for XPath querying services. Natively, the XML:DB 
API specification does not allow for querying typed objects. 



Rather, the specification provides return types of queries in 
the form of DOM, SAX, and text as well as binary content. 

4. Implementation 

The Java Object XML Mapping (JOXM) library aug­
ments the previously described methods of handling XML 
data in an application by creating an automated persis­
tence layer to persist Java objects directly to a native XML 
database. JOXM is an implementation of object-XML map­
ping (OXM) for the Java language. JOXM’s goals are the 
following: 

• Concise connection, persistence, and querying APIs; 

• Connection to local databases through the XML:DB 
API; 

• Persistence API that abstracts XML data binding (mar­
shaling and unmarshaling) and querying; 

• Persistence of any Java object into a native XML 
database ; 

• Support for issuing XPath queries, returning results as 
typed Java objects. 

JOXM is a general purpose persistence library, with 
goals similar to those of Hibernate but placed in the context 
of native XML databases. JOXM provides a high-level ab­
straction of Java object persistence, with a ”hands-off” ap­
proach in implementing a persistence layer. Knowledge of 
the connection protocol, storage format, and XML querying 
(XPath/XQuery) syntax is not required. Application devel­
opers using JOXM to persist Java objects are simply making 
a few method calls which, in turn, save Java objects to an 
XML database. 

4.1. Overview 

The JOXM core provides the persistence, connection, 
and querying APIs that bind an application to the XML 
persistence model. Instead of the application needing to 
maintain intimate knowledge about the location or proto­
cols for communicating with the database, it can commu­
nicate natively through the JOXM proxy. JOXM connects 
to a local/embedded database using the XML:DB API, en­
suring that the implementation of the XML database need 
only to adhere to the XML:DB specification. This layer 
of abstraction allows the application to swap the back-end 
at any time. Besides support for connection management 
and transparent persistence, JOXM allows developers to is­
sue XPath queries across its interface, with automated type 
conversion provided by default. 

4.2. JOXM Architecture 

JOXM. JOXM library is composed of several mod­
ular components, as illustrated in Figure 2. The 
JOXM library has one main package, edu.cp.joxm, com­
posing two subpackages: edu.cp.joxm.annotations and 
edu.cp.joxm.aspects. The main package contains four 
classes designed to provide the core interfaces: (1) connec­
tion, (2) persistence and (3) querying. 

eXist. The JOXM library, in its current version, stores its 
data in an eXist native XML database [10]. eXist was cho­
sen because it provides an open-source, Java-based, native 
XML database that integrates several popular XML tech­
nologies, including the XQuery and XUpdate languages. 
eXist also supports both and embedded and server mode, 
although only the prior is supported by the current version 
of JOXM. eXist conforms to the XML:DB API, using the 
Xindice [4] implementation. Also, eXist is written in Java, 
provides some support for transaction management and sup­
ports XPath, XQuery and XQuery Update. 

XStream XStream [1] is a simple Java library that can be 
used to serialize objects to XML and back again. Unlike 
the JAXB interface which requires objects to be JavaBeans, 
XStream allows for the marshaling and unmarshaling of any 
Java object. XStream relies heavily upon Java annotations 
to provide the metadata in order to influence and config­
ure the conversion to and from XML. Such annotations in­
clude hints as to aliases of fields (alternate names), structure 
(whether attributes or elements are used), and how collec­
tions are stored. By default, the conversion to and from 
XML is accomplished through the use of reflection, mean­
ing that private and internal data will be serialized, not just 
its public interface (as is the case in JavaBeans). Conse­
quently, XStream is a light-weight library that requires lit­
tle configuration or customization to use it ”out of the box”. 
In the context of JOXM, XStream is used by the Marshaller 
class, which acts as an proxy between XStream and the Ses­
sion class. XStream is used for the purpose of serializing 
objects from Java to XML, and vice versa. Further details 
of how this operates in practice can be in [1]. 

5. Conclusions and Future Work 

XML is an extremely important and popular technol­
ogy for storing documents on the web, and ORM is used 
to store object data within a relational framework. De­
spite some prior attempts, there has not yet been an effec­
tive way of performing Object-XML Mapping (OXM)–that 
is, until now. JOXM is a software package that facilitates 
Object-XML Mapping, and it addresses the needs of appli­
cations looking for a generic persistence layer supporting 



Figure 2. JOXM Architecture 

the XML:DB API, XPath, and XQuery standards, and espe­
cially those in which the object model is hierarchically com­
plex. It avoids the pitfalls of earlier OXM attempts, such as 
an inability to handle marshalling and native databases, in 
ways that are entirely transparent to the programmer. 

We have designed JOXM to be a light-weight replace­
ment for ORM for software applications which need to 
persist large quantities of semi-structured data/XML data 
stored as Java objects. JOXM uses a native XML back-
end, and provides simple ORM-style API for storage and re­
trieval of objects, which releives software developers from 
the need to work with the database back end directly. 

JOXM is a work in progress. As with many research 
projects, much more work would need to be completed. Our 
current goal is to test how JOXM perfoms vs. Hibernate for 
applications using XML data. We have modified an open 
source calendar application to work with JOXM. The next 
steps involve building a version of the same application us­
ing Hibernate, and running performance testing. 

In addition, we plan to work on extending the features of 
JOXM in the following directions: 

• Allow users to issue XQuery queries to the database; 

• Build an XPath interpreter for the Hibernate Query 
Language (HQL) used by [3]; 

• Implement annotation-based specifications and cus­
tomizations; 

• Implement custom specification for deferred (lazy) or 
immediate (greedy) evaluation; 

• Provice more control of the marshaling and unmar­
shaling contexts (such as storing inlining data as at­
tributes); 

• Provide support for the XQuery Update Facility 
(XQUF) (once specification is approved). 

References 

[1] Xstream development team. xstream - about xstream.	 URL 
http://xstream.codehaus.org. 

[2] Apache software foundation.	 welcome to jaxme 2. URL 
http://ws.apache.org/jaxme, 2004. 

[3] Red hat middleware. hibernate - relational persistence for 
java and .net. URL http://www.hibernate.org, 2006. 

[4] Apache	 software foundation. apache xindice. URL 
http://xml.apache.org/xindice, 2007. 

[5] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Ro­
bie, and J. Simeon. XQuery 1.0: An XML Query Language. 
W3C Recommendation, Jan. 2007. 

[6] D. Chamberlin, D. Florescu, and J. Robie.	 XQuery update 
facility. W3C Working Draft, 8, 2006. 

[7] J. Clark, S. DeRose, et al.	 XML Path Language (XPath) 
Version 1.0. W3C Recommendation, 16:1999, 1999. 

[8] CollabNet.	 Hyperjaxb3 - relational persistence for jaxb ob­
jects. URL https://hyperjaxb3.dev.java.net, 2007. 

[9] CollabNet.	 Jaxb: Jaxb reference implementation. URL 
https://jaxb.dev.java.net, 2007. 

[10] W. Meier. eXist: An Open Source Native XML Database. 
Web, Web-Services, and Database Systems: Node 2002 Web-
And Database-Related Workshops, Erfurt, Germany, Octo­
ber 7-10, 2002: Revised Papers, 2003. 

[11] K. Staken. XML database API draft, 2003. 




