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The paper presents a method of expressing CST shapes pioneered by Kulfan into stan
dard Bezier curves and surfaces. Out of the seven standard shape classes identified by 
Kulfan as representable using CST curves, four of them, including airfoils, can be repre
sented as Bezier curves exactly. For the other three, a convergent series expansion proves 
insufficient to achieve any practical accuracy, however these three classes are not the most 
commonly used of the CST classes. With the ability to express most common CST curves 
and surfaces as generic Bezier curves and surfaces, CST shapes can be used in CAD, solid 
modeling, meshing or any other geometry tool that does not explicitly support CST. 

Nomenclature 

Bi,n ith Bernstein polynomial function of degree n 
CN1 Class function function N2 

N1 First parameter in class function 
N2 Second parameter in class function 
pi ith Control point of CST shape function 
Ppi,j Bezier surface control point 
S Shape function 

Conventions 

CAGD Computer Aided Graphics Design 
CST Class Shape Transformation 

I. Introduction 

There has been an increased interest in using the class-shape transformation method (CST)1 to represent 
shapes in an aerodynamics context, especially airfoils. A lot of this attention is due to its use of relatively 

few number of parameters needed to express the shape. Equation (1) shows the general form of the CST 
method. 

ζ (ξ) = CN1 S (ξ) + ξΔζt.e. (1)N2 

where N1 and N2 are class parameters that determine the type of geometry to be represented, S (ξ) is the 
shape function and Δζt.e. is the trailing edge displacement. The N1 and N2 terms in (1) are collectively 
known as the class term and are sometimes represented as 

CN1 (ξ) = ξN1 (1 − ξ)N2 (2)N2 

Table 1 shows combinations for several common shapes and the corresponding class parameters. The shape 
function, S (ξ), is typically shown as either a standard polynomial 

nn 
S (ξ) = aiξi (3) 

i=0 
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or as a Bezier curve 
n

S (ξ) = Bi,n (ξ) pi (4) 
i=0 

n 

where Bi,n (ξ) are the Bernstein polynomials and pi are the control points which represent the convex 
polygon containing the Bezier curve. Standard texts on computer aided graphics design (CAGD), such the 
one by Farin2 or Piegl and Tiller,3 will provide a number of useful properties of Bezier curves and Bernstein 
polynomials. 

Table 1. Values of the class function terms for 
common geometries from Kulfan.1 

Index Geometry Class N1 N2 

1 Airfoil 1/2 1 

2 
Round Leading & 

Trailing Edges 
1/2 1/2 

3 
Biconvex airfoil or 

1 1 
Sharp Edges 

4 Minimum Wave Drag 3/4 3/4 

5 Low Drag Projectile 3/4 1/4 

6 Cone or Wedge 1 ≈ 0 

7 Rectangular Shape ≈ 0 ≈ 0 

n 

II. Exact Transformation of CST Airfoils to Bezier Curves 

This section presents the mathematics behind the transformation of a CST airfoil, index 1 in table 1, 
into Bezier curves with the use of approximations. While the standard CST representation is in an explicit 
form, it is ζ = f (ξ), it is necessary to convert it to a parameterized form. The standard CST representation, 
with N1 and N2 values substituted, is then represented as a pair of parametric equations for the ξ- and 
ζ-coordinates as 

ξ = t (5a) 
n√ 

ζ = t (1 − t) Bi,n (t) pi + tΔζt.e. (5b) 
i=0 

To start, the shape function, which is expressed as an order n Bezier curve, can be converted to a standard 
polynomial, i.e. with monomial basis functions. The following relations can be found in any thorough 
reference on Bezier curves, such as Piegl and Tiller.3 

nn
S (t) = Bi,n (t) pi 

i=0 nn
i = ait (6) 

i=0 nj
j i 

i=0 

n j j−i
(−1)where pi (7)aj = 

Now the ζ-coordinate equation is 
√ nn

iζ = t (1 − t) ait + tΔζt.e. (8) 
i=0 
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Next, the N2 term of the class function can be combined with the shape function to obtain a polynomial of 
order n + 1   

√ n
n+1ζ = t a0 + (ai − ai−1) t

i − ant + tΔζt.e. (9) 
i=1 √ 

What is left is a polynomial in t multiplied by a non-polynomial term, t. If equation (9) can be expressed 
as a polynomial, then it can be converted to a Bezier curve using the inverse of equation (9). Introducing 
the parameter substitution of t ≡ s2 does convert the ξ- and ζ-coordinate expressions to polynomials 

2ξ = s 

n 

(10a)  
n

2(n+1)ζ = s a0 + (ai − ai−1) s 2i − ans + s 2Δζt.e. (10b) 
i=1 

Multiplying through by s and simplifying yields 

2ξ = s (11a) 

n 

n
2i+1 − ans 2n+3ζ = a0s + s 2Δζt.e. + (ai − ai−1) s (11b) 

i=1 

n 

2n+3

= bis i 
n 

i=0 

Δζt.e. if i = 2 

0 if i even and i = 2 

⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

where bi = a0 if i = 1 

−an if i = 2n + 3 

ai − ai−1 otherwise 

The final step in the process is converting the polynomials back to a Bezier curve using the following relation 
that converts a degree m monomial basis polynomial with coefficients dj into a Bezier representation with 
control points qi n 

i j=0 

i

m i − j 
1 m − j  dj (12)qi = 

n 

In using equation (12), both the ξ- and ζ-coordinate expressions must be transformed. Thus instead of the 
one-dimensional control points that the CST formulation uses, the transformed bezier curve representation 
has two-dimensional control points and can be expressed as (with m = 2n + 3) 

m
  nm

ζ
i=0 

ξPξ = dit
iP = Bi,m (t) Pqi (13)= ⎧ ⎨ 

i=0 

1 if i = 2 
  

ciPwhere di = and ci = 
bi ⎩0 otherwise 

Equation (13) represents an exact, standard Bezier curve representation of a CST airfoil. This curve can 
then be used in CAD, solid modeling, meshing or any other geometry tool that does not explicitly support 
CST airfoils. 

Figure 1 shows a sample calculation of the corresponding Bezier curve for an 8th order CST representation 
of an upper surface of an airfoil using the above relations. 

III. Application to Other CST Shapes 

While most of the uses of CST in the literature are for airfoils, the other classes in CST are also of 
interest. For the typical geometry classes from table 1, each one can either be represented exactly as a 
Bezier curve or approximated using a convergence series expansion for the class function. 



(a) Curves (b) ζ-coordinates 

(c) ξ-coordinates (d) Absolute Error 

Figure 1. An example of a CST airfoil and the resulting Bezier curve with the corresponding error on the 
transformed Bezier curve. Note that a minimum threshold of 10−10 was used in the absolute error calculation. 

A. Exact Representations 

If the N2 term in the CST class function is an integer, i.e. either 0 or 1 since N1 and N2 are bounded 
between those values inclusively, then the CST curve can be represented exactly as a Bezier curve. This 
means that geometry classes 1, 3, 6 and 7 can be represented exactly using this technique. Geometry class 
1 is the airfoil case from above. 

1. Geometry Class 3 

Geometry class 3 has the following form 

ζ = ξ (1 − ξ) S (ξ) + ξΔζt.e. (14) 

The combined class and shape functions will result in a polynomial of degree n + 2 for a degree n shape 
function. The trailing edge offset in then just a linear term that is added to the polynomial. Clearly this 
expression is a polynomial and thus can be converted to an explicit Bezier curve of degree n + 2. 
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2. Geometry Class 6 

Geometry class 6 has the following form 

ζ = ξS (ξ) + ξΔζt.e. (15) 

which again results in a polynomial. This time the combination of the class and shape functions yields a 
degree n + 1 polynomial, and the trailing edge offset again is a linear term added to the polynomial. The 
resulting polynomial can then easily be transformed into an explicit Bezier curve. 

3. Geometry Class 7 

Geometry class 7 has the following form 

ζ = S (ξ) + ξΔζt.e. (16) 

which, similarly to the other cases, can easily be converted into a degree n explicit Bezier curve. 

B. Approximate Representations 

The three remaining geometry classes: 2, 4 and 5, have a non-integer N2 term which makes the preceding 
process of transformation not possible. Instead, a Taylor series approximation for the class function is used 
to develop an approximate polynomial representation. 

For Geometry class 2, the CST curve representation is  
ζ = ξ

 
−1 ξ S (ξ) + ξΔζt.e. (17) 

Converting these to a pair of parametric equations, converting the shape function to standard polynomial 
form and performing the t = s2 transformation as done above yields 

2ξ = s (18a)  nn
2i+1ζ = 1 − s2 ais + s 2Δζt.e. (18b) 

i=0 

√ 
The leading 1 − s2 term is not a polynomial, however it can be expressed as a binomial series, which is 
convergent over the entire interval of s ∈ [0, 1], and has the following form, see any standard calculus book 
such as4

∞n ∞n 
i 1/2 2i ≡s 2i1 − s2 = (−1) αis (19)

i 
i=0 i=0 

where the generalized binomial coefficient is used. Substituting back into (18b) yields 

∞n nn
2i 2i+1ζ = αis ais + s 2Δζt.e. (20) 

i=0 i=0 

Truncating the infinite series to the first m terms yields into (20) yields 

nnm n
2i 2i+1ζ = αis ais + s 2Δζt.e. (21) 

i=0 i=0 

Unfortunately, even a Binomial series expansion of degree 5, m = 5, yields an unacceptably large error over 
the majority of the parameter space with the maximum error occurring at s = 1 of 0.25. Figure 2 shows the 
results up to m = 5. While the series is absolutely convergent, the rate of convergence is quite slow. Also, 
recall that for m = 5 the resulting polynomial will be 2m = 10. Thus the resulting polynomial from this 
process will be of degree 2m(2n + 1), which quickly becomes too large to be practical. 



(a) Curves (b) Absolute Error 

Figure 2. Binomial series representation of the class type 2 equation and the corresponding errors for poly
nomials of increasing degree using equation (19). 

IV. Conclusion 

An exact conversion between the most common CST shapes to Bezier curves has been presented and 
shown to work to convert airfoils with only negligible error. For the cases where N2 is not an integer, a bi
nomial series approximation was presented that has theoretical convergence properties but has unacceptably 
large errors for practical uses. An alternative approach, such as using rational bezier curves, will be needed 
to develop a practical approximate conversion for these geometry classes. 

Extending this work to three-dimensions is a trivial effort once the CST curve transformation has been 
accomplished. Kulfan1 presented two methods to create surfaces from CST shapes: (1) CST curves are 
used as cross-sections of a geometry and (2) the shape function in the curve representation is replaced 
with a surface shape function via Bezier surfaces in a local chord and span parametric coordinate system. 
Both approaches rely on using Bezier surfaces in the span-wise direction and CST curves in the chord-wise 
direction. The standard representation of a n × m Bezier surface is 

n mn n 
P Bnξ (u, v) = (u) Bm (v) P (22)i j pi,j 

i=0 j=0 

For any fixed i or j the resulting curve is a Bezier curve, so the conversion process means replacing the 
surface control points, Ppi,j , with the corresponding transformed control points, dPi, from (13). 
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