

Towards Traceable Test-Driven Development

Jane Huffman Hayes
Computer Science

University of Kentucky

Lexington, KY 40506

U.S.A.

hayes@cs.uky.edu

Abstract

Key among the Grand Challenges in Traceability are
those that lead to achieving traceability as a by-
product of the natural software development life cycle.
This position paper profiles test-driven development
(TDD), an emerging software development practice, in
which automated tests and code satisfying them are
developed in rapid succession over multiple iterations.
Our position is that the nature of TDD offers unique
opportunities for collecting traceability information
throughout the TDD life cycle and that the provision of
traceability information to the software developers
during TDD will improve the process and the resulting
software. We discuss the opportunities, challenges, and
plans for the synthesis of TDD and traceability.

1. Introduction

Despite the many benefits realized when traceability
information is generated and maintained1, and despite
the fact that traceability is mandated for many fields2,
traceability information is still not commonplace in
software projects. A long term vision for the
traceability research community is that of “one click
tracing.” This goal envisions a future where software
engineers are developing and maintaining traceability
information as they perform their normal duties, with
traceability being captured and updated as a by-product
of their work and completely unbeknownst to them (or
perhaps as a result of “one click” of the mouse). At
least two challenges must be overcome before this can

1 Such as performing satisfaction assessment,
performing change impact analysis, ensuring no unintended
functions, etc.
2 It is required by ISO/IEC 15504, Sarbanes-Oxley
Act (SOX), the FDA requires it for medical device software,
and the FAA requires it via DO-178B.

Alex Dekhtyar David S. Janzen
Computer Science Department
California Polytechnic State Univ.

San Luis Obispo, CA 93407
U.S.A.

{dekhtyar, djanzen}@csc.calpoly.edu

be a reality, as documented in the traceability research
community's Grand Challenges of Traceability [1]:
“(1) C-GC2Develop incremental, almost real-time,
traceability recovery approaches to be integrated into
Integrated Development Environments;” and “(2) C
GC3 Develop change management systems that
effectively support the evolution of traceability links
across multiple artifact types [1].”

To date, a number of advances have been made
toward one click tracing. For example, automated
tracing using information retrieval (IR) methods has
been shown to be capable of recovering traceability
information for structured (such as source code) and
unstructured (such as natural language requirements)
artifacts [2,3,4,5]. Event-based tracing has been
introduced to assist with the maintenance of
traceability information (to capture changes to the
traceability information when the underlying artifacts
change) [6]. A tool called TraceAnalyzer
acknowledges the importance of models and recovers
traceability between software systems and models
using scenarios (test cases) during program execution
[19]. Frameworks have emerged that attempt to
capture traceability information as an integral part of a
detailed development process, such as Jazz [7].
However, there is still no general purpose mechanism
for achieving this long term goal for any and all
software projects and artifacts.

Yet another step toward one-click traceability is
seamless integration of tracing within traditional and
emerging software development paradigms. In this
paper, we discuss the need, the potential, and the
challenges of such integration of tracing into the test-
driven development (TDD) [8] framework.

We posit that the TDD process is well-suited for
achieving traceability as a by-product of development,
and that availability of timely traceability information
has the potential to improve TDD itself. Indeed, the
key aspect of TDD (correlated (i.e., connected) co

changes in tests and code/design throughout the
development cycle) can be viewed as the source of
(almost) free traceability information. In turn, if such
information is available to the developer, it may
improve the efficiency with which tests are produced
and code is written for each iteration of the process.
Of course, issues do exist with this approach. But, in
our view, the approach is worthy of examination to see
what might be learned toward the broader, longer term
goal of one click (or by-product) tracing.

As such, we examine this long-term goal in the
context of TDD and traceability. This paper addresses:
(a) our position on the issue; (b) analysis supporting
our position; and (c) suggestions for future research in
the area.

The rest of the paper is organized as follows. In
Section 2, we express our position concerning by-
product tracing and how TDD might assist. In Section
3, we discuss the emerging relationship between
traceability and TDD as well as obvious challenges. In
Section 4, we discuss the challenges and questions that
the proposed research will address in the future.

2. Position

Test-driven development is an emerging software
development practice that has been shown to improve
software quality in terms of lower defect density
[16,11], higher test coverage, and smaller, simpler code
[Janzen]. We believe that:

1.	 The nature of TDD should provide for
seamless integration of collection of
traceability information, and

2.	 There are significant benefits for the TDD
process when augmented with traceability
information.

In other words, traceability researchers should
welcome test-driven development as one of the
software development paradigms in which the goal of
one-click traceability, set forth by the C-GC2 and C
GC3 Grand Challenges in Traceability [1], is
imminently achievable. At the same time,
incorporation of traceability information will be a bona
fide improvement of TDD.

3. Test-Driven Development

Test-driven development (TDD) is a disciplined
development practice that involves writing automated
unit tests prior to writing the unit under test. By
writing a test first, the software developer must make
detailed design decisions such as determining the
interface and expected behavior of a unit before
actually implementing the unit. A common

misconception is that ALL of the tests are written prior
to implementing the code [11]. Rather, TDD involves
short, rapid iterations of “write a test, write the code to
make the test pass, and refactor.” These short
iterations provide rapid feedback. Refactoring of both
the test and code ensures that everything is performed
to ensure simplicity and readability of emerging code.

Traditional TDD focuses on unit tests (methods and
classes) and occurs primarily in the software
construction phase, often following some level of
requirements engineering and software architecture
definition. Variations on TDD have emerged, such as
storytest-driven development (STDD) [9] and
acceptance test-driven development (ATDD) [10],
which focus on requirements acceptance tests. STDD
and ATDD rely on automated testing frameworks such
as Fit (http://fit.c2.com), FitNesse
(http://www.fitnesse.org/), and FitLibrary
(http://sourceforge.net/projects/fitlibrary) to specify
executable acceptance tests. ATDD encourages the
software professional to design in APIs behind very
thin user interfaces [12].

Next, we examine how TDD might assist
traceability and vice versa.

3.1. TDD and Traceability

In TDD and its variants, code, test cases and design
evolve simultaneously. The automated tests should be
easily traced to code as depicted in Figure 1.

Automated Acceptance Tests

Code

Automated Unit Tests
Figure 1: Tracing automated tests to code.

In agile processes, requirements are typically
captured in user stories or use cases which are uniquely
numbered. It seems perfectly reasonable to add a
mechanism whereby automated acceptance tests
include direct references to the requirements they test,
extending our traceability as depicted in Figure 2.

A partial Requirements Traceability Matrix (RTM)
is obtainable as a direct byproduct of the TDD process
by matching new tests with changes in the code and in
the design. This only requires two things: access to all
versions of the artifacts for which the RTM is being
constructed, and the ability to match versions of the

artifacts correctly. Both are achievable within the TDD
process by using version control systems and
committing all the artifacts after every successful run
of the program (i.e., a run which succeeds on all
current tests).

Requirements

Automated Acceptance Tests

Code

Automated Unit Tests
Figure 2: Extending traceability from requirements

to code.

3.2. Traceability and TDD

On the flip side, the TDD process might be improved
with the presence of easily accessible traceability
information. Developers following the TDD process
are constantly making important decisions, e.g., which
feature of the product to test next or when is the right
time to refactor. Traceability information available to
developers in real-time as the development proceeds
can inform their decision-making and help them
determine what tests and code still need to be written
and when refactoring needs to be triggered.
Additionally, as developers refactor the tests and code,
traceability information can help them with regression.
An RTM link broken during refactoring may be treated
as a warning for possible code regression.

Real-time traceability information has the potential
to improve automated test-case generators such as Jtest
(http://www.parasoft.com/jsp/products/home.jsp?prod
uct=Jtest&itemId=14) to help fill in some of the
tedious test-writing details once we've gotten the
design benefit out of TDD. For example, we use TDD
to write a unit test for some yet unwritten
class/method. This is where detailed design decisions
about the to-be-written unit are made. After the unit is
written and passes the tests, we refactor and write
another test. At some point, new tests won’t be adding
much to the detailed design, but will remain important
for unit and regression testing. With traceability
information available, we envision the opportunities
for traceability-aware automated test generation. An

automated test generator, for example, can use the
current RTM to determine untested functionality and
generate test cases for it.

3.3 Challenges to Traceable Test-Driven
Development

As the adage goes “do not look a gift horse in the
mouth,” yet we must admit that traceable test-driven
development is not without challenges. That is, there
is no “free traceability.”

First, though we may end up with a partial RTM as
a byproduct of TDD (as discussed in Section 3.1), the
RTM may be incomplete due to: (a) new code
mapping to existing test/design, for example, when a
design element is satisfied by multiple tests/code
fragments, and/or (b) refactoring. Refactoring is an
important aspect of TDD, but can pose severe
challenges to traceability. Refactoring of code can
occur anywhere in the code base, and may lead to the
appearance of new traceability links and the
disappearance of old traceability links between
tests/requirements and code. Additionally, refactoring
may lead to temporary code degradation, when some of
the existing tests fail to pass. We thus see two
complementary challenges: to re-establish traceability
after refactoring and to use traceability to improve
refactoring.

When refactoring, the TDD developer must ensure
that all automated tests continue to pass. Refactoring
of both the automated tests and the code may occur,
but the TDD developer never works for more than a
few minutes without ensuring that all tests still pass.
As a result, following some refactoring, a traceability
matrix might be automatically rebuilt with every
successful run of the automated tests. Or, at a
minimum, failing tests could be set as triggers for
updating traceability if manual traceability updates are
necessary.

A second challenge is that of defining what
information is readily available as part of the TDD
process as opposed to what information traceability
researchers would view as the ‘ultimate’ level of
information to have available. For example, when
dealing with a change to a user story and hence to tests
for that user story, researchers in traceability envision
having data such as what triggered a change, when was
a change triggered, who triggered the change, what is
the impact of the change, etc. In reality, readily
capturable information may merely include the IDs of
test cases validating the changed user story and
perhaps methods that are executed as a test case is run
(if some sort of dynamic analyzer is used).

3

Another challenge that is more dogmatic than
technical is that of “burdening” the otherwise
lightweight and agile process of TDD. At one point,
the agile community considered adding an item to the
agile manifesto which “forbade” traceability. It is of
the utmost importance that any merging of TDD and
traceability be as imperceptible and seamless as
possible.

3.4 Advantages of Traceable Test-Driven
Development

The challenges presented above suggest directions
of research to be undertaken before integration of
traceability and TDD can take place. If the challenges
discussed above can be overcome, a number of
benefits can be realized through the merging of
traceability and TDD. In particular, a TDD
development environment integrating the notion of co
changing artifacts can help to mitigate the challenges
outlined above. The notion of co-changing artifacts has
been successfully applied in software evolution and in
mining of software repositories [13,14,15]. In [15], co
changing artifacts are limited to files and defined as
files that were modified almost at the same time3

(around the same moments in time). In a TDD process,
one can assume that the same time variability occurs
test scenarios and test cases can be written long before
the code or immediately before coding. Also, the time
frame for refactoring actions can be spread fairly
evenly. As data is collected by the development
environment, there is the possibility to define rich data
formats, specifically targeted for traceability
documentation.

Moreover, the co-change notion can be easily
applied at the function and method level without the
accuracy problem of [14] since in TDD the
environment knows exactly the instant in time and the
modified functions, methods, or classes. For example,
the environment can report who changed what, what
else was changed by the same developer, what test case
and user story caused this affect, and so on.

In mining software repositories [13,14,15], co
changes neither necessarily imply a causal relationship
among the individual changes of the different co
changing files nor logical dependencies among the
files. For example, two files may change at the same
time because developers decided to adopt a new
license. However, in a TDD process, a non-intrusive
development environment, as stated above, can record

The meaning of same time is left intentionally
vague since in [15] the goal was mining software repositories
and thus time could be measured in minutes or hours,
depending on the data in a given CVS repository.

events together with other information such as the
developers’ IDs, thus producing more accurate co
changing information. Causality will always be
questionable. However, in TDD, the co-changing
relation of test cases, code, or code modifications due
to refactoring actions will be a much stronger
indication that a causal relation may indeed exist.

In essence, a TDD process will produce, almost for
free, a network of co-changed and co-changing
relations helpful to document traceability relation
refactoring and modification as well as to more easily
identify co-changing artifacts. These co-changing and
co-changed relations can be used to evolve and refactor
traceability relations, keeping them up to date with a
minimum of manual intervention (limited to those
cases where contradicting facts are discovered).

In addition to these benefits, we know that new test
cases will be written at some point in the future when
new user stories are provided and must be
implemented. When writing a new test case, it is
certainly possible that code already exists that might
partially trace to the new test cases. One must have
traceability information in order to determine if such
code exists. It is also possible that when new code is
written for a new test, that new code might also trace to
formerly existing test cases. Again, traceability
information can assist with this determination.

4. What to study and how to study it?

As detailed above, our experience suggests that we
need to study (a) the data that can be collected,
analyzed, and provided back to the developer
throughout the TDD process; and (b) the methodology
for collecting, maintaining, and modifying traceability
information throughout the TDD process. We address
each below.

The following types of data need to be studied:
- the data that is currently captured by TDD

developers as they work,
- data that could easily be captured in the

background as TDD proceeds (such as executing a
dynamic tracer as TDD developers run test cases and
automatically capturing the method names that are
executed when a test case is run; tools such as calgrind,
valgrind, Hackystat, and Zorro [18] might prove
helpful),

- data that could be offered to the TDD developer as
they do their work (for example, if a test case is added,
run IR methods in the background and suggest code
that may already satisfy part of the test case), and

- data could be offered to the TDD developers to
suggest what tests need to be re-run based on the

methods touched as part of refactoring (see the second
item in the list above).

On the methodology side, we essentially need to
study the means of obtaining, maintaining, and
modifying traceability information and the means of
reporting it back to the developer. In particular, we
need to study:

- the means of creating (candidate) RTMs from
artifact co-change information,

- the means of establishing links between new and
old portions of artifacts,

- methodology for (re)-capturing traceability
information after refactoring operations, and

- visualization and presentation of the on-the-fly
traceability information to the developer.

The next step after addressing these issues is design
of methodology for improving TDD by leveraging
traceability information. In particular, we need to
study:

- in-process guides that identify requirements
remaining to be implemented,

- in-process identification of inconsistencies
between requirements and unit tests,

- traceability-aided automated test generation, and
- generation of change-impact information when

refactoring (tools such as Chianti [17] might prove
helpful here).

5. Acknowledgements

This work is funded in part by the National Science
Foundation under NSF grant CCF-0811140. We thank
Giulio Antoniol for his ideas on co-changing.

6. References

[1] Grand Challenges in Traceability, Center of
Excellence of Traceability Technical Report, COET
GCT-06-01-0.9, September 10, 2006.
[2] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia,
and E. Merlo. Recovering Traceability Links between
Code and Documentation. IEEE Transactions on
Software Engineering, Volume 28, No. 10, October
2002, 970-983.
[3] Jane Cleland-Huang, Raffaella Settimi, Oussama
Ben Khadra, Eugenia Berezhanskaya, Selvia Christina:
Goal-centric traceability for managing non-functional
requirements. ICSE 2005: 362-371.
[4] Andrian Marcus, Jonathan I. Maletic: Recovering
Documentation-to-Source-Code Traceability Links
using Latent Semantic Indexing. ICSE 2003, pp. 125
137.

[5] Jane Huffman Hayes, Alex Dekhtyar, Senthil
Karthikeyan Sundaram: Advancing Candidate Link
Generation for Requirements Tracing: The Study of
Methods. IEEE Trans. Software Eng. 32(1): 4-19
(2006).
[6] Jane Cleland-Huang, Carl K. Chang, Mark
Christensen, "Event-Based Traceability for Managing
Evolutionary Change," IEEE Transactions on Software
Engineering, vol. 29, no. 9, pp. 796-810, September,
2003.
[7] Jazz, www.ibm.com/software/rational/jazz.
[8] Kent Beck. Test Driven Development: By Example,
Addison-Wesley, 2003.
[9] Rick Mugridge, Managing Agile Project
Requirements with Storytest-Driven Development,
IEEE Software, 25(1): 68-75 (2008).
[10] Borge Haugset, Geir Kjetil Hanssen, Automated
Acceptance Testing: A Literature Review and an
Industrial Case Study, Agile 2008, pp.27-38.
[11] David S. Janzen, Hossein Saiedian, Does Test-
Driven Development Really Improve Software Design
Quality?, IEEE Software, 25(2): 77-84 (2008).
[12] Robert C. Martin, “The Test Bus Imperative:
Architectures That Support Automated Acceptance
Testing, IEEE Software, 22(4): 65-67 (2005).
[13] G. Antoniol, F. Rollo, G. Venturi. Detecting
groups of co-changing files in cvs repositories. In
International Workshop on Principles of Software
Evolution, pages 23--32, Lisbona, Portugal, Sept 2005.
[14] Zimmermann, P. Weissgerber, S. Diehl, A Zeller
Mining version histories to guide software changes. In
ICSE, pages 563{572, 2004
[15] S. Bouktif and Yann Gael and G. Antoniol
Extracting Change-patterns from CVS Repositories
Proceedings of IEEE Working Conference on Reverse
Engineering , Benevento, Itably, Oct 23-27 2006,
pages:221-230;
[16] Jeffries, Ron Melnik, Grigori, Guest Editors'
Introduction: TDD--The Art of Fearless Programming,
IEEE Software, Vol 24, Issue 3, May-June 2007, pp.
24—30.
[17] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O.
Chesley. Chianti: A tool for practical change impact
analysis of Java programs. In ACM SIGPLAN
Conference on Object Oriented Programming, Systems
and Applications (OOPSLA), pages pp 432–448,
October 2004.
[18] Johnson, P. M. and Kou, H. 2007. Automated
Recognition of Test-Driven Development with Zorro.
In Proceedings of the AGILE 2007 (August 13 - 17,
2007). AGILE. IEEE Computer Society, Washington,
DC, 15-25.
[19] Egyed, A. A Scenario-Driven Approach to
Traceability. In IEEE Proc. Int. Conf. on Software
Engineering (ICSE2001), pp. 123-132, May 2001.

Formatted: English (U.S.)

