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We describe the implementation of a new laboratory-based interdisciplinary undergraduate course
 
on nonlinear dynamical systems. Geometrical methods and data visualization techniques are
 
especially emphasized. A novel feature of the course is a required laboratory where the students
 
analyze the behavior of a number of dynamical systems. Most of the laboratory experiments can be
 
economically implemented using equipment available in many introductory physics
 
microcomputer-based laboratories. 
 
 
 

I. INTRODUCTION 

Over the last few decades there has been great interest in 
the area of dynamical systems, especially those involving 
nonlinearities. There are now several introductory textbooks 
available �e.g., Refs. 1 and 2�. A comprehensive list of ac­
tivities in the field of nonlinear dynamics along with refer-
ences may be found in a recent AJP Resource Letter.3 A 
characteristic of the modern approach to teaching dynamical 
systems has been the use of geometrical methods and com­
puter simulations. While there are many graduate-level 
courses in nonlinear dynamics, these methods do not yet ap­
pear to have been integrated into the typical undergraduate 
education of scientists and engineers. Traditionally, science 
and engineering students take a differential equations course, 
focusing on analytical solutions. Numerical methods, if dis-
cussed at all, take a secondary role. Students starting gradu­
ate school or in the workplace may, however, encounter sys-
tems that are too complicated to solve analytically. Although 
they can use the computer for numerical solutions, they have 
not developed any intuition about the typical behavior of 
such systems or the necessary skills to judge the validity of 
their computer-generated results. Examples of such systems 
include the behavior of lasers4 and biological population 
dynamics.5 To address this deficiency we have developed an 
upper-division, interdisciplinary, laboratory-based course 
that is currently offered as an elective to all science and 
engineering majors at Cal Poly. The objectives of this course 
are �i� to teach modern geometrical methods for analyzing 
differential equations and �ii� to demonstrate the use of visu-
alization tools for data analysis. Geometrical concepts such 
as phase space, fixed points, attractors, bifurcations, limit 
cycles, and data analysis techniques such as power spectra, 
Poincaré sections, and return maps are emphasized. A key 
component of the course is a weekly laboratory where the 
students experiment with a number of often quite simple 
dynamical systems and learn to recognize the similarities and 
differences between seemingly disparate systems that are 
governed by similar equations. The lecture problems and ex-
periments are chosen from a variety of disciplines including 
mathematics, chemistry, physics, and engineering. 
II. COURSE OUTLINE 

This course has a prerequisite of one year of calculus and 
a junior-level course in the student’s major. We have in-
cluded the requirement for a junior-level course to increase 
the chances for the student to have had exposure to dynami­
cal systems within his/her own discipline. Each week there 
are three 1-h lectures and a 3-h lab. The lab consists of a 
variety of experiments ranging from those that demonstrate 
the similarities between the behavior of different physical 
systems to those that teach data analysis techniques. In our 
ten-week quarter students are given seven weeks of pre-
scribed experiments and are required to do a project over the 
last three weeks. The students have a choice of either an 
advanced version of an experiment done in lab or an explo­
ration of a physical system related to their major. We encour­
age the students to work on open-ended problems for their 
project.

The text for the course is Nonlinear Dynamics and 
Chaos.1 The book is at an appropriate level for juniors and 
seniors and uses many examples from a variety of disci-
plines. This excellent text enables students to understand the 
fundamental ideas very quickly and students are usually sur-
prised to see how much information they can extract from 
the differential equations without having to solve them ana­
lytically. 

Both the lectures and the labs are conducted in a studio 
classroom equipped with computers and a display system 
which allows the instructors to illustrate their lectures using 

7software such as DIFFERENTIAL SYSTEMS6 and MATLAB on a 
daily basis. The students are regularly assigned homework 
problems, some of which require the use of computers. Sev­
eral times during the quarter students are assigned a group 
problem to work in teams of two or three during the class 
time. During the exams, students have access to computers 
and the same software used in class and for homework. 

III. COURSE CONTENT 

The course follows the textbook fairly closely, starting 
with the notion of fixed points and phase plots, proceeding 
through bifurcations and on to multidimensional systems. 



 

Table I. Nonlinear dynamics course outline. 

Topic	 	 Emphasis Time spent 

One-dimensional systems, Basic concepts such as phase 2 weeks 
linear and nonlinear diagrams and fixed points and 

the terminology involved 

Bifurcations	 	 Parameter space, different types 1 week 
of bifurcations in one-
dimensional systems 

Two-dimensional linear Eigenvalues and eigenvectors 1 week 
systems and their representation in the 

phase plane 

Nonlinear systems in	 	 Linearization around the fixed 2–3 weeks 
two or more dimensions	 	 point, topological properties of 

the phase space for conservative 
systems and reversible systems, 
limit cycles 

One-dimensional maps	 	 Systems with discrete time steps, 1 week 
return maps 

Bifurcations in two-	 Expansion of the concept of 1–2 weeks 
dimensional systems	 	 bifurcation to two dimensions, 

Hopf bifurcations and Poincaré 
maps 

Lorenz equation	 	 Introduction to strange attractors 1 week 
and chaos, exploration of the 
parameter space 

Discrete systems are considered. The course culminates with 
a brief introduction to chaos. Table I shows the general 
course content, the emphasis for each topic, and time spent 
on each topic. 

IV. LABORATORY 

The laboratory component of the course meets for one 3-h 
period each week. We have at most eight students per lab 
section, working in groups of two. Students are asked to 
write a lab report for each experiment and the lab reports 
count for 20% of their overall grade. One out of five ques­
tions on each exam was directly related to the experiments. 
In the studio classroom, which is used for both lectures and 
labs, the students have access to Macintosh computers. As 
well as hosting DIFFERENTIAL SYSTEMS and MATLAB, the 
computers are used for data collection and analysis. Data 
collection is accomplished with a variety of probes �e.g., 
motion, temperature, voltage, current� interfaced through 
Universal Laboratory Interface �ULI�. Software for use with 
this microcomputer-based laboratory system allows data dis­
play and preliminary analysis.8 

The first seven weeks are devoted to the experiments that 
are described below and summarized in Table II. The last 
three weeks are used for a required project which counts for 
10% of the overall grade. The experiments were developed 
by a group of faculty from the physics, chemistry, and math 
departments. Some of the experiments are adaptations of 
published experiments for which the references are included 
in the descriptions below. We have a more complete 
write-up for each of these experiments available on our web 
page �http://www.calpoly.edu/�nsungar/experiments.html�. 
 

 
 

 

 

 

 

V. DESCRIPTION OF THE EXPERIMENTS 

A. Numerical methods 

This is a simple exercise that demonstrates the importance 
of the step size in using the Euler method and familiarizes 
students with the software. Students are given a simple one-
dimensional system and asked to integrate first without a 
computer using several different step sizes and compare with 
the analytical solution. They then progress to doing the inte­
gration using an Excel spreadsheet and then MATLAB and 
DIFFERENTIAL SYSTEMS. This exercise takes approximately 
1 h.  

B. One-dimensional systems 

The purpose of these four experiments is to show the simi­
larities and differences between several one-dimensional sys­
tems and to demonstrate the idea of fixed points. The first 
part consists of two linear systems that have the same dy­
namical behavior: �i� Newton’s law of cooling—a tempera­
ture probe monitors the temperature change for an object that 
is cooler �and later warmer� than the ambient temperature. 
Students can measure the temperature versus time �T vs t� 

˙and phase portrait �T vs T� in real time and see how the 
system always moves toward a fixed point independent of 
the initial conditions. �ii� RC circuit—the discharging of a 
RC circuit is monitored with voltage and current probes. 
Again, the phase plot is observed by plotting the current 
versus the voltage across the capacitor �i.e., q̇ vs q�. 

Following the linear systems, students work on two non­
linear systems. �iii� Titration—in a titration experiment, a pH 
probe monitors the pH as acid is added at a constant rate to 

˙a base. A real time plot of pH vs  t and the phase plot pH vs 
pH are produced. �iv� Terminal velocity—in a terminal ve­
locity experiment a motion detector monitors the motion of a 
‘‘frictionless’’ cart on a track, pulled by a small spherical 
mass attached to a string that hangs over a pulley and falls 
inside a long tube filled with a viscous fluid �we found liquid 
detergent to be the most convenient�. The dynamical variable 
in this experiment is the velocity, and students are asked to 
find the functional dependence of the drag force on velocity 
from their data �linear at low velocities with a quadratic term 
coming in at higher speeds�. 

All of these experiments are more or less qualitative, and 
the analysis of the results involves answering a series of 
questions pertaining to the graphs obtained. Representative 
data from some of these experiments are shown in Fig. 1. 
The experiments are spread over a two-week period, with the 
terminal velocity experiment taking the most time to per­
form. 

C. Bead on a rotating hoop 

This experiment was included to introduce the idea of bi­
furcations and is based on Sec. 3.5 in the textbook.1 While 
several articles in the literature have drawn attention to the 
bifurcation aspects of this experiment,9,10 none obtain quan­
titative data. A simple mechanical system, consisting of a 
slice of 6-in.-diam PVC pipe that is mounted on a variable 
speed motor, is used �Fig. 2�. Two wire tracks on the inside 
surface hold a small steel ball that is free to roll on the tracks. 
A brief video recording of the system is made at each rota­
tion frequency once the ball reaches its fixed point and is 
steady. These recordings are analyzed by using the ‘‘freeze­
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Fig. 1. Data from some simple one-dimensional systems experiments. �a� q̇ 
vs q in the RC experiment where the upper, line shows the result of using a 
10-� resistor and the lower line shows the result of a 5-� resistor. �b� pḢ vs 
pH for the titration experiment. �c� v̇ vs v for the terminal velocity experi­
ment. Note that cases �b� and �c� are nonlinear. 

frame’’ capability of the video recorder to determine the 
stable angular position of the ball for each frequency. Stu­
dents plot the stable angle versus the rotation frequency dia­
gram and compare it with the theoretical graph �see Fig. 3�. 
Our particular implementation of the experiment can also 
crudely show the effect of imperfections on bifurcations by 
simply offsetting the rotation axis from vertical. However, 
this aspect is not quantitatively pursued as it is rather time 
consuming to extract data using the video recorder. This ex­
periment takes approximately 2 h to  perform. 

D. Two-dimensional systems 

A vertically mounted mass–spring system and a RLC cir­
cuit are used to demonstrate the behavior of linear two-
dimensional systems and to show how oscillations are repre­
sented in the phase plane. The mass–spring system is 
monitored with a motion detector and the evolution of the 
system in the phase plane �ẋ vs x� is observed in real time. 
Damping is varied by attaching a piece of cardboard to the 
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Fig. 2. Photograph of the bead on a hoop apparatus. The hoop is constructed 
from 6-in.-diam PVC pipe with brass rails on the interior to hold the steel 
ball. The hoop is suspended through two radial bearings using a half-inch 
diameter metal post and the post connected to the motor �visible at the back� 
by gears and a toothed plastic belt �available from Berg Manufacturing�. 
Connected to the middle horizontal member is a photogate used to measure 
the rotation frequency. Power supply and frequency meter are not pictured. 

mass. The mass and the initial conditions are also varied. 
The RLC circuit is also analyzed to demonstrate the similar 
behavior of systems that are governed by the same differen­
tial equations. We monitor the voltages across the resistor 
and the capacitor using an oscilloscope while we vary the 
parameters by using variable resistors and inductors. Simi­
larities and differences between the two experiments are dis­
cussed. 

Fig. 3. Results from the bead on a hoop experiment �points�. The solid line 
is a plot of a theoretically expected angular displacement ��� vs the param­
eter ��r�2/g for a hoop with the center of rotation slightly displaced from 
the radius of the hoop. r is the hoop radius, � is the angular velocity, and g 
the acceleration due to gravity. Note that the experimental data do not di­
rectly approach �0,0�, showing a slight imperfection in the system. 
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Fig. 4. Schematic of the coupled oscillator experiment. 

E. Multidimensional systems 

Two identical ‘‘frictionless’’ carts are connected with 
identical springs to produce a coupled mass–spring system 
�Fig. 4�. This four-dimensional linear system demonstrates 
normal modes and their relationship to the concepts of eigen­
values, eigenvectors, and diagonalization of the system ma­
trix. The motion of the system is monitored by attaching the 
outer springs to computer interfaced force probes. We keep 
the displacements small enough so that the proportionality 
between force and position can be used to monitor the posi­
tions of both carts simultaneously. �The reason for using 
force probes instead of motion detectors is the difficulty in 
simultaneously using two facing ultrasonic motion detec­
tors.� The students are asked first to start the system in each 
one of the normal modes and then in an arbitrary mode of 
oscillation. They observe the sum and the difference of the 
positions of the two carts to see how the normal modes relate 
to a change of variables and hence the diagonalization of the 
four-dimensional system matrix which reduces the system to 
two, uncoupled, two-dimensional systems. They also use the 
fast Fourier transform tool on the DATA LOGGER software to 
see the frequencies present in the motion of the carts, one for 
each normal mode, demonstrating that any arbitrary motion 
consists of a combination of only these frequencies. This 
experiment takes roughly 2 h to  complete. 

F. Ship stability 

This is a computer simulation experiment using a simpli­
fied model of a ship in rolling seas in order to study the 
ship’s stability and the conditions for capsizing.11 This ex­
periment is designed to demonstrate that, although a ship in 
the sea is a very complicated system, one can model it rea­
sonably effectively using a simple model and that, even 
though the model is simple, the behavior is not. The model is 
a forced, damped, nonlinear oscillator. Students analyze this 
system using DIFFERENTIAL SYSTEMS and MATLAB. They 
start with no damping and forcing and progressively add the 
damping and the forcing terms. They produce a stability dia­
gram showing the regions of stability and inevitable capsiz­
ing as the forcing amplitude and forcing frequency are var­
ied. The concept of an effective potential energy is also 
emphasized in this experiment. This experiment takes 3 h. 

G. Analysis of a complex nonlinear oscillator 

Techniques for display and analysis of data generated by 
the motion of a nonlinear mechanical system are investi­
gated. The experiment is derived from Ref. 12. A permanent 
magnet is mounted on a rotation probe that is interfaced to 
the computer and inserted at the center of a set of Helmholtz 
coils driven by a sinusoidally varying current �Fig. 5�a��. The 
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Fig. 5. �a� Photograph of the rotating 
magnet apparatus. �b�, �c�, and �d� 
show the result of the Fourier trans­
form of the output when the motion is 
periodic, period doubled, and chaotic, 
respectively �solid curves�. The dotted 
curves show the power spectrum of 
the driver at 1.8 Hz. 



 

 

current through the coils, which is proportional to the forcing 
term in the governing equation, is monitored using a current 
probe that is also interfaced to the computer. This system 
shows an array of complex, though structured, behaviors 
which range from simple periodic to period doubled to cha­
otic. Although an equation modeling an idealized version of 
this system can be written down, the primary purpose in this 
experiment is not to explain the observed behavior from first 
principles. Real systems are, in general, too complex to be 
modeled with great accuracy. The purpose is to discover use­
ful ways of analyzing and interpreting the data in order to 
identify signatures of different types of behavior. The tech­
niques we use include graphs of Fourier spectrum analysis, 
phase space trajectories, and Poincaré sections. Figure 5 
shows samples of the power spectra of the velocity–time 
history of the magnet for periodic, period doubled, and cha­
otic motion. 

H. Dripping faucet 

The purpose of this experiment is to demonstrate the tech­
niques used in the analysis of discrete systems. Water drip­
ping from a faucet displays many features of nonlinear sys­
tems including chaotic transitions, bifurcations, and multiple 
basins of attraction as the flow rate is varied.13 In this experi­
ment the time interval between water drops from a dropper at 
different flow rates is measured. The water is kept at a con­
stant head of pressure using a weir cup that is supplied by a 
simple fish tank pump �available at pet stores� and the flow 
rate varied using a clamp. A photograph of the apparatus is 
shown in Fig. 6�a�. It was found that it was easiest to gener­
ate interesting regimes of behavior using a dropper with a 
fairly wide exit hole ��2 mm i.d.�. The experiment is simple 
to set up using a photogate �Vernier VPG-DG� that is inter­
faced to the computer through the ULI box using the soft­
ware ULITIMER. The students then use a spreadsheet to gen­
erate return maps and histograms to look for signatures of 
different types of behavior �Fig. 6�b��. This experiment takes 
3 h.  

VI. OTHER EXPERIMENTS 

In addition to these experiments we had developed two 
others that were included the first time we taught the course 
but taken out later. These are the inverted pendulum and 
oscillating chemical reaction experiments. 

The inverted pendulum is a simple mechanical system ex­
hibiting complex nonlinear behavior14 and exhibits a range 
of behavior comparable to the spinning magnet experiment. 
The students had a choice between the spinning magnet and 
the inverted pendulum experiments. Both used the same data 
analysis techniques. However, we found that a simple imple­
mentation of the inverted pendulum experiment using a 
spring-driven hacksaw blade as the pendulum was not suit­
able for a 3-h lab period. The system was very sensitive to 
initial conditions with very long transients. This made find­
ing the regimes of different behavior quite challenging. Also, 
since the regimes of interesting behavior occurred when the 
blade was almost horizontal it was very difficult to use the 
ultrasonic motion detectors. A much more sophisticated 
implementation of the experiment can be found in Ref. 14, 
where great care is taken to isolate the system from sur­
rounding perturbations like air currents and the motion is 
monitored using strain gauges attached to the blade. Since 
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Fig. 6. �a� Photograph of the dripping faucet apparatus. �b� Return maps 
generated from the dripping faucet experiment showing, at different flow 
rates, the appearance of periodic, period doubled, and chaotic behavior. 

the spinning magnet experiment gave good results quite 
readily, we decided to eliminate the inverted pendulum ex­
periment and offer it as a project instead. 

An oscillating chemical reaction experiment15 was origi­
nally part of multidimensional systems and was designed to 
show oscillatory behavior in chemical reactions. In the ex­
ecution of the experiment, we encountered a lot of difficulty 
with data acquisition. Inert sampling electrodes were used to 
simultaneously monitor the bromide concentration and con­
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Table II. Schedule of prescribed experiments for nonlinear dynamics course 
laboratory. 

Experiment Involves 

Numerical methods Introduction to computers and software. 
Numerical integration �first week� 

One-dimensional systems Newton’s law of cooling, RC circuit, titration, 
terminal velocity �first and second weeks� 

Bead on a rotating hoop Demonstration of a bifurcation 
�second and third weeks� 

Two-dimensional systems Mass–spring, RLC circuit 
�third and fourth weeks� 

Multidimensional systems Coupled oscillators �fourth week� 
Ship stability Computer experiment �fifth week� 
Nonlinear oscillator A spinning magnet in a sinusoidally 

varying magnetic field �sixth week� 
Discrete systems Dripping faucet �seventh week� 

duction of an oscillating system. However, the ion-selective 
electrodes were delicate and leaked quite easily, ruining the 
reactions. Students were able to visually observe the oscilla­
tion in the color of the solution; however, none of the groups 
were able to collect data for quantitative analysis. We de­
cided to eliminate this experiment due to both the difficulties 
involved and the time constraints. 

VII. PROJECT 

Over the last three weeks of the quarter the students 
worked on a project either in a team of two or individually. 
They were given a list of suggestions, but were free to 
choose a project that was feasible in the time frame allowed 
and with the existing equipment. They were also encouraged 
to talk to other faculty for ideas, especially for projects re­
lated to their major. Another possibility was to perform a 
more advanced version of one of the experiments they had 
done previously. Most of the students found this aspect of 
the course very enjoyable and an excellent learning experi­
ence. The problems they chose were mostly open ended and 
they were required to plan, perform, and report their explo­
ration with minimal supervision. The following list indicates 
some of the more interesting projects undertaken by the stu­
dents with the student’s major indicated in parentheses: 

Building a chaotic waterwheel �Physics� 
Observing bifurcations in a buckling beam �Civil 
Engineering�1 

Coupled pendulums �Physics�16,17 

The Mercury Beating Heart �Chemistry�18 

Construction of Chua’s chaotic circuit �Electrical 
Engineering�19 

Observation of pattern formation in heated liquids 
�Math.�20 

Refined analysis of the bead on a hoop experiment �Aero. 
Engineering� 

It may be interesting to note that most of these experiments 
were undertaken using the facilities of an introductory studio 
lab, supplemented with supplies from the local hardware 
stores. In only a few instances did we have to borrow from 
the upper-division labs for items like digitizing oscilloscopes 
and frequency meters. 
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VIII. DISCUSSION 

The course has now been offered twice, with the lectures 
and labs being taught by Math and Physics faculty. It is also 
clear from the experiments done in the course and the 
projects undertaken that the weighting is toward physics. In 
the future we hope to induce biological and engineering sci­
ences faculty to participate and offer examples from those 
areas. It may be interesting to note that the second time the 
class was offered, almost half of the students were engineer­
ing majors and that several of these students found direct 
application of the course techniques in their senior and mas­
ters projects. 

As might be expected given the prerequisites for the class, 
there were large differences in the background preparation 
among the students and this led to the risk of boring some 
and perplexing others. However, we found that the tech­
niques we were introducing were sufficiently new to keep 
most of the class stimulated. Also, in the laboratories, the 
instructors were mindful of these background differences and 
ensured, for example, that students from biological sciences 
were not working on final projects that needed a detailed 
knowledge of Fourier techniques. 

Overall the course seems to have been successful in its 
objectives and has received a very positive response from the 
students. We conducted extensive surveys of the students at 
the end of each year, the results of which can be summarized 
as follows 

The majority of the students strongly agreed that the ex­
periments helped them understand the material. We found 
that there was some reluctance from the math majors who 
were unhappy about working with equipment which was 
unfamiliar to them and often felt they did not need the lab 
work. 
All the students agreed that this course changed the way 
they think about dynamical systems and differential equa­
tions and those who had already taken a differential equa­
tions course were surprised at the amount of information 
that could be extracted from the equations using qualitative 
arguments. 
The students found the difficulty level of the course less 
than they had anticipated. 
The majority of the students found the project part of the 
course very enjoyable and chose a topic in their own field 
of interest. 
The majority of the students indicated that they would 
have liked to spend more time on the topic of chaos. 
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