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Abstract— Traffic signal control is an effective way to 
regulate traffic flow to avoid conflict and reduce congestions. 
This research investigates a real-time traffic signal control 
system that integrates a traffic flow prediction model and an 
adaptive control scheme based on dynamic programming with 
rolling horizon.  The proposed approach estimates the 
parameter of the arriving traffic flow at the intersection, 
predicts the state transition probabilities, and then formulates 
the traffic signal control problem as a decision-making problem 
of a stochastic system.  Two different traffic arrival patterns 
are considered, including the normal distribution and the 
Poission distribution.  

I. INTRODUCTION 

WITH the ever-increasing traffic demand, congestion 
has become a serious problem in many major cities 
around the world.  ATMS (advanced traffic 

management system) is a systematic effort toward the design 
of an integrated transportation system with new 
technologies.  By regulating the traffic demand at each 
intersection in the network, the goal is to avoid traffic 
conflict and shorten the queue length at a stop line. 

At a signalized intersection, traffic signals typically 
operate in one of three different control modes, namely, pre-
timed control, semi-actuated control and fully actuated 
control.  Pre-timed control is an open-loop control strategy, 
in which all the control parameters are fixed and pre-set off-
line.  It is easy to implement and is well suited for 
predictable traffic pattern.  In actuated control, the control 
signal is adjusted in accordance with real-time traffic 
demand obtained from detectors.  In general, actuated 

ij¦
j=1

If both the state transition probabilities and the reward 
function are known, then the optimal reward v*, or the 
supremum (least upper bound) of the total expected 
discounted reward V, can be obtained by solving a 
functional dynamic programming equation (or DPE): 

v* = Tv*  (2)  
The contraction operator T is defined as: 

ª
 N º


the Markov decision control theory can be successfully 
applied to solve traffic signal control problem. 

A discrete, stationary, Markov control model (also known 
as a Markov decision process or Markov dynamic 
programming) is defined on a state space (X, A, P, R) where 
X, a Borel space, is the state space and every element in the 
space x ∈X is called a state.  A is the set of all possible 
controls (or alternatives), and is also a Borel space.  Each 
state x ∈X is associated with a non-empty measurable subset 
A(x) of A whose elements are the admissible controls when 
the system is in state x.  P is a probability measure space in 
which an element a  denotes the transition probability pij

from state i to state j under control a .  Finally, R represents 
a measurable function called a one-step (immediate) reward 
[8]. 

Choosing a particular alternative (control) in a Markov 
process results in an immediate reward and a transition to 

the next state.  The expected one-step transition reward r (x, 
a ), is defined as: 

N 
a a 

ij pr (x, a ) =  (1)  r 

control performs better than the pre-timed control. Tv(x) = max
a∈ATraffic signal control problem has been studied by many 
«
¬


¦
1j= 

v(x)pij
a 
»
¼


 (3)r(x, a) ȕ+


researchers over the years.  Some major conventional traffic where β (0< β <1) is the discount factor.  By using Banach's 
signal control systems, such as TRANSYT (traffic network fixed-point theorem, the unique solution of the above DPE 
study tool) [1], SCOOT (split, cycle and offset optimization can be calculated iteratively by successive approximation: 
technique) [2], and SCATS (Sydney coordinated adaptive ª
 º
N 

v n (x) = ¦
j 1= 

(4)traffic system) [3], select the best pre-calculated off-line r(x, a) ȕ 1(x)pij
a+
max v«

¬

»
¼


−n a∈Atiming plan based the current traffic conditions on the road. 
Some recent development on traffic signal control employs 
artificial intelligent technology, such as neural networks [4] 
and fuzzy logic [5]. Algorithms using Petri nets [6] and 
Markov decision control [7] are also investigated. 

Markov decision control has been employed to analyze 
and control many complicated stochastic systems in various 
areas. In [7], it is shown that when both the state transition 
probabilities and the one-step reward function are known, 
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For a class of controlled Markov processes in which each 
state transition probability is a function of an unknown 
parameter, an on-line estimation algorithm need to be 
developed to identify the unknown parameter.  An optimal 
adaptive control law can then be generated to maximize the 
long-term total expected reward based on this estimation. 
Borkar and Varaiya [9] showed that when the unknown 
parameter takes values from a finite set, the maximum 
likelihood estimate asymptotically converges to a value in 
the given finite set such that the closed-loop transition 
probabilities with the estimated value of the unknown 
parameter are identical to the transition probabilities with the 
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true value.  In this research, we propose an integrated 
adaptive control model based maximum likelihood 
estimation/prediction and Markov decision control theory. 

Let’s consider the case in which every element of the 
probability transition matrix (which may contain both linear 
and nonlinear functions of the unknown parameter) is 

ubounded (i.e., 0 ≤	 ≤ 1 , where i, j is the index of the pij 

probability matrix; u is the control signal).  The maximum 
likelihood function can be defined as a function of the 
unknown parameter α  which can be obtained from the joint 

probability of the observations x0 , x1 , …, xL  (where L is 

also called the “length” of data set): 
L−1 

J (α;x , x1 ,", xL ) = ∏ Pxt x (t,α)  (5)  0 t +1
 
t =0
 

If we take logarithms on both sides, and set its gradient 
(with respect to α ) to 0 to find the maximum value of the 
likelihood function, i.e.,: 

L−1 

¦∇[logP (t,α̂ L )] = 0 	   (6)  
x x
 

t =0
 
t t +1 

where ∇(⋅) is the gradient and α̂  is the estimate after (L-L 

1) state transitions. The maximum likelihood estimate at the 
next transition also satisfies: 

L 

¦∇[log P (t,α̂ L 1 )]=  0 	   (7)  
x x +
 

t=0
 
t t +1 

Applying a Taylor series expansion to (7), we have: 
L
 

¦∇[log Pxt x + 
(t,α̂ L+1 )]


t 1 
t=0 

= ¦
L 

∇[log Px x (t,α̂ 
L )]t t +1t =0 

2	 · + §̈ ¦ 
L 

∇ [log P (t,α̂ )]¸ (α̂ -α̂ )  (8)
x x L L+1	 Lt t +1t =© 0	 ¹ 

where ∇ 2 (⋅)  denotes the second order derivative.  Consider 
(6), (7) and (8), and include a step size γ  for faster 
convergence, the parameter estimation after the N-th state 
transition can be updated as: 

L§ 2	 · 
−1 

α̂ L+1 =α̂ L -γ ¨¦∇ [log Px x (t,α̂ L )]¸ ⋅ 
t t +1© t=0	 ¹ 

∇[log P (t,α̂ )] 	   (9)  x x Lt t +1 

§ L 
2 · 

−1 

when ¨¦∇ [log P (t,α̂ )]¸  exists. 
x x L


© t =0 ¹
t t +1 

II.	 THE MARKOV MODEL FOR TRAFFIC SIGNAL CONTROL 
PROBLEM 

A state space X and a probability measure P must be 
defined in order to apply the Markov control theory to traffic 
systems.  Since the queue length is the state variable in the 
traffic dynamics equation, one may want to choose the 
number of vehicles to be the state of the Markov control 
model.  However, the resulting total number of states is very 
large. In order to reduce the number of states (and thus 

reduce both the computational time and memory space), a 
threshold (number of vehicles) is chosen for the queue of 
each movement at an intersection.  If the queue length of a 
specific movement is greater than the threshold value, then 
this movement is defined in the congested mode; otherwise 
it is in the non-congested mode.  These two modes 
(congestion/non-congestion) are defined as the two states in 
the binary state space X. 

Assume that at a specific time instant, there are qg 

vehicles passing through the intersection if the signal of this 
direction is green.  For each movement j (j = 1, 2, …, 8), the 
state transition probability can be written as: 

ju j j j j jp = p(∆q̂ + q − δ (u )qg ≤ qthreshold ) (10)jX −>N 

and 
u up

j 

= 1− p
j	 

 (11)  j jX −>C X −>N 

where 
­1, when u j = Gδ (u j ) = ®  (12)  
0, Otherwise¯ 

In (10) and (11), X j = N or C is the current state (N for 
jnon-congestion and C for congestion); u = G or R is the 

control signal (G for green signal and R for red signal).  Two 
special cases are noted: 

R RpC −>C = 1, and pC −>N = 0 . 	  (13)  
The probability matrix can be further specified based on 

various arrival patterns.  In this research, we consider two 
different situations, i.e., the normal distribution and the 
Poission distribution. 

A. The Normal Distribution 
When the arrival of vehicles follows the normal 

distribution, the probability density function can be written 
as: 

( ) =xf 2 

2 

2 
)( 

2 
1 σ 

µ 

πσ 

−− x 

e  (14)  

Taking integration, the probability is obtained: 

(p X ³ −∞ 
==≤ 1 ( ))() 11 

x 
x dxfF xx  (15)  

If the mean of normal distribution is unknown or the 
traffic flow fluctuates around its nominal value, we need to 
apply the maximum likelihood estimation.  The first order 
derivative can be calculated as: 

dp d xª º = 1 
f (x)dx	  (16)  

dµ dµ «¬³ −∞	 »¼ 
Exchange the order of operations, we have: 

( x−µ )2ª ºdp x1 d 1 − 2 = « e 2σ »dx
dµ ³ −∞ dµ « 2πσ »¬ ¼ 

( x1−µ )2 

1 − 
= e 2σ 2  (17)  

2 2πσ 3 

The second order derivative for normal distribution: 
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2 − ( x1−µ )2	 probability measure and the reward function are time-
d p (x − µ)

= 1 e 2σ 2  (18)  varying in real-time traffic control.  In this paper, the 
dµ 2 2πσ 5 sampling time is chosen as the minimum green extension 

Finally, the recursive algorithm for estimation: time, ∆t . A rolling horizon approach is used to achieve a 

� � L �
 ·
 
−1	 real-time adaptive control.  Every ∆t seconds, the P and R §

¨
 
t =0
¦ 2γ
 P
∇
 [log (t, )]
 ⋅
=µL+1 - µ
 matrices are calculated; then a decision is made to choose µL Lx xt t +1

¸
¹
©
 the control signal for the next time interval based on the �∇[log Px x (t, µ )]  

t t +1 
(19) current measurements from detectors and our estimation. 

Once the optimal solution is found, it is implemented only 
for ∆t seconds.  At the next time step, the probability 
matrix and reward matrix are updated and the whole 

L 

B. The Poission Distribution 
If the arrival of vehicles follows the Poisson distribution, 

we have: 
k −λ ∆t(λ ∆t) e 

p(n = k) =	  (20)  
k! 

where n = 1, 2, ...; λ  is the arrival rate and ∆t  is the time 
interval.  For the Maximum likelihood estimation algorithm, 
we have: 

d[log J (λ; x , x ,", x )]0 1 L =  0  (21)  
dλ λ̂L 

Consider (20), we have: 
k −1 −λ ∆tdp(n = k) (λ ∆t) ∆te =	 (k − λ ∆t) (22)

dλ k!
 
d 2 p(n = k)
 

dλ 2 

¦

k −2 2 −λ ∆t(λ ∆t) (∆t) e 2=	 [(λ ∆t) − 2(λ ∆t)k + k(k −1)]
k! 

 (23)  
Assume each traffic movements at intersection are 

independent, then: 
N ∂piˆ )] 

i 1 
λ̂ 

L )] (24)λ
P
 P
∇[log (t, [1/
 (t,=
 Lx xt t x xt t ∂λ
1 1+ + 
= 

decision-making process is repeated. 

IV. SIMULATION 

The proposed adaptive control algorithm with on-line 
parameter identification is tested by computer simulation. 
For the sake of simplicity, let’s assume that the traffic flows 
move along two directions (east/west or north/south) at an 
isolated intersection with two sets of traffic control signals 
(green for east/west or green for north/south).  Assume that 
the intersection is “clear” when the simulation starts (i.e., 
zero initial conditions, or no queue at the beginning), and 
each traffic movement is independent.  We choose the 
maximum green time to be 30 seconds, minimum arrival and 
departure headway to be 2 seconds, respectively.  Loss time 
(human reaction time) is 0 second.  The sampling rate, 
which is also the minimum green time, is chosen to be 3 
seconds.  Assume that the arrival pattern is Poission 
distribution.  The test is performed when the initial value of 
the arrival rate is 400 (vehicle/hour) while the actual arrival 
rate is 450 (vehicle/hour).  The estimated value approaches 
to the true value in 200 seconds, with the steady state error 
of 1.5%.  By applying the adaptive control algorithm, we 
found that the total vehicle delay (for the intersection) is 186 
seconds. 

N ∂pi 
+1 

(t, ˆ ]λL λ̂ ) ]
¦

i=1 

2 [log 2P
 P
∇
 = −[1/
 
+1 

(t, Lx xt t x xt t ∂λ
i 
V. CONCLUSION N 2∂
 pi+ [1/ Px x (t, λ̂ )]

t t +1 ¦
i=1 

 (25)  L In this paper, an integrated model which combines an on-2∂λ
i line parameter identification algorithm using maximum 
likelihood principle and an adaptive Markov decision control where N = 8.  Finally, the vehicle arrival rate can be 

estimated by: is investigated.  The proposed algorithm is applied to the 
−1 traffic signal control problem. Two different vehicle arrival L§

¨
 
·
ˆ λ̂λ 1 = 2 t λ̂ )]x x L¦


t=0 

-γ
 P
∇
 [log ( ,
 ⋅
 patterns are considered here, including the normal L+ L ¸
¹
t t +1©
 distribution and the Poission distribution.  Further evaluation 

and testing on this approach will be performed. ∇[log P (t, λ̂ )] 	  (26)  x x Lt t +1 
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