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Abstract—The requirements traceability matrix (RTM) sup
ports many software engineering and software verification and 
validation (V&V) activities such as change impact analysis, 
reverse engineering, reuse, and regression testing. The gen
eration of RTMs is tedious and error-prone, though, thus 
RTMs are often not generated or maintained. Automated 
techniques have been developed to generate candidate RTMs 
with some success. When using RTMs to support the V&V of 
mission- or safety-critical systems, however, a human analyst 
must vet the candidate RTMs. The focus thus becomes the 
quality of the final RTM. This paper investigates how human 
analysts perform when vetting candidate RTMs. Specifically, 
a study was undertaken at two universities and had 26 
participants analyze RTMs of varying accuracy for a Java 
code formatter program. The study found that humans tend 
to move their candidate RTM toward the line that represents 
recall = precision. Participants who examined RTMs with 
low recall and low precision drastically improved both. 

Keywords-traceability; requirements; information retrieval; 
decision support 

I. INTRODUCTION 

Research has shown that information retrieval techniques 
can be effectively applied to generate candidate RTMs in an 
automated fashion for textual artifacts [1], [2], [3]. These 
methods retrieve a high percentage of related items (for 
example, when tracing from a specific user story to a 
collection of test cases, the methods find almost all of the 
related test cases), but also retrieve many unrelated items 
(false positives). This shortcoming of the automated methods 
has led to a plethora of research on how to decrease the 
number of false positives retrieved [3], [4], [5]. Research 
that focuses on improving automated traceability methods 
is often called “the study of methods” [3]. As research has 
progressed and practitioners have begun to use the tools 
developed by academia, a new area of interest has emerged: 
the study of the analyst. 

Automated methods generate RTMs that must be vetted 
by human analysts. The role of the human is particularly 
important when the RTMs are generated to support verifica
tion and validation (V&V) and independent verification and 
validation (IV&V) activities for mission- or safety-critical 

final RTM. The quality of the final RTM is of paramount 
concern. If automated methods generate candidate RTMs in 
such a way that human analysts make bad decisions and 
generate low quality final RTMs, the reduction of human 
effort is immaterial—the process will have failed. This is 
true even if the automated methods output perfect (or near 
perfect) candidate RTMs—as long as human analysts do 
not recognize it during the vetting process. This suggests 
that automated methods for generating candidate RTMs are 
valuable in such settings only if the human analysts make 
the right decisions with the information provided to them. 

Our research addresses the question of whether the ana
lysts will make the right decisions. To that end, this paper 
concentrates on the study of the analyst (rather than the study 
of the methods) by examining the human role in the tracing 
process. We posit the following research questions: (1) how 
do human analysts transform the requirements traceability 
information produced by automated methods? (2) how does 
the accuracy change in that process? (3) does the amount of 
time an analyst spends impact the quality of the results? 

To examine these questions, we designed a version of 
our requirements tracing tool, REquirements TRacing On 
target (RETRO), that allowed us to present candidate RTMs 
of known accuracy to analysts. We then had the analysts 
vet the RTMs and we measured the accuracy of the final 
RTM. Specifically, we worked with 26 computer science and 
software engineering students at two different universities 
in the United States1 who examined RTMs for a Java code 
formatter program (tracing its requirements to test cases). 
We report our discoveries in this paper. 

The research methodology described in the paper is ap
plicable to a wider range of tasks involving human analyst 
interactions with decision support software2. There are three 
key aspects of the tracing process that affected the nature 
of our study: (a) the presence of automated methods that 
provide suggestions for a specific task, (b) the need for a 
human analyst to examine the suggestions, and (c) the notion 
of accuracy associated with the produced result. Researchers 
can use similar approaches to study other settings within the 

software systems. The human analyst must vet the candidate 1Our work was approved by the IRB at each University. 
RTM and add and remove links as necessary to arrive at the 2Understood in a broad sense here. 
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broad area of requirements engineering which exhibit these 
characteristics. 

The rest of the paper is organized as follows: Section II 
covers background information on automated traceability 
and related research. Section III describes our research 
method. Section IV reports the results of our study. Sec
tion V covers the threats to our study’s validity, and finally 
Section VI contains our concluding remarks and future work. 

II. BACKGROUND AND RELATED WORK 

Gotel defines requirements traceability as “the ability to 
describe and follow the life of a requirement, in both a 
forwards and backwards direction (i.e., from its origins, 
through its development and specification, to its subsequent 
deployment and use, and through all periods of on-going 
refinement and iteration in any of these phases)” [6]. 

Requirements tracing is the process of establishing trace
ability. In general, tracing involves linking elements from a 
high-level artifact to elements of a low-level artifact. An 
artifact can be any by-product of a software life cycle, 
including a requirements document, design document, and 
code. An element is a distinct piece of an artifact that 
can be traced. Examples include a requirement or use case 
from a requirements document; a class, method, or package 
in source code or design documents; and a section or 
subsection of documentation. 

The output of the tracing process is a requirements 
traceability matrix (RTM). It defines the mapping between 
elements of one artifact and elements of the other artifact. 
Any RTM that exists before the tracing process is complete 
is said to be a candidate RTM, because it is a candidate to 
become the final RTM. The final RTM is the one approved 
by a human analyst. 

A pair of elements that trace to each other is called a link. 
A candidate link is any possible link between two artifacts. 
Thus, for two artifacts with 10 and 5 elements, there are 
10 × 5 =  50  candidate links for the elements of the two 
artifacts. In order to measure the accuracy of an RTM, some 
notion of correctness is needed for the links in the RTM. We 
refer to a link that is correct as a true link and a link that is 
incorrect as a false link. 

When textual artifacts are traced to each other, require
ments tracing can be viewed as an information retrieval 
task. Information retrieval (IR) is concerned with which 
documents from a collection of documents are relevant to a 
query. In requirements tracing, the high-level requirements 
act as queries and the low-level elements represent the 
collection of documents [7]. 

A. Measures 

Consider a tracing process consisting of a set of high-level 
requirements H of size M and a set of design elements D 
of size N . For a particular requirement q ∈ H, let  nq be the 
number of candidate links between q and the design elements 

in D that an automated tool returns. Let rq be the number of 
those links which are correct and Rq be the actual number 
of correct links between q and the elements in D [3]. 

Recall is the percentage of correct links that are found 
[3]. Given a requirement q, the recall for the individual 
requirement is 

R
rq

q 
. The overall recall for the entire document 

is defined formally in (1). 

rq 

q∈H 
recall = � (1) 

Rq 

q∈H 

Precision is the percentage of retrieved candidate links 
that are correct [3]. Given a requirement q, the precision for 

rqthe individual requirement is 
nq 

. The overall precision for 
the entire document is defined formally in (2). 

rq 

q∈H 
precision = � (2) 

nq 

q∈H 

F-measure is the harmonic mean of recall and precision. 
Defined formally in (3), it represents a balance between 
recall and precision and can be weighted to emphasize one 
metric or the other. b = 1  weights recall and precision 
equally, b <  1 favors precision, and b >  1 favors recall. 

1 + b2 

fb = 
b2 1 

(3)
+recall precision 

In this paper, following Hayes, Dekhtyar, and Sundaram 
[3], we use the f2-measure (i.e., b = 2), because we observe 
that it is easier to remove incorrect links than to find missing 
links and f2 favors recall over precision. 

B. Automated Traceability as Information Retrieval 

Research has shown that information retrieval techniques 
are efficient and effective at generating candidate links [1], 
[2], [3]. Table I summarizes some of the current research in 
methods for automated candidate link generation. 

Antoniol, Canfora, Casazza, DeLucia, and Merlo [1] 
applied term frequency-inverse document frequency (TF
IDF) and a probabilistic IR method to trace source code to 
documentation and requirements in two case studies. They 
traced C++ classes to manual pages for LEDA (Library of 
Efficient Data types and Algorithms). Their second dataset 
was a hotel management system called Albergate. They 
reported high levels of recall (86–100%) but low precision 
(6–19%) for both methods. 

Marcus and Maletic [2] achieved similar results on the 
same datasets as Antoniol, Canfora, Casazza, DeLucia, and 
Merlo [1] using latent semantic indexing (LSI) to automate 
tracing in the opposite direction. For the LEDA dataset, LSI 
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Technique Dataset Recall Precision 
TF-IDF [1] LEDA, Albergate 86–100% 6–18% 
Probabilistic Method [1] LEDA, Albergate 94–100% 6–19% 
Latent Semantic Indexing [2] LEDA, Albergate 91–100% 16–25% 
TF-IDF [8] MODIS [9], [10] 63% 39% 
TF-IDF with Thesaurus [8] MODIS [9], [10] 85% 40% 
TF-IDF with feedback [3] MODIS [9], [10], CM-1 [11] 90% 80% 

Table I
 
RESEARCH IN IR TECHNIQUES FOR AUTOMATED TRACEABILITY.
 

scored similar recall (96–97%) but higher precision (18– 1

25%) than TF-IDF and the probabilistic model. For the 
Albergate dataset, recall and precision for LSI was similar 0.75

to that of Antoniol, Canfora, Casazza, DeLucia, and Merlo 

0.25

 0
 0	  0.25  0.5  0.75  1 

Recall 

Figure 1. Results from a pilot study [12]. Arrows indicate change in 
accuracy after analyst corrections. 

is anecdotal. Our work extends the aforementioned study 
[12] by conducting a more rigorous study involving more 
participants. 

III. METHODOLOGY 

For our study, we concentrated on observing what analysts 
do when vetting candidate RTMs obtained from automated 
tools. Our goal is to determine if we can better understand 
the work of human analysts. The key goals of our study 
were outlined as the research questions in Section I. 

A. Research Tool 

In our study, we used a modified version of RETRO 
(REquirements TRacing On-target) [15]. RETRO uses TF
IDF vector space retrieval to suggest candidate RTMs and 
uses the analyst’s corrections to provide feedback to the 
retrieval algorithm using Standard Rochio feedback [3]. 
RETRO evolved from a research toolkit for tracing tar
geting IV&V analysts and system maintainers, and it has 
already been used to establish traceability between artifacts 
such as requirements, design documents [7], [3], and bug 
reports [16]. 

RETRO has two modes. The automated tracing mode, 
shown in Fig. 2 (a), lets the analyst work with the results of 
and provide feedback to the automated tracing methods used 
in RETRO. The analyst can confirm or reject any candidate 
link suggested by the automated methods. Rejecting a link 

[1] (91–100% and 16–17%, respectively). 
Hayes, Dekhtyar, and Sundaram [3] studied requirements 

to requirements tracing using TF-IDF, TF-IDF with a simple 
thesaurus, and LSI. They also studied the use of Standard 
Rochio feedback analysis to incorporate analyst feedback 
into the automated methods. The results of the study showed 
that applying user feedback to filter results automatically 
fixed some errors in the original results. 

C. The Human Side of Automated Traceability 

Our research direction, introduced in [12], [13], is to 
study the ways in which human analysts affect the final 
traceability results when using automated tracing tools. To 
our knowledge, there has been only one attempt to study 
the analyst’s role in editing or vetting RTMs [12]. While 
the study involved only four analysts, it showed that analyst 
behavior is a problem worthy of further research [12]. The 
results of the study [12] are shown in Fig. 1. There, each 
vector represents the change affected by one analyst to an 
RTM. The starting point of a vector represents the recall 
and precision of the initial RTM given to an analyst. The 
end point of a vector represents the recall and precision of 
the RTM submitted by the analyst after performing vetting. 
The key observation from the study [12] is that analysts 
make both errors of omission (throwing out correct links) 
and commission (adding incorrect links) [13]. 

On the other side of the interface between the human 
and the automated tool, Dekhtyar, Hayes, and Larsen [14] 
simulated human analyst decision making to study different 
strategies that humans may utilize when working with auto
mated tracing tools. The simulations assumed that analysts 
always make correct decisions about whether a candidate 
link is a true link or a false link. The results showed that if 
analysts can correctly classify candidate links, incorporating 
analyst feedback provides a 7–13% savings in effort for the 
analyst. 

To date, no large-scale study of automated traceability 
involving human analysts has been conducted. Any evidence 
of human effects on automated traceability data so far
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Figure 2. (a) RETRO’s “trace” tab; (b) RETRO’s “browse” tab; (c) the pool of candidate RTMs that can be assigned to participants. 

corrects for errors of commission. The manual tracing mode, 
shown in Fig. 2 (b), allows the analyst to correct errors of 
omission. 

Modifications: To study the impact that initial can
didate RTM accuracy has on the accuracy of the final 
RTM, it is necessary to provide different participants with 
different candidate RTMs for the same dataset. We made two 
modifications to RETRO. We added a user login dialog to 
the startup screen. We also replaced the IR methods used to 
deliver candidate RTMs with a mechanism that allowed us 
to assign each user a specific candidate RTM. 

The new candidate RTM delivery system associates spe
cific recall and precision targets with each user ID. It starts 
with the candidate RTM computed by RETRO, and then 
adds or subtracts candidate links to reach the appropriate 
recall and precision values. When removing candidate links, 
links are removed in order of the smallest relevance score to 
the highest so that the strongest matches stay in the candidate 
RTM. When adding candidate links, a link is chosen at 
random and given a random, low relevance score. 

B. Dataset 

Our study involved two datasets. The first is the training 
dataset, which is only used for a training exercise to famil
iarize the participants with RETRO. The training dataset is 
very small, consisting of 10 functional requirements and 5 
system tests, so that participants can trace it very quickly. 

For the actual experiment, we constructed a dataset using 
a project assignment from a junior-level software engineer
ing course sequence that spanned two quarters. Throughout 
the course sequence, the students produced a requirements 
document, written system test procedures, and an RTM for 
the system tests. This project was selected because: (a) its 
domain (a Java code formatter plugin for BlueJ) is easily 
understood by upper-division students in computer science 
or software engineering, (b) all of the documents were 
produced by the development team at appropriate times 
during the project’s development, and (c) its size lends itself 

well to a tracing task that is reasonable to ask participants 
to complete in about one hour. 

To limit the scope of the tracing task, we extracted only 
the functional and non-functional requirements from the 
requirements document and only the system tests covering 
those requirements. The result was a dataset consisting of 
32 requirements (18 functional and 14 non-functional) and 
17 system tests. We stripped traceability information from 
the system tests, and then converted all data into a format 
readable by RETRO. This dataset is referred to as the 
experimental dataset. 

The RTM for the experimental dataset was manually 
verified by the research team. Since the original RTM was 
created by the development team at the time that the system 
tests were written, we defaulted to their decision in any cases 
where there was uncertainty about the traceability between 
two elements. The resulting RTM contained 23 links be
tween the requirements and system tests. The verified RTM 
is the golden standard RTM, against which the accuracy of 
all other RTMs is measured. 

C. Candidate RTM Preparation 

In our study, each participant was asked to review a 
candidate RTM, further referred to as the initial RTM, with 
precision and recall selected from a predefined pool of 
possibilities. In Fig. 2 (c), we show the pool of recall-
precision possibilities chosen for the study. We group the 
possible initial candidate RTMs into regions of similar recall 
and precision, which helps in assigning initial candidate 
RTMs to participants and analyzing the results for outcomes 
that depend on the accuracy of the initial candidate RTM. 

The pool of candidate RTMs was generated by calculating 
nine points that surround the midpoint of each region. 
The midpoints were selected to be the inner product of 
{25%, 50%, 75%, 95%} recall and {25%, 50%, 75%, 95%}
precision. The nine points in each region were calculated 
by taking all combinations of adding −5%, 0%, and  +5% 
to recall and precision. We could then calculate the number 
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of true positives and false positives needed for each RTM 
by solving equations (1) and (2). Since the number of links 
has to be an integer, not every point calculated by this 
algorithm was unique. Any duplicates were discarded. In 
addition to the points calculated by the algorithm, points 
used in previous experiments were included. 

D. Procedure 

The study took place in four upper-division software 
engineering classes at two universities, and consisted of two 
assignments and two surveys. Participation in the study was 
voluntary. Students were offered 1% extra credit in their 
class for participating and given the option to complete an 
alternative extra credit assignment of equal difficulty. 

We started by giving all the students a pre-experiment 
survey, which was designed to gauge their prior experience 
and comfort with tracing. After collecting the surveys, a 
researcher discussed requirements tracing and RETRO in 
a one-hour presentation/practice session. The presentation 
specifically covered how to work with RETRO to correct 
errors of omission and errors of commission to ensure that 
study participants had the knowledge necessary to make 
improvements to the candidate RTMs. 

To familiarize the participants with RETRO, we asked 
them to trace our training dataset using RETRO. Participants 
were given a printout of instructions on how to use RETRO 
and a link to a page where they could download RETRO 
and the training dataset. The training exercise started during 
the in-class presentation, and participants were asked to 
complete it outside of the class. They were not required 
to turn in anything from the training exercise. 

The research team analyzed the results from the pre
experiment surveys to determine the participants’ prior ex
perience with requirements tracing. This information was 
used in assignment of initial RTMs to participants. All 
participants were separated into two groups based on their 
experience and then assigned RTMs. For each group, par
ticipants were assigned to a region by round-robin, and 
then a random RTM within the region was assigned to the 
participant. Because our sample size is relatively small, a 
random assignment of all participants would have risked 
grouping experienced participants in the same region. Our 
assignment procedure avoided this. 

One week after the practice session, students were given 
the experimental tracing task. Each user received a unique 
user ID for RETRO, used by RETRO to present the initial 
candidate RTM assigned to the specific user. Participants 
were given about one week to trace the experimental dataset 
outside of class time. They received written instructions 
for the tracing task, a time log sheet, and a link to the 
experimental dataset. Participants were asked to keep a 
record of the time they spent on the task and any issues that 
they encountered during the task. Submission instructions 
asked participants to: (a) save their final RTM and email
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Figure 3. Change in recall and precision for all participants. 

it to the research team, (b) submit the time log to their 
course instructor, and (c) take an on-line post-experiment 
survey that asked them for their reactions to the tracing 
assignment (whether they felt prepared, how difficult the 
task was, whether RETRO benefited or hindered them in 
their task, etc.) and how long they spent on the assignment 
and the training exercise. 

E. Data Collection 

We assembled a rich set of meta-information from the 
pre- and post-experiment surveys and time logs in addition 
to the final RTMs turned in by the participants. In this paper, 
our independent variables are the recall, precision, and f2 
measure of each participant’s initial candidate RTM, and 
our dependent variables are the recall, precision, and f2 
measure of each participant’s final RTM and an estimate of 
each participant’s effort spent on the task as self-reported on 
their time logs and post-experiment surveys. Further analysis 
of the data is left for future work. 

IV. RESULTS 

This section presents results and analysis. 

A. Overview of Results 

As shown in Fig. 2 (c), we collected 26 responses to our 
study from four groups of participants: three software en
gineering courses at California Polytechnic State University 
(Cal Poly) and a senior project course at the University of 
Kentucky. One of the universities provided 10 responses and 
the other provided 16. The filled dots represent assigned 
candidate RTMs while the hollow dots represent candidate 
RTMs that were not assigned. Fig. 3–8 depict the key results 
of our study. 
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Figure 4. Change in recall and precision of participants who (a) improved and (b) decreased the f2-measure, and (c)–(f) change in recall and precision 
by region/quadrant.
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Figure 5. (a) Final candidate RTM distribution; (b) change in f2-measure versus the initial f2-measure; (c) final f2-measure versus the initial f2-measure. 

Recall-Precision Drift: Fig. 3 presents an overview of 
our results. Each vector plotted on the graph represents the 
performance of a single respondent with respect to the two 
main measures of RTM accuracy, recall and precision. The 
starting point of each vector, marked as a solid dot for 
participants from one university and as a star for participants 
from the other, represents the recall and precision of the 
starting candidate RTM that the study participant received. 
The end point of the vector shows the recall and precision of 
the candidate RTM submitted by the participant. Fig. 4 (c) 
through (f) breaks Fig. 3 by region (quadrant) of the starting 
candidate RTM. Fig. 5 (a) shows the distribution of the recall 
and precision of all submitted candidate RTMs. 

Improving Precision and Recall: In our study, 10 
participants improved the recall of their candidate RTM, 
four kept it the same, and 12 lowered it. Fourteen par
ticipants improved the precision of their candidate RTM, 
two participants kept the same precision, and 10 decreased 
it. Only seven participants improved both precision and 
recall. Four participants decreased both. 

Who Improved Their Candidate RTMs?: One way 
of determining whether the submitted candidate RTM is 
“better” than the starting one is to use the f -measure. In our 
study, we use the f2-measure, which prefers improvement 
in recall (finding all correct links) over improvement in 
precision (not producing false positives). Fig. 4 (a) and (b) 
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(a) Change in f2-measure vs. initial recall and precision; (b) final f2-measure vs. initial recall and precision.
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(a) Final RTM size vs. initial RTM size; (b) change in f2-measure vs. starting size, and (c) final f2-measure vs. the effort. 

show the results for those participants who improved the f2 
measure and those who reduced it, respectively. Overall, 13 
participants improved f2 and 13 did not.  

Fig. 5 (b) plots the difference in f2 values between the 
starting and the ending candidate RTMs (denoted as Δf2) 
vs. the initial value of the f2-measure. Solid dots represent 
participants who improved f2 (Δf2 > 0). Triangles repre
sent participants who did not improve f2. Fig. 5 (c) plots 
the final values of f2 vs. the starting values of f2. 

Changes by Region: Fig. 6 (a) and (b) show 3D 
plots (top) and heat maps (bottom) for Δf2 and final f2, 
respectively. The plots are in the recall-precision space. 

RTM size: Fig. 7 (a) and (b) show the scatter plots 
comparing the size of the final candidate RTM to the size 

of the initial candidate RTM and showing the change in the 
f2-measure based on the size of the initial candidate RTM, 
respectively. 

Effort: Fig. 7 (c) shows the f2-measure of the final 
candidate RTM plotted against the effort, represented here 
and elsewhere as the number of minutes to complete the 
experiment task. Fig. 8 plots the change in the f2-measure 
vs. the effort. 

B. Analysis 

Based  on the  results  described briefly in  Section IV-A,  
we make the following observations concerning the results 
of our study. 

1) Movement Toward recall = precision Line: One of 
the surprising observations made in the prior study [12] was 
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the fact that human analysts tended to move their candidate 
RTMs toward the recall = precision line. With only 
four data points described [12], though, this observation 
required more significant confirmation. In our current study, 
we clearly observed the same drift. 

Fig. 5 (a) shows a scatter plot of the final destinations, i.e., 
the locations of the submitted candidate RTMs in the recall-
precision space. As can be seen from this figure, in addition 
to drifting toward the recall = precision line, we observe a 
hot spot for the final destinations where f2 is between 0.60 
and 0.75 and the size of the RTM is between 17 and 32. 

Why do so many final RTMs seem to hover around the 
recall = precision line? One observation we make is that 
candidate RTMs with recall ≈ precision will have about 
the same size as the true RTM. This is easily proven: setting 
equations (1) and (2) equal to each other yields Rq = 

nq . In other words, the number of links in a candidate 
RTM is equal to the number of true links when recall = 
precision. 

We make a conjecture that analysts have an intuition 
about the expected size of the true RTM based on the sizes 
of the artifacts that they are tracing. For example, in the 
experimental dataset used in this study, one would probably 
expect the true RTM to contain roughly between 17 and 32 
links. If each system test covers exactly one requirement, 
then there would be 17 links. There would be 32 links if 
each requirement is satisfied by exactly one system test. As 
shown in Fig. 7 (a), 19 out of 26 participants submitted 
RTMs containing between 17 and 32 links. We plan to test 
this conjecture in our future studies. 

2) Regional Behavior Differs: We observe distinctly dif
ferent results for participants who started with candidate 
RTMs in different regions. 

Participants working with candidate RTMs from the low 
precision, low recall region (Fig. 4 (d)) drastically improved 
both precision and recall, and in general, demonstrated the 
highest improvement in the accuracy of the final candidate 
RTM. This is also seen in Fig. 6 (a) where a hot spot (gray 
and bright orange) can be noted in the change in f2 for 
participants with starting RTMs in this region. 

Participants working with candidate RTMs from the low 
precision, high recall region (Fig. 4 (f)) improved, sometimes 
significantly, the precision of the submitted RTM. Changes 
in recall in this region were generally minor, whether posi
tive or negative. Because low precision, high recall candidate 
RTMs tend to have significantly more candidate links than 
the true RTM, we conjecture that the study participants 
working with such candidate RTMs concentrated mostly on 
determining errors of commission (false positives) and on 
weeding them out while not spending too much time trying 
to find errors of omission (links not in the candidate RTM). 

Participants working with candidate RTMs from the high 
precision, low recall region (Fig. 4 (c)) tended to improve 
recall, sometimes significantly (with the exception of one 

case, which appears to us to be an outlier). At the same time, 
every participant decreased the precision of their submitted 
candidate RTM. We conjecture that these participants were 
doing the opposite of what was done in the case of low 
precision, high recall starting points. Indeed, high precision, 
low recall candidate RTMs have very few links, so we think 
that the participants working with these candidate RTMs 
spent most of their time looking for errors of omission 
(and introducing both true links and false positives into their 
candidate RTMs). 

Finally, participants working with high precision, high re
call (Fig. 4 (e)) candidate RTMs almost uniformly decreased 
the accuracy (as measured by f2) of their candidate RTMs. 
These participants increased neither recall nor precision, but 
generally decreased both. Most of the decreases were not 
significant though. 

Note that with the exception of a portion of the low recall, 
high precision starting region, final f2 was in the range of 
0.45 to 0.9 for all starting RTMs (Fig. 6 (b)), with much of 
the recall-precision space being colored dark orange (0.65) 
and hotter. 

3) Those Who Improved Accuracy: There were 13 par
ticipants who improved the overall accuracy (measured as 
f2) of their candidate RTM. As Fig. 5 (b) and (c) show, 
all but one improvement led to candidate RTMs with an 
f2 measure value between 0.6 and 0.75. Fig.  5  (c)  shows  
a clear correlation: the lower the f2 of the initial candidate 
RTM, the higher was the change in the f2 measure for these 
participants. 

4) Those Who Did Not Improve Accuracy: On the other 
hand, the results of the 13 participants who did not improve 
the RTM accuracy shows a distinctly different pattern. All 
but two participants showed only a slight decrease in the 
accuracy of their final candidate RTM (a decrease of 0 to 
15%), and this decrease did not depend on the accuracy (f2) 
of the initial candidate RTM. 

5) What is Explained by Effort: It is reasonable to assume 
that participants who applied minimal effort to the experi
ment task would yield minimal, if any, improvements in the 
quality of the RTM. That, however, was not the case. As can 
be seen in Fig. 7 (c), most all participants submitted an RTM 
with a final f2 between 0.6 and 0.75 (only 5 of the 26 fell 
outside of this range). The effort applied by the participants 
varied greatly from 15 to 95 minutes. The participant who 
expended the most effort returned an RTM with f2 of only 
0.25. The participant who applied the least effort returned 
an RTM with a final f2 of 0.6. From Fig. 7 (c), we observe 
a cluster of participants who spent anywhere from 35 to 80 
minutes on the task and achieved final f2 of 0.6 to 0.825. 
Change in f2 is even more telling (see Fig. 8). Participants 
who applied 40 to 70 minutes of effort yielded -0.1 to 0.38 
change to f2 (the participant with -0.5 f2 is believed to be 
an outlier). We conclude, therefore, that there is no visible 
correlation between the effort applied and the final f2 or the 
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Figure 8. Change in f2-measure versus effort. 

change in f2. 

6) Cal Poly Participants vs. Kentucky Participants: The 
study was conducted at two universities. Fig. 3 uses solid 
dots for participants from one university and stars for partic
ipants from the other. Overall, we notice that students from 
the university marked with stars performed slightly below 
the average in terms of improving recall, precision, and f2, 
while students from the other university performed slightly 
above the average. However, the differences are not large, 
and the number of participants from each university is not 
sufficient for us to draw any statistical conclusions. In fact, 
we have no evidence that suggests that student performance 
was affected by the university in which they reside. In 
each of the regions, participants from different universities 
with similar starting RTMs showed similar tendencies. Each 
university yielded one outlier in our study: one participant 
drastically decreased precision and recall of the returned 
RTM, while another submitted the starting RTM without 
performing any tracing. 

The only interesting observed discrepancy occurred for 
those who received high precision and high recall candidate 
RTMs (both recall and precision over 80%). The three partic
ipants from one university showed the preference for keeping 
precision (almost) the same, while decreasing, sometimes 
significantly, the recall. The two participants from the other 
university decreased precision significantly more than they 
decreased recall. It appears that, in this case, participants 
from one of the universities attempted to concentrate on 
elimination of false positives (and eliminated some true 
links), while the participants from the other university at
tempted to concentrate on discovery of omitted links (and 
introduced a number of false positives). In our subsequent 
studies, we intend to see if this pattern holds. 

V. THREATS TO VALIDITY 

Influences that may impact the independent variables with 
respect to causality are referred to as threats to internal 
validity [17]. A possible personal bias threat in preparation 
of the golden standard RTM was reduced by having multiple 
researchers review the answer set. Personal bias in conduct
ing the study was reduced by using a random assignment 
of students to RTMs. The tool used in the study is also an 
internal threat. Another possible threat to internal validity is 
that we kept the strongest matches in the candidate RTMs 
as we were building RTMs for the participants. Results may 
have differed had we kept weak matches instead. However, 
our study tries to mimic what happens when humans observe 
computer-generated results which do the same thing: show 
strongest matches first. 

There were minimal threats to construct validity as stan
dard IR measures (recall, precision, f2) were used. These 
measures have been used extensively in requirements tracing 
studies. It should be noted that there are other ways and 
metrics to capture the impact of the independent variable. 
We have used a subset of those measures. 

External threats to validity impact the generalizability of 
results. In the study, only one experimental dataset was used. 
The dataset that was used was from a small Java code 
formatter software project. As this project was developed 
by upper-division computer science students and may not 
be representative of a program written by industrial profes
sionals, it is unknown if the results will generalize to other 
software systems, other software domains, or larger systems. 
A subset of the Java code formatter program was selected 
for tracing, to permit completion of the assignment. It is 
possible that a different group of researchers may extract a 
different subset of the requirements and test cases, which 
may lead to different results. 

Reliability threats to validity have been mitigated. The 
study process is defined and repeatable: the study was under
taken at two universities. The second university performing 
the study had no difficulty applying the study artifacts used 
earlier by the first university. 

VI. CONCLUSIONS AND FUTURE WORK 

This paper introduces a simple, repeatable, and adaptable 
framework for the study of analyst interaction with artifacts 
generated automatically during the tracing process and de
scribes the initial study conducted at two universities. To 
our knowledge, this is the first systematic study of human 
analysts and their impact on the tracing process and its 
results. In our view, this study confirms the key conjecture 
of prior studies [12], [13]: there is a clear need to study 
this interaction in order to understand how best to automate 
the tracing process! At the same time, observed behavior of 
analysts lends itself to further study. 

Based on the results described above, we observe that 
analysts working with high-quality candidate RTMs do not 
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necessarily perform better than analysts who start with 
lower-accuracy candidate RTMs. We saw significant differ
ences in the results of analysts who worked with candidate 
RTMs from different recall-precision regions. Some of the 
observed behavior leads us to make a number of conjectures 
about the nature of analyst behavior. Our first conjecture 
is that software engineers use sizes of the traced artifacts 
to estimate the size of the true RTM. We also conjecture 
that large, high recall and low precision candidate RTMs 
make software engineers concentrate on catching errors 
of commission. At the same time, small candidate RTMs 
with low recall and high precision make software engineers 
primarily search for errors of omission. 

We plan to address these conjectures in the followup 
studies we will pursue. We will modify our information 
collection mechanisms to learn more about the actual tracing 
process (which, for the purpose of the initial study, was 
essentially treated as a black box). 

The overarching goal of our study is to determine which 
factors influence the work of a software engineer with auto
mated tracing tools. In this paper, we concentrated mainly on 
measuring the quality of starting and ending candidate RTMs 
for each participant. We also looked at the effort expanded 
by our study participants. At the same time, factors outside 
these (for example, the experience of a study participant), 
may influence their work. We plan to address this in future 
studies. 
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