Hybrid probabilistic programs
Alex Dekhtyar, V.S. Subrahmanian

Abstract

The precise probability of a compound event (e.g. e; VI, e; Afey) depends upon the
known relationships (e.g. independence, mutual exclusion, ignorance of any relationship,
etc.) between the primitive events that constitute the compound event. To date, most research
on probabilistic logic programming has assumed that we are ignorant of the relationship be-
tween primitive events. Likewise, most research in Al (e.g. Bayesian approaches) has assumed
that primitive events are independent. In this paper, we propose a hybrid probabilistic logic
programming language in which the user can explicitly associate, with any given probabilistic
strategy, a conjunction and disjunction operator, and then write programs using these opera-
tors. We describe the syntax of hybrid probabilistic programs, and develop a model theory and
fixpoint theory for such programs. Last, but not least, we develop three alternative procedures
to answer queries, each of which is guaranteed to be sound and complete.

1. Introduction

Although there has now been considerable work in the area of quantitative logic
programming by many different authors [2,14,32,38,19], there has been relatively little
work in the area of probabilistic logic programming [22,21,25-27]. The reason for
this is that while connectives in multivalued logics can be interpreted in terms of
the lattice’s LUB (for disjunction) and GLB (for conjunction) operators, the same
is not true in the case of probabilities. In particular, there is no single “formula”
for computing the probability of a complex event (e; Are;) where ey, e, are primitive
events. For instance:

mailto:�@@I@?I@R.@c�Z

1. If e, e, are independent, then Prob(e; A e;) = Prob(e;) x Prob(e,).
2. If we are ignorant about the relationship between ey, e,, then all we can say [25] is
that Prob(e; A e,) lies in the interval:

[max(0, Prob(e;) + Prob(e;) — 1), min(Prob(e,), Prob(e,))].

This formula was first established by Boole [6] and forms the basis for many existing
probabilistic logic treatments [13,28,25,27]. Ng and Subrahmanian [25] shows how
these expressions are derived using a linear program, as does Zaniolo et al. [39].

3. If we know that ey, e, are mutually exclusive, then Prob(e; A e;) = 0.

4. If we know that event e; implies event e, (called positive correlation), then
Prob(e; A e;) = Prob(e;).

The above list represents a small fraction of relationships between events, each
leading to different possible probabilities for complex events such as (e; A e;). The
same holds for disjunctive events as well.

In most previous efforts, probabilistic logic programming has assumed a fixed
probabilistic strategy [22,21,25-27], such as (i) ignorance of the dependencies be-
tween events, or (ii) independence between events. (There are some exceptions to
this, such as [35,21].) However, an end user writing a probabilistic logic program
should have the flexibility to write rules that reflect his/her specific knowledge about
dependencies between events. For instance, the user should be able to express state-
ments such as the two given below, that allow the user to explicitly articulate the
probabilistic dependencies between events.

e “If the probability that the chairman of company C sells his stock and retires is
over 85% and we are ignorant of the dependencies between these two events, then
conclude that the stock in company C will drop, with probability between
40% and 90%".

e “If the chairman of company C sells his stock and the chairman retires, and the
retirement implies sale of stock (e.g. in an employee owned company), then con-
clude that the stock in company C will drop, with probability between
5% and 20%".

Both rules above refer to the same two events, viz. sale of stock by the chairman,
and retirement of the chairman. However, the first rules specifies what to conclude if
we are ignorant of the relationship between these two events, while the second explic-
itly encodes specific knowledge about the dependencies between events. The rules
lead to very different conclusions.

In this paper, we make the following contributions:

1. First, we define a general axiomatic notion of a probabilistic strategy. We show how
a number of well known probabilistic strategies are special cases of our definition.

2. We then define the concept of a hybrid probabilistic program (hp-program). If the
user selects a set of probabilistic strategies iy, .. ., i; for use in an hp-program (s/he
may select these in any way, as long as these selections satisfy the axioms defining
probabilistic strategies), then this automatically defines a set of conjunction and
disjunction connectives.

3. Subsequently, we define a fixpoint semantics for hp-programs, a model theoretic
semantics for hp-programs, and a proof procedure, and prove that the fixpoint
theory, model theory, and proof theory all lead to equivalent characterizations.
This applies to any selection of probabilistic strategies made by the user, as long
as these selections satisfy the axioms defining probabilistic strategies.

mailto:�@@I@?I@R.@c�I

4. We then define a cache-based proof procedure that extends the well known work
of Tamaki and Sato [36] to handle hybrid probabilistic programs. This procedure
is also proved to be sound and complete.

2. Probabilistic strategies (p-strategies)

In this section, we provide an axiomatic definition of probabilistic strategies
(p-strategies). Intuitively, a p-strategy will specify different ways of computing proba-
bilities of complex events, based on knowledge that the user may have about depend-
encies between the primitive events involved.

As we have already seen in Section 1 through the ignorance strategy, the proba-
bility of a compound event may be an interval, rather than a point, even if point
probabilities are known for the primitive events involved. This was first shown by
Boole [6] in 1854 and later used in Refs. [25,27]. Both Refs. [25,39] describe the der-
ivation of this expression by solving a linear program.

Thus, p-strategies will be defined on intervals — points, in any case, are special
cases of intervals. Let C[0,1] denote the set of all closed intervals of [0, 1]. There
are two natural orderings on C[0, 1].

e If [a,b] € C[0,1],][c,d] € C[0,1] then we write [a,b] < ,[c,d] if a<c and b<d. Ac-
cording to this ordering on closed intervals, if an event e is assigned an interval
[a,b], and an event ¢"is assigned an interval [c,d] such that [a,b] <,[c,d], then
in fact it is more likely that event ¢"will occur, as its probability is “closer” to
1. Lakshmanan and Sadri [22] introduced a similar ordering on pairs of intervals.

e Alternatively, we could use an inclusion ordering on intervals. Thus, if an event e
is assigned an interval [a, b], and an event ¢’ is assigned an interval [c, d] such that
[a,b] C [c,d], then our knowledge about event e is more precise than our know-
ledge about event ¢'.

Both these orderings will be used in this paper, for somewhat different purposes.

Throughout this paper, given a set X, we will use the notation 2% to denote the power
set of X. Thus, 2€°! denotes the powerset of C[0, 1]. It is easy to see that 2 is always
a complete lattice under the ordering of inclusion.

A probabilistic strategy, defined below, is a pair of functions that satisfy certain
axioms.

! The basic intuition is this. Let py, ..., p, be some arbitrary, but fixed set of propositional symbols. Let
wi,...,wg (k=2") be all subsets of {qi,...,¢,}. Each w; denotes a possible world, or Herbrand
interpretations. Suppose we know that formulas F, ..., F,, constructed out of the above symbols have
probabilities py, ..., p, respectively. Boole [6] argues that the world is certain, and it is our beliefs about
the world that are uncertain. Therefore, if z; denotes the probability that world w; is in fact the true state of
the real world, then for each F;, we know that %, saisties ;2 = pi- If we denote this equality by Eg;, then we
have a set of constraints Eqy, ..., Eq. To find a probability for a given formula F, we must minimize (to
get a lower bound) and maximize (to get an upper bound) the expression X, sisties 7zi- It is easily proved
that the optimal value of the minimization may differ from the optimal value of the maximization, and
hence, even if we know the precise probabilities of some basic events, we may not be able to provide a
point probability for a conjunctive event.

Definition 1. A probabilistic strategy (p-strategy) is a pair of functions: p = (¢, d),
such that:
1. ¢: C[0,1] x C[0,1] — C[0, 1]ris called a probabilistic composition function satisfy-
ing the following axioms:
(a) Commutativity: c([a1,b1], [a2, b2]) = c([az, ba], [a1, b1]).
(b) Associativity: c(c([al, bl], [a27 bz])7 [a3,b3]). = c([al, b1]7 C([az, bz], [613, b}]))
(¢) Inclusion Monotonicity: c([ai, b1], [a2,b:]) C c([as, b3], [az, by])Nif[ay, by] C
[a_;, b3]
(d) Separation: There exist two functions ¢!, c?: [0,1] x [0, 1] — [0, 1] such that
e([a,B], [e.d)) = [(a,c), (b, d)].
2.d: C[0,1] — 2(C0xC0%g called a probabilistic decomposition function.

A few comments on the axioms above are in order. The function ¢ above is a com-
position function that generates a new interval from two input intervals. If the two
input intervals denote the probabilities of two different events, and if we know that
the p-strategy used is p = (c,d), then the new interval should represent the probabil-
ity of a compound event. This explains the commutativity and associativity axioms,
as p(e; Aey) = ples ANep) and p((e; Aey) Aes) = pler A (es Aez)) (where ey, e; and e;
are some events).

To explain the axiom of inclusion monotonicity we shall recall that the smaller the
probability interval is, the more precise information about the probability of an
event we have. Based on this, the claim of the axiom of inclusion monotonicity is that
the probability of a compound event is known more precisely when the probabilities
of the simple events are known more precisely. Throughout the rest of the paper,
when we speak of the axiom of monotonicity, we refer to this axiom.

Finally, the separation axiom states that the lower bound of the interval returned
by any composition function must depend only on the lower bounds of the argu-
ments of the function, and likewise, the upper bound of the resulting interval must
depend only on the upper bounds of the arguments. This is a reasonable assumption,
as our interval probabilities are intended to extend the point probabilities. As we
know, if precise probabilities of two events are known, the probability of their com-
bination depends only on these probabilities and on the relationship between the
events, i.e., it is really a function of /wo arguments. We will write ¢ = [c!, ¢?]o ex-
press the fact that composition function ¢ computes lower bounds according to func-
tion ¢' and upper bounds according to function c?.

In the rest of the paper we will consider another property of composition func-
tions: continuity.

Definition 2. A composition function ¢ = [c!,c?|Nis called continuous iff both
¢! and ¢? are continuous in both their arguments. Similarly, a p-strategy p = (c,d)N

is continuous iff ¢ is continuous.

All the p-strategies considered in this paper will be continuous.

The decomposition function d takes an interval as input, and returns as output, a
set of pairs of intervals. For now, there is no “connection’ that ties ¢ and d to-
gether: this will be made later through the concept of coherence (Definition 4).
P-strategies are of two types, depending upon whether they satisfy certain extra ax-
ioms.

Definition 3. Conjunctive and disjunctive p-strategies
o A p-strategy (c,d)is called a conjunctive p-strategy if it satisfies the following
axioms:
1. Bottomline: It is always the case that c¢([a1,b1],[a2, b2])N
< ,[min(al, ag), min(bl, bz)} .
2. ldentity: ¢([a, b], [1,1]) = [a, b].
3. Annihilator: ¢([a, 5], [0,0]) = [0, 0].
o A p-strategy (c,d) is called a disjunctive p-strategy if ¢ satisfies the following ax-
ioms:
1. Bottomline: [max(ay, ay), max(b, b,)] < (a1, bi], [a2, b2])-
2. ldentity: ¢([a, b], [0,0]) = [a, b].
3. Annihilator: ¢([a, b],[1,1]) = [1,1].

While we have already used the inclusion ordering on CJ0, 1]to define inclusion
monotonicity, the Bottomline axiom uses the <, ordering. The Bottomline axiom es-
tablishes (in accordance with probability theory) that the probability of a conjunc-
tion of two events cannot exceed the probability of either of them and similarly
that the probability of a disjunction of two events cannot be smaller than the prob-
ability of either of the events. The axioms of Annihilator and Identity deal with bor-
derline cases (i.e. with conjunctions and disjunctions of an arbitrary event with an
absolutely certain or impossible event).

Intuitively, a composition function determines, given the probability ranges of
two events, the probability range of their (either and- or or-) composition. A decom-
position function may be thought of as the inverse of composition: given the prob-
ability range of the result (and/or- composition of two events) it returns the set of all
possible pairs of initial probabilistic ranges for the two events. To ensure that this
holds we need the following definition:

Definition 4. A p-strategy (c,d)ris called coherent if
(Vla, 6] € C[0, 1)1 (([ar, b1), [a2, b)) € d([a, b]))Niff c([ar, bi], [a2, b5]) = [a, B].

Throughout the rest of this paper, we will use the expression p-strategy to refer to
coherent p-strategies, i.e. only coherent p-strategies will be considered. Before investi-
gating the properties of p-strategies, we present some simple examples below.

2.1. Examples of p-strategies

In this section, we will present examples of various probabilistic assumptions that
have been used extensively in reasoning with uncertainty. In particular, we show how
the definition of a p-strategy is rich enough to capture these assumptions.

2.1.1. Independence
The strategy of independence may be described as the conjunctive p-strategy
inc = (Cine, dinc)rand the disjunctive p-strategy ind = (Cing, dina), Where:
e The conjunctive p-strategy inc = (Cipe, dine) (s given by:
cinc([al) bl]; [a2; b2]) = [ala27 ble]'
d,-m.(a,b) = {<[a1,b1], [az,b2]>|(a1a2 =a and b1b2 = b)}

http:��-.�/.���
http:��-.�/.���
http:��-.�/.����

e The disjunctive p-strategy ind = (Cju4, dinq)(is given by:
cina(lar, b1], [az, b)) = la1 + ay — ajas, by + by — b1by]N
dina([a, b)) contains ([a1, b1], (a2, b)) € C[0,1] x C[0, 1]N

iff
ar+ay—aia, =aand by +b, —b1by=>b

2.1.2. Ignorance
When nothing is known about the relationship between the events we are forced
to use p-strategies that reflect ignorance [6,13,28,25,27,20,22]. igc = (Cige, digc)elow
is a conjunctive ignorance strategy, while igd = (c;q4, diga)(is a disjunctive ignorance
strategy.
e Conjunctive ignorance p-strategy
igc = (Cige, dige), Where

cigc([al,bl], [(lz,bzb = [max((),al +a, — l),min(bl,bz)]ﬂ

dig.([a, b)) contains ([ay, by], (a2, bo])N
iff

ifa:OthenalJrazgl
if a>0thena; +a, —1=a

(b=>byand by = by) or (b= by and by = by)N
¢ Disjunctive ignorance p-strategy
igd = (Ciga, diga), Where

c,-gd([al,bl], [az,bz]) = [max(al,az),min(l,bl + bz)]m

diga([a, b]) contains ([ay, b1], [az, b2])N
iff

(a=ajand a; <a;)or (a=a; and a; <ay)N
ifb:lthenb1+b2 21

if b<1thend, +b,=05

Sometimes we will use ig instead of igc or igd whenever it is clear from the context
whether a conjunctive or disjunctive strategy is under consideration.

http:��-.�/.���
http:��-.�/.���

2.1.3. Positive correlation
Sometimes we know that the fact that event e; has happened implies that some
event e, also had to happen (e.g., one would assume that “Jon rides a bus” would

imply “Jon bought a ticket’). Below are conjunctive and disjunctive strategies for this
case.

¢ Conjunctive p-strategy
pee = (Cpeey Apee), Where

cpcc([al,bl], [az,bz}) = [min(al,az),min(bl,bz)]ﬂ

dpec([a,b]) = {{[a1, b1}, [a2, b))
iff

(a=ajand a; = ay) or (a =az and a; = a)N

and

(b = b] and b2 = bl) or (b = b2 and bl = bz)ﬂ
¢ Disjunctive p-strategy
ped = (Cpeq, dpea), Where

cpcc([al,bl], [az,bz}) = [max(al,az),max(bl,bz)]ﬂ

dPCC([avb]) = {<[alab1]a [a27b2]>}m

iff

(a=ajand ay <a;)or (a =a, and a; < ax)N

and

(b = b] and b2 < b]) or (b = b2 and b] < bz)m

2.1.4. Negative correlation

Sometimes, the fact that event e¢; took place means that event e, could not possi-
bly happen. For example, if “Jon came by bus” did happen, then “Jon came by
train” did not. In this case we know that both events could not possibly happen to-
gether, therefore there is no conjunction p-strategy for negative correlation. How-
ever, it does make sense to ask what is the probability that one of the events took
place. Below is the disjunctive p-strategy for that.

ned = <Cncda dm‘d>7
where

Cnea([ar, br], (a2, b)) = [min(1,a; + a,), min(1, b, + b,)|N

http:��-.�/.���
http:��-.�/.���
http:��-.�/.���

duea([a, b)) = {([a1, b1], [a2, b2]) }1
such that:

if a=1thena; +a > 1

ifa<lthena +a,=a

if b= 1thenb +b, > 1

if b<1thenb +b,=a
2.2. Validity of examples

The following result, which is immediately verifiable from the definitions, asserts
that the seven p-strategies described here are all coherent.

Proposition 5. inc, igc and pcc are continuous conjunctive coherent p-strategies. Sim-
ilarly, ind, igd, pcd and ncd are continuous disjunctive coherent p-strategies.

The proof of this proposition can be found in Appendix A.
2.3. Properties of p-strategies

In this section, we define various aspects of p-strategies that will play a key role in
the definition of our fixpoint semantics and our model theory. First, we need the fol-
lowing very simple property.

Claim 6. Let p={c,d)0 be a coherent p-strategy. Then a pair
<[alabl]v [a27b2]> € d([avbbﬁ]ﬂ‘ <[a27b2]7 [alvb1]> € d([avb])

Proof. By commutativity of composition function if c¢([ay,b], a2, b)) =N
[a, b]then ¢([a,, by, [a1,b1]) = [a,b]. Since p is a coherent p-strategy, both
<[a1, bl], [ag, b2]>ﬁ{1nd <[a2, bg], [al, b1]>mre in d[a, b] O

The simple claim above merely assures us that if ([a;, b1], [a2, b2]) € d([a, b]), then
SO iS <[a2,b2], [al,b1]>.

Claim 7. Let p = (c,,d,)(be a coherent disjunctive or conjunctive p-strategy. Then:

1' cﬂ([oa l}a [07 1]) = [Oa 1}

2. More generally (Vx,y € 10,1])(3z € [0, 1]) (¢, ([x, 1], v, 1]) = [z, 1]rand
(Vx,y € [0,1])(3z € [0,1])¢, ([0,], [0, y]) = [0,2]).

Proof.
o(¥, is a conjunctive p-strategy.
L (¥x,y € [0, 1)) Gz € [0, 1)(e, (b, 1, I, 1]) = [z, 1]).
We know that by the axiom of Identity for conjunctive p-strategies,
co(fx, 1], [1,1]) = [x,1]. Since y € [0,1],[1,1] C [y, 1]. Therefore, by the axiom

of monotonicity we get c,([x, 1], [1,1]) = [x, 1] C ¢,(]x, 1], [», 1]) C [0, 1].
From this it is clear that the upper bound of the interval for ¢, ([x, 1], [y, 1]) will
be 1, which means that ¢,([x, 1], [y, 1]) = [z, 1])for some z € [O, 1].

2. (v, € [0, 1])(Zz € [0, 1]) (e, ([0,],[0,]) = [0,2]).
We know that be the axiom of Amnnihilator for conjunctive p-strategies,
¢,([0,x],[0,0]) = [0,0]. Since y € [0,1],]0,0] C [0,y]. Therefore, by the axiom
of monotonicity we get ¢,([0,x],[0,0]) = [0, 0] C ¢,([0,x],[0,¥]) C [0, 1].
From this it is clear that the lower bound of the interval for ¢, ([0, x], [0, y]) will
be 0, which means that ¢,([0,x], [0,]) = [0,z])dor some z € [0, 1].

o(T, is a disjunctive p-strategy.

L (vx,y € [0,1)(3z € [0, 1)) (¢, ([, 1], [y, 1]) = [z, 1]).
We know that be the axiom of Anmnihilator for disjunctive p-strategies,
cp(x, 1], [1,1]) = [1,1]. Since y € [0,1],]1, 1] C [y, 1]. Therefore, by the axiom
of monotonicity we get c,([x,1],[1,1]) = [1,1] C ¢,([x, 1], [y, 1]) C [0, 1].
From this it is clear that the upper bound of the interval for ¢, ([x, 1], [y, 1]) will
be 1, which means that ¢,([x, 1], [y, 1]) = [z, 1])dor some z € [0, 1].

2. (x,y € 0,1]) 3z € [0, 1])(c, ([0,4], 0, y]) = [0,2]).
We know that be the axiom of Identity for disjunctive p-strategies,
¢,([0,x],[0,0]) = [0,x]. Since y € [0,1],[0,0] C [0,y]. Therefore, by the axiom
of monotonicity we get ¢,([0,x], [0,0]) = [0,x] C ¢,(]0,x],[0,]) C [0, 1].
From this it is clear that the lower bound of the interval for ¢,([0,x], [0, y]) will
be 0, which means that ¢,([0,x],[0,»]) = [0,z])for some z € [0,1]. O

Given a pair [a, b], the projection set of decomposition function d w.r.t. [a, b] is the
set of all [¢/, &']’s such that [¢/, b'] can be composed with some [¢”, b”] via the compo-
sition function ¢ to yield [a, b].

Definition 8. Let p = (c,d). The “decomposition projection set” nD is defined to be:
nD,([a,b]) = {[d, V] € C[0,1]|(3[a",b"] € C[0,1])({[d", 6], [a",b"]) € d([a,]]))}.

Intuitively speaking, projection functions are used as follows: suppose we know
that the probability of (say) some compound event (e; Are;)rlies in the interval
[a,b], when A is computed w.r.t. some conjunctive p-strategy p = (c,d). In this case,

D,([a, b]) specifies the set of all possible probability intervals for ¢, (and likewise for
e,) that could have led to (e; Are,)’s probability interval being [a, b]. In other words,
in order for (e; Are;)’s probability interval to be [a, b], e;’s probability interval must
have been an element in 7D, ([a, b]), but we do not know which one.

As shown in Ref. [26], even when we consider probabilities only under the ignor-
ance assumption, obtaining tight bounds requires solving a linear program. When
this is generalized to arbitrary p-strategies, we may need to solve nonlinear systems
of constraints in order to infer tight bounds for the probabilities of simple/complex
events. To avoid this computationally expensive step, we propose using a sound
(w.r.t. the model theory which we propose in this paper) approximation.

e1’s probability may be as low as the smallest point in Uy jjexn, (0 [¥,], OF as large
as the largest member of Uy, jjenp, (ja.)) [x,]. This yields an interval for e,’s probability,
and motivates the following definition of “maximal interval’’ that soundly approxi-
mates an interval for e;’s probability.

Definition 9. Let p = (¢, d)rbe a p-strategy. A “maximal interval” md for d([a, b])ris
defined as

(a6 |

min (d'), max (b/)ﬂ\
ld" p')enD,([a.b])N la’ b'lenD,([a,b])N

When computing probabilities of primitive events from known probabilities of
more complex events, we need to be able to compute ‘“‘maximal intervals’ efficiently.
The following theorem gives us a constant time method to compute “maximal inter-
vals” w.r.t. conjunctive and disjunctive p-strategies.

Theorem 10. Suppose p = (c,d)Nis any conjunctive coherent p-strategy and
p' = (', d')is any disjunctive coherent p-strategy. Then:

1. (V[a,b] € C[0,1])(md,([a, b]) = [a, 1]).

2. (V[a,b] € C[0,1])(md,(]a, b]) = [0,5]).

Proof.

1. Let md,([a,b]) = [@',}]. Since p is conjunctive strategy, c,([a,b],[1,1]) = [a,b]N
(Identity), and since p is coherent, [I,1] € nD,([a,b]). Since b =N
Max; jic.n, (as)) (0)s and [1,1] € nD,([a, b]), b’ = 1.

2. Since cp([a,b],[l,l]) = [a,b]rand p is coherent, [a,b] € nD,([a,b]). By the
bottomline axiom, (V[d,b] € nD,([a,b]))(a<a). Since [a,b] € nD,([a,b]), a =N
Ming e (a){@), and therefore, @’ = a.

’ ” ’

3. Let mdy([a,b]) = [d',]']. Since p™is disjunctive strategy, ¢, ([a,b],[0,0]) = [a,b]N
(Identity), and since p" is coherent, [0,0] € D, ([a,b]). Therefore, since
a= min[dvl;]ewﬂ/(a‘b])f(d), and [0,0] € nD,([a,b]), a = 0.

4. Since ¢, ([a,b],[0,0]) = [a,b]rand p"is coherent, [a,b] € D, ([a,b]). By the bot-
tomline axiom, (V[a,b] € 7D, ([a,b]))(b = b). Since [a,b] € nD,([a,b])b =N
MAX G f1erp , (fa.b) (b), and therefore, »’ = b. [

2.4. Other p-strategies

A natural question that the reader may ask is what p-strategies exist, in addition to
those that we have presented above. We present a couple of other example p-strate-
gies below that are hybrids of the ones presented earlier, and then we have a technical
discussion about how other p-strategies may be constructed. For the purposes of sim-
plicity, we will only discuss composition functions, because decomposition functions
can be derived from composition functions using the definition of coherence.

Example 11 (Mixed-Ignorance-Independence Strategies). Consider a situation where
a user considers two events e;, e, whose probabilities are known to be in the ranges
[a1, b1], [az, by] respectively. The user in question is not sure if e;, e, are independent,
but thinks they might be. As a consequence, he wants the resulting range to be ob-
tained by tightening the range that the ignorance strategy would have returned, by
taking his feeling that events e, e, may be independent into account. He could do
this in many ways.

Pessimistic Mixed Strategy: The user may define a pessimistic conjunction strate-
gY Cpes such that c,.([ar, by], (a2, by])As computed as follows.

1. Compute [a, b] = c,-nd([al, b]], [dz, bz})rﬁlnd [d/, b/] = cl-gc([al, bl], [612, bz])
2. Let cpey([al, bl], [az, sz = [min(a, a’), Il’lil’l(b7 b/)]

This function can be verified to be a conjunctive p-strategy by modifying the proof
of Proposition 5 appropriately. In fact, ¢, (a1, b1], [a2, b2]) can be directly computed
to be [max(0,a; + a, — 1), b1b,].

The intuition is that the user is not sure whether the events e, e, whose conjunc-
tion is being considered are independent or not. He chooses to be cautious, and de-
cides to use the smallest values returned for the lower and upper bounds. This
approach may be justified in applications where we need to be biased towards assum-
ing lower probabilities of events.

Optimistic Mixed Strategy: On the other hand, the user may tend to assume high-
er probabilities for complex events, e.g. in the cases of failures between components
of a physical system where independence is suspected, but not known, a user a may
choose to believe higher probabilities of failure. In a sense, the user is optimistic that
the probability that the complex event happens is larger than the pessimistic ap-
proach above might suggest. Here, he may use the following optimistic conjunction
strategy ¢, (a1, bi], (a2, by)):

1. Compute [a, b] = c,«nd([al, bl], [az, bz})mnd [a/, b/} = c,-gc([al, bl]7 [az, bz])
2. Let cop([ar, b1], [az, by]) = [max(a,d’), max (b, d')].
Here too, ¢,y ([a1,b1], [a2, bs])rean be directly computed to be [aia;, min(by, by)).

Example 12 (Generalized Mixed Strategies). The reader may have already noted
that the “code’ given above to merge independence and ignorance according to pes-
simistic or optimistic approaches can be generalized to merge arbitrary p-strategies,
both for conjunction and disjunction. For example, suppose we have two conjunc-
tive p-strategies p,, p,. If

CP]([alvbl]v [a2>b2]) = [a,b]ﬂ
cﬂz([a17b1]7 [a2>b2]) = [a,,b,]ﬂ

then we may define a pessimistic mix, ¢#:*2, and an optimistic mix, ¢}, as follows:

> “pes
cpi([ar, bi], [az, by]) = [min(a,a'), min(b, b')].

cpl P ([ar, bi], [az, by]) = [max(a, '), max(b,b')].

In fact, it is easy to verify that for all [a;, by], [a2, b2],

e (lar, bl [z, ba]) < bl (lar, b, [an, bo)).

Thus, the pessimistic mix of two p-strategies always tends to produce lower prob-
abilities than the optimistic mix, justifying their names.

In addition to the above mixing strategies that allow us to define a set of new p-
strategies, we provide below, some general guidance on how yet other p-strategies
may be constructed.

Suppose y is an associative and commutative function (of which there are many!)
which takes two intervals [ay, b;], [a2, b2]ras input, and produces an output interval
[a,b]. For y to be the composition part of a conjunctive p-strategy. y must satisfy
the Bottom Line and Inclusion Monotonicity axioms as well as the Annihilator
and Identity axioms. Out of these four, Bottom Line and Inclusion Monotonicity
jointly impose very strong restrictions on which y’s can be used in p-strategies.

a
3 1) 3

a——a— b b’

Fig. 1. Inequalities induced by bottomline and inclusion monotonicity axioms.

Suppose [a1,b1] C [a3,b;3], and [ap,by]JNis any subinterval of [0,1]. Let
[a,b] = y([a1,b1], [a2, b2]) and [@', 0] = y([as, bs), [a2, bs]). It is easy to see that:

a3 < a
by < b;
d<a
b<b"
a<a
b< b
d <as
b < b3

The first two conditions follow as [a;, ;] C [a3, b3]. The third and fourth inequal-
ities follow because Inclusion Monotonicity tells us that [a,b] C [@/,5']. The last
four inequalities follow from the Bottom Line axiom which tells us that
[a,b] </[ai, bi] and [@,b'] <,[as, b3]. Fig. 1 shows the relationships between these val-
ues diagrammatically. An edge from x to x"means x is less than or equal to x'.

In addition, the axiom of identity says that when [aa,b,] =[1,1]N
then y([ay,b1], [az, b2]) = [a1, b1] and y([as, b3], [az, b2]) = [a3, b3]. Diagrammatically,
this means that the top row and the bottom row in Fig. 1 must coincide when
[a2,b,] = [1,1]. Similarly, when [a,,b,] = [0,0], the bottom row collapses to one
point, viz. 0 because @, a, b, b are all set to 0 by the Annihilator Axiom.

Thus, to define a function y in such a way that it is the composition function of a
p-strategy, the reader must ensure that the diagram associated with y looks like that
shown in Fig. 1, and exhibits the extremal properties mentioned in the previous pa-
ragraph when [ay, by] = [1, 1] or [a, by] = [0,0].

3. Syntax of hp-programs

In hybrid probabilistic programs, we assume the existence of an arbitrary, but
fixed set of conjunctive and disjunctive p-strategies. The programmer may augment
this set with new strategies when s/he needs new ones for their application. The fol-
lowing definition says that each conjunction strategy has an associated conjunction
connective, and each disjunction strategy has an associated disjunction connective.

Definition 13. Let ¥0.1" ¢ be a finite set of conjunctive p-strategies and 2.#.% ¢ be a
finite set of disjunctive p-strategies. Let ¥ denote 60N F U D IS #.

o Let p € 0./ 7. Connective A, is called an p-annotated conjunction.
o Let p e 249 ¢. Connective V, is called an p-annotated disjunction.

Let L be a language generated by finitely many constant and predicate symbols.
Let B; denote the set of constant symbols (atoms) in L. We assume that L has no
ordinary function symbols, but it may contain annotation function symbols for a
fixed family of functions. The interpretation of these function symbols is given in
Definition 15 below.

Hybrid basic formulas, defined below, are either conjunctions of atoms, or dis-
junctions of atoms (but not mixes of both) w.r.t. a single connective.

Definition 14. Let p be a conjunctive p-strategy, p"'be a disjunctive p-strategy, and
Ay, ..., A; be atoms. Then

Ai Ny Ay Ny -+ Ny Ak
and
AV, Ay V-V, Ay

are called hybrid basic formulas. Suppose bf,(B.) denotes the set of all ground hy-
brid basic formulas for the V, and A, connectives. Let bfy (B.) = Ujesbf,(B). Sim-
ilarly, bfyo.vy = Uicwor ybf,(BL) and bfs,9 4 = Uicaso 4bf,(BL).

For instance, returning to our stock example, the formulas (ch-sells-stock (C) Vg,
ch-retires(C)) and (price-drop(C) A;,. stable(C)) are basic formulas involving the
ignorance and independence p-strategies. However, (price-drop(C) A,;,. stable(C)
Aina Price-drop(D)) is not a basic formula, as it involves two different p-strategies.
In order to proceed further we have to define a notion of annotation. Definitions
15-17 below were introduced in Ref. [26].

Now we can state how we want to interpret the annotation function symbols:

Definition 15. An annotation function f of arity n is a total function
S :10,1]" — [0,1]. Let #"(0, 1] denote an arbitrary, but fixed set of annotation func-
tions of arity n and let # [0, 1] denote U} %[0, 1].

We assume that associated with each annotation function is a body of software
code computing that function, that is guaranteed to terminate on all inputs. >

We also assume that all variable symbols from L are partitioned into two classes.
We will call one class object variable symbols and this class will contain the regular
first order logic variable symbols. The second class of variable symbols, annotation
variables will contain variable symbols that can range over the interval [0, 1]. These
variables can appear only inside annotation items, which are defined below:

Definition 16. An annotation item J is one of the following:
e a constant in the [0, 1] interval,

2 We do not formally define computable functions over the real numbers because the theory of
computability over real numbers is now well understood [5] and the reader may refer to such treatments
for a detailed technical analysis of this issue.

e an annotation variable symbol from L,
e let /' be an annotation function symbol from L of arity n and let J,,..., 0, be an-
notation items. Then f(d,,...,d,) is also an annotation item.

Definition 17. Let J, and J, be annotation items. Then [J;, d,] is called an annota-
tion or an annotation term.

When 6y, J, are both constants, then the annotation term [d;, d,] denotes an inter-
val. Otherwise, it denotes a set of intervals, obtained by instantiating oy, 0, in differ-
ent ways. Following the terminology introduced in Ref. [26] if an annotation term
has no annotation variables in it, we call it a c-annotation. Otherwise it will be called
a v-annotation.

Example 18. [0, 1] and [0.3,0.6] are c-annotations. [V1,1] and [0.5 *NV, V1] are v-an-
notations.

Let B; denote the Herbrand base of L. Since L contains no first-order logic func-
tion symbols, B; is finite.

Definition 19. A hybrid probabilistic annotated basic formula (hp-annotated basic for-
mula) is an expression of the form B : u where B is a hybrid basic formula and p is an
annotation.

Informally speaking, B : u may be read as “The probability of B occuring lies in
the interval p”. For example, the annotated basic formula (ch-sells-stock(C) V;, ch-
retires(C)): [0.4,0.9] may be read as: “The probability that the chairman sells stock
or the chairman retires lies in the 40-90% interval, assuming (no knowledge) igno-
rance of the relationship between these two primitive events”.

In this paper, hybrid probabilistic annotated basic formulas are the basic syntactic
objects that merge together, probabilistic reasoning and logical reasoning. For exam-
ple, if (a Ay b) :[0.5,0.7] is a hybrid probabilistic annotated basic formula, this for-
mula says that “If we assume that we have no knowledge of the dependencies or lack
thereof between events a and b, then the probability that both events « and b occur
lies between 0.5 and 0.7 inclusive”. In general, the hybrid probabilistic annotated
basic formula (a A, b) : [0.5,0.7] says that “If we assume that our knowledge of
the dependency between a and b is given by the probabilistic-strategy p, then the
probability that both events ¢ and b occur lies between 0.5 and 0.7 inclusive™. Sim-
ilar rationales can be given for disjunctive basic formulas.

Hybrid rules may now be constructed from hybrid annotated formulas as
follows.

Definition 20. Let By, By, ..., By be hybrid basic formulas. Let y, t, . .., 1, be anno-
tations, such that every annotation variable (if any) occurring in g, also occurs in at
least one of ..., .. A hybrid probabilistic clause (hp-clause) is a construction of
the form:

Bo:py—Br:pmy N+ ANBp 1 .

Informally speaking, the above rule is read: “If the probability of B, falls in the
interval y; and - -- the probability of B, falls within the interval yu,, then the proba-
bility of B, falls within the interval y,.”” Intuitively a basic formula is a statement
about probabilities of events. The conjunction in the body of an hp-clause, on the
other hand defines a conjunction of such statements, but does not itself represent
an event.

Notice that the definition above contains a requirement that every annotation
variable that appears in the annotation for the head of the clause also appears in
one or more annotations for the body of the hp-clause. Therefore:

Example 21.
e A:[N,Vi] < is not an hp-clause.
o A: [V, — (BNuC):[0,i] AD: [V, 1] is an hp-clause.

Definition 22. A hybrid probabilistic program (hp-program) over set & of p-strategies
is a finite set of hp-clauses involving only connectives from .%.

For example, the following four clauses constitute a simple hp-program using the
p-strategies of ignorance and independence.

STOCK PROGRAM
price-drop(C) : [0.4,0.9] « (ch-sells-stock(C) Vg ch-retires(C)) : [0.6, 1].
price-drop(C) : [0.5, 1] « (strike(C) V4 accident(C)) : [0.3,1].
buy-stock(C) : [0.7, 1] « (price-drop(C) A, stable(C)) : [0.3, 1].
sell-stock(C) : [0.5, 1] « (price-drop(C) A, unstable(C)) : [0.4, 1]; AN
have-stock(C) : [1,1].
stable(c) : [0.8,1] «— .
strike(c) : [0.4,0.5] — .
unstable(C) : [V'1, V2] «— stable(C) : [1 — V2,1 — V1].

The program above is a very simple example of a market decision making pro-
gram. The first two rules tell us when to expect that the stock of company C will
drop. According to the first rule, it will drop with probability between
40% and 90% if the probability that CEO of the company will sell the stock or that
he will retire whether more than 60%. We use the ignorance assumption here, because
we do not know if there is any connection between the two events. In fact, for dif-
ferent companies the correlation may range from the two being independent, to
one being a consequence of the other. The ignorance assumption here gives us a
“lowest common denominator” in terms of the relationship between the two events.

The second rule states that if the probability that the company’s employees will go
on strike or that an accident happens on the premises of the company is over 30%,
then the probability that the stock of the company will drop is at least 50%. It is
more or less safe to assume that the causes for strikes and for accidents to occur
are completely different, therefore, the two events are independent of each other.

The next two rules deal with decision-making. The third rule of the program, says
that we should buy stock of company C if its price drops, but (and) the company is

generally known to be stable. We want to assume that our knowledge of the stability
of company C is independent of the price drop under consideration, therefore, the
conjunction of the two events is made under the assumption of independence. The
fourth rule provides an alternative to the third by declaring that if the price drops
and there is a high probability that the company is unstable, the stock has to be sold.
For this rule to fire, however, we need one more condition: one can sell stock of com-
pany C only if one owns this stock. This is why we must know for sure (i.e. with
probability 100%) that we own this stock if we want to sell it.

Two facts that follow describe our current knowledge of situation, expressed
probabilistically. The first fact states that company cis stable with probability more
than 80%. The second fact states that the probability of a strike for this company is
between 40% and 50%.

Finally the last rule can be used to establish the connection between the informa-
tion about the stability of company C and its nonstability. Indeed, if we assume that
each company is either stable or unstable (a reasonable assumption for our exam-
ple), then, if we know that the probability that company C is stable is p, the proba-
bility that C is unstable (i.e., not stable) than would have to be 1 — p. We extend this
simple observation to the notion of probabilistic intervals to obtain that if C is stable
with probability between V1 and V2 then it is unstable with probability between
1—V2and 1-V1.

Example 23. Let us consider a rule of the form
it (a Niwe) 1 iy A (@ Npee D) 1 1y

A rule of this sort may be read as “If (a A b)’s probability lies in the interval
w, when a,b are assumed to be independent, and if (a A b)’s probability lies in the
interval p, when a, b are assumed to be positively correlated, then ¢’s probability lies
in the interval p’°. This rule contains no inconsistency as stated above. Rather, such
a rule might reflect some doubt on the part of the author of the rule about the pre-
cise relationship between ¢ and b — are they independent? Or are they positively
correlated?

Example 24. Continuing the stock example, we provide here the rules that formalize
the situation described in Section 1.

price-drop(C) : [0.4,0.9] «— (ch-sells-stock(C) Ay ch-retires(C)) : [0.85,1].
price-drop(C) : [0.05,0.2] « (ch-sells-stock(C) A ch-retires(C)) : [1, 1].

The first rule states that if the CEO of the company C sells the stock, retires with
probability over 85% and we are ignorant about the relationship between the two
events, then the probability that the stock of company C drops is 40-90%. The sec-
ond rule states that if the CEO retires and sells stock, but we know that the former
entails the latter, then the probability that the stock of the company will drop is only
5-20%.

Before proceeding to define the declarative semantics of hp-programs, a comment
on the use of p-strategies in hp-programs is in order. A programmer may not know
the dependences between events (is there no dependency? are the events independent?

are they positively correlated? etc.). In such cases, he can write rules such as those
shown in Example 24 in which he explicitly articulates inferences he is willing to
make based on different possible event dependencies — the two rules in Example
24 do not require the programmer to know the dependency between the chairman
selling stock and retiring, but only specify the inferences he is willing to make in these
two eventualities. If he wishes to infer correlations between events, he may use clas-
sical statistical correlation methods [30].

If P is an hp-program, then we will write ground(P) to represent the set of all
ground instances of the rules from P.

4. Declarative semantics of hp-programs

Having completed the definition of the syntax of hp-programs, we are now in a
position to develop the declarative semantics of such programs. We will first develop
a fixpoint semantics of hp-programs, followed by a model theoretic semantics, and
show that the two are essentially equivalent characterizations of hp-programs. Later,
in Section 5, we will provide a proof procedure for hp-programs.

4.1. Fixpoint semantics

As usual, suppose we have a logical language L consisting of variable symbols,
constant symbols, function symbols, and predicate symbols, and let B; denote the
Herbrand base of this language. An atomic function, defined below, merely assigns
closed intervals to ground atoms.

Definition 25. A function f : B, — C[0, 1] is called an atomic formula function or
atomic function.

It is easy to see that the set of all atomic functions is a complete lattice. This is
because if (X,C) is any complete lattice, then the set of all functions of the type
2 2% is a complete lattice also under the pointwise ordering
f E giff(Vx € X)f(x) C g(x).

Though atomic functions do not, by themselves, make assignments to basic for-
mulas, they may be extended to do so.

Before proceeding further we first introduce some notation for “splitting” a com-
plex formula into two parts.

Definition 26. Let F=F *,---(%, F,, G=G, *,---(%, Gy, H=H, *,---(¥,H,
where * € {A,V}. We write G @, H = F (or G @ H if the p-strategy p is irrelevant)
iff:

1. {Gy,...,G}U{H,,...,H,} ={F,...,F,} and
2.{Gy,....,G:}N{H,,...,H,} = 0.
3.k>0and m > 0.

Definition 27. A hybrid formula function is a function 4, : bfs(B;) — C[0, 1] which
satisfies the following properties:

1. Commutativity. If F = G; &, G, then A(F) = h(G; *, Gy).

2. Composition. If F = G; @, G, then A(F) C ¢,(h(G), (2)).

3. Decomposition. For any basic formula F, A(F) C md,(h(F =, G))Nfor all
p < & and G € bfc/(BL)

Given an atomic function f and a hybrid formula function % we say that / is based

on fiff (VA € B,)(f(4) = h(4)). Sometimes we will use notation %, to represent the

fact that 4 is based on f.

From the first condition it follows that 4(F) = A(F") for any F and F'""which are
permutations of one another. This property of models allows us, in fact not to dis-
tinguish between the formulas and the sets of atoms they are composed of together
with a strategy attached. The second condition states that the probability of a com-
plex formula is bounded by the probabilities of its subformulas. Conversely, the
third condition bounds the probability of a subformula by the probability of a for-
mula it is a part of. Clearly, for each atomic function fthere exists an entire family of
hybrid formula functions based on it. This corresponds to our intuition that the
knowledge of the probabilities of atomic events does not necessarily allow us to
uniquely compute the exact probabilities of complex events. In fact, it is possible
to express the fact that we possess specific knowledge of a probability of some com-
plex event. The only requirements we put forth onto the hybrid formula functions is
that they provide consistent and maximally tight information about the probability
intervals associated with both atomic and complex events.

As mentioned above, each atomic function f produces a family of hybrid formula
functions %, based on it. We let i[f] denote the set of all hybrid formula functions
based on atomic function f. Let # % % denote the set of all hybrid formula functions
generated by some arbitrary but fixed set of p-strategies. The < -ordering on atomic
functions may be extended to basic formulas in the obvious way: i <h,
iff (VF € bfy(BL))m(F) 2 h(F).

We would like to see if there exists any relationship between the orders on atomic
and hybrid formula functions. Let f'and g be two atomic functions and let /' < g. One
would want to see if the statement (Vi € h[f])(VA' € h(g])(h < /") will hold. As it hap-
pens this statement is not true and the following simple example demonstrates it.

Example 28. Let B; = {a,b}. We define the functions f'and g as follows:
f(a) =10.4,0.8], g(a)=10.6,0.6],
f(b) =10.5,0.7], g(b) =10.6,0.6].

Clearly f < g. Now we consider two hybrid formula functions 4 € A[f] and #’ € h[g]N
defined on formula aA;,. as follows:

h(a N, b) = [0.4,0.4]N

W (a Nie b) = 10.36,0.36)N
We can see that both # and /4’ satisfy the Composition and Decomposition proper-
ties of the hybrid formula functions:

h(a Aie b) = [0.4,0.4] C cine(h(a), h(b)) = cine([0.4,0.8],[0.5,0.7]) = [0.2,0.56].

h(a) =[0.4,0.8] C mdi,.(h(a Nipe b)) = md;,.([0.4,0.4]) = [0.4,1].

h(b) =[0.5,0.7] C mdiu.(h(a Nipe b)) = md;,.([0.4,0.4]) = [0.4,1].

K (a Nipe b) =[0.36,0.36] C cipe(h(a),h() = c,m([O.6,0.6}, [0.6,0.6]) = [0.36,0.36].

H(a) =10.6,0.6] C md;,.(h(a Ny b)) = md,,.([0.36,0.36]) = [0.36, 1].
h(b) =[0.6,0.6] C md;,.(h(a N b)) = md,,.([0.36,0.36]) = [0.36, 1].
As h(a Nipe b) L I (a Nipe D)1t is clear that AL 4.

In fact, the example above suggests, that even a weaker statement,
(Vh € h[f]) (3K € hg])(h < H)rdoes not hold. To show that, it is enough to notice
that in this example i[g] = {#'}. The example above suggests that if there is a rela-
tionship between the orders of atomic and hybrid functions, this relationship is more
subtle. The following theorem establishes this relationship.

Theorem 29. Let f,g be two atomic functions and let f < g. Then
(3h € hlf1)(VH € hlg))(h <I).

Proof. Consider the function % € h[f] defined as follows: #(F *, G) = c¢,(h(F), h(G)).
We will show that (VA' € hlg])(h<H).

Let us consider an arbitrary by fixed function %' € h[g]. We prove that A <#"by
induction on the size of basic formula F. If F is an atom, then A(F) = f(F)N
<g(F)=N(F). Now, let F =G, H and let 2(G) <K (G)rand h(H) <H(H). By
definition of &, h(F) = c,(h(G),h(H)). As we know that ¢, is monotonic we get,
c,(h(G),h(H)) < c,(W(G),N(F)). But since #"is a formula function, it satisfies
Composition and Commutativity and hence /' (F)=Hn (G *, H) C c,(h'(G),
W (H))ror ¢,(W(G), W (H) <K (F). From the above inequalities we get: A(F)=n
¢, (h(G),h(H)) < c, (W (G),H (H)) <K (F)which is the desired result. O

In order to define the iterations of 7p operator later in the paper, we need the fol-
lowing theorem.

Theorem 30. Let & contain only continuous p-strategies. Let H = hy, h,, ... be an in-
finite sequence of fully defined hybrid formula functions over bfy(B), such that
h; < hiyy (we can call this an ascending sequence). H has a least upper bound, i.e., there
exists such hybrid formula function h*"such that (Vi)(h; < h*) and for any other function
h which is an upper bound of H, h*"< h.

Proof. Let F be some hybrid basic formula. If /4 is a formula function we will write

h(F) = [h'(F), h*(F)]. We know that the sequence H}. = h}(F), h}(F),. .. is ascending

and bounded (at least by 1). Therefore, by a well-known property of the sequences of

real numbers, A} has a limit x = lim;_, /! (F). By the same property, the descend-

ing sequence Hz = hi(F),h3(F),... (bounded by 0) has a limit yr = lim,_ ./ (F).

Since all #; are fully defined, xr<yr. Now we define a function #*" as

B (F) = [lim;_ooh) (F),lim;_ . (F)]. To prove the desired result it suffices to show

that (i) #*"is an upper bound, (i) #*"is the least upper bound and (iii) #*"is a valid

hybrid formula function.

o n*is an upper bound of H. We know that the limit of an ascending sequence
is greater than or equal to any member of the sequence. Similarly, the limit of a
descending sequence is less than or equal to any member of the sequence. But
then, for any basic formula F, it is true that (Vi)h*(F) = [lim,.h (F),
lim,_h?(F)] C [h!(F),h*(F)] = h:(F). From this it directly follows that (Vi)n

(h; < h*), i.e., i*"is an upper bound of H.

h*"is the least upper bound of H. Let h an upper bound of H, i.e., let (Vi)(h; <h).
Let F be some basic formula. Let us compare 4'(F)rand h*'(F). We know that
W (F) = lim;_och} (F). We also know that (Vi) (k) (F) <h'(F). Then, by the prop-
erty of real sequences, lim; .-} (F)<h'(F). Similarly, we can establish that
W (F) < lim;_ .42 (F). From these two inequalities we see that h(F) C h*(F), i.e.,
W h.

h*is a valid hybrid formula function. To show this we have to prove that 4*satisfies
the Commutativity, Composition and Decomposition.

First we show that #*satisfies the Commutativity property. Let F be some ba-
sic formula and let G and G"be basic formulas such that F = G &, G"for some p-
strategy p. Since all functions #4; are valid hybrid formula functions, they all satisfy
the Commutativity postulate, i.e., (Vi)(#;(F) = h(G *, G')), where * € {A,V} de-
pending on whether p is conjunctive or disjunctive. Then, the sequences 4, (F),
hy(F),... and h(G *, G'),hy (G *, G'), ... coincide and therefore the limits of the
lower and upper bound sequences are the same as well, i.e. lim; .. (A (F)) =N
lim; ., (h!(G =, G'))rand lim;_, (h*(F)) = lim,_, (1?(G *, G')).

However, since B (F) = [lim;_o (k! (F)),lim; ., (A?(F))]rand #*(G'G')N
= [lim;_on(h (G *, @), lim;_, (B2(G *, G))], we get h*(F) = h*(G *, G).
Now we proceed to show that #*satisfies the Composition postulate. Let F be some
basic formula and let F = G *, G'. We need to show that 2*(F) C ¢,(h*(G), h*(G)).
Remember that c, satisfies the axiom of Separation, i.., c, = (c,,c}).

First, we show that ¢} (h*'(G), h"'(G')) <h*'(F). By a similar argument we will
then be able to establish that h2(F) <c)(h*(G),h*(G'). The two statements will
give us the desired result.

To show ¢} (h"'(G), h*l(G’)) <hU(F), we first note that A'(F)=n
lim;_ oo (F) = llm,ﬂoorc (h1(G),h(@)). We know this because, since all 4; satisfy
the Composition axiom — hence (Vz)(h ¢, (h{(G),h;(G")), and therefore the
sequence 4! (F),hL(F),... dominates * the sequence) (h(G), hi(G)), e} (hy(G),
h(G)),... Then, the limit of the former sequence has to be greater than or equal
to the limit of the latter.

As we know that ¢, is a continuous p- strategy, c is continuous in both argu-
ments. Therefore llmHOC@:/ (hi (G), hi(G")) = ¢, (hml_,oorh (G),lim;_.h! (G)).

But we know that ¢} (7" (G),h"'(G')) = ¢ (llm,ﬂxrh (G),lim; k! (G")). There-
fore, ¢} ("' (G), h*l(G’)) (F).

As mentloned above, by a similar argument we can show that ¢*(h(G),
h2(G')) = h**(F). From these two inequalities it follows that 4*(F) C ¢,(h*(G),
h*(G")).

Now we prove that 4#*"satisfies the Decomposition postulate. We have to con-
sider two cases. Let H = F A, G. The proof for H = F' vV, G will be similar. By def-
inition of md,, md,(h(H)) = [h'(H),]for all formula functions &. As md,(h(H))N
and md;(h(H))Nwe will denote the upper and the lower bounds of the
md,(h(H))rinterval.

Now we consider the sequences A{(F),hy(F),... and md,)(h(H)),

*Le. (Vi)(h}(F) = cl(h}(G),h}(G))).

As all h;s are formula functions, they satisfy the Decomposition postulate, i.e.,
(Vi)(h:(F) C md,(h;(H)). Therefore, the sequence h}(F),h}(F),... dominates the
sequencermd, (hy ()),md)(hy(H)),... Therefore, lim; .and)(h;(H)) < lim,
HL(F).

But as mentioned earlier, (Vi)(md)(h(H)) = hj(H)). Therefore
hmermdl(h())N= liml_»xr.hl(H). From the latter equality we establish that
lim, o ch! ()mg lim,_..h! (F). But we know that lim; 4! (H) = #*!(H)rand sim-
ilarly lim;_.ch! (F) = h*l(), which therefore yields A" (H) < h*!(F). Finally, we
notice that mdl(h*()) = k"' (H), ie., md)(h*(H))<h*"(F). As we know that
md(h*(H)) = " and h(F)<1, we get the desired: #&*(F)=[n"'(F),
W2 (F)) C [(), 1] = rimd) (" (), md? (" (H))] = md, (i* (H)), proving that /"
satisfies Decomposition and therefore proving the statement of the theorem. [J

We will borrow the notation from lattice theory and denote the function
h* = lub(H)rdescribed in the proof above as Lk € H.

Given any hp-program P, we wish to associate with P, an operator 7p that maps
hybrid formula functions to hybrid formula functions. We do this by first defining a
(similar) intermediate operator Sp that is used subsequently to define 7p.

Definition 31. Let P be a hybrid probabilistic program. Operator Sp : #FF —N
HFF is defined as follows (where F is a basic formula):

Sp(h)(F) = M,

where M = {ug|F : pp— Fy - py A ... AF, : u, is a ground instance of some clause in
P; ¢ is a ground substitution of annotation variables and (Vj<n)h(F;) C ;)N
if M =0 6Sp(h)(F)=10,1].

The operator Sp is very simple. Given & € # % % and a basic formula F, it pro-
ceeds as follows: (i) First, it finds all ground instances of rules in P such that the head
of the rule instance is of the form F : u and such that for each F; : y; in the body,
h(F;) C w;, i.e. h says that F;’s probability does in fact lie w1th1n the interval p;.
(ii) It then takes the intersection of the intervals associated with the heads of all rules
identified in the preceding step. Note that in the above definition, it is entirely pos-
sible that Sp(4)(F) could be the empty set. In this case, there is an intuitive inconsis-
tency, because the formula function Sp(h)ris saying that F’s probability lies in the
empty set. However, this is absurd, as the empty set cannot contain anything. This
will be discussed in further detail in Section 4.2.

Example 32. Consider our stock example. Let / assign the following values to the
atoms:

h(ch-sells-stock(c)) = [0.8,0.8]N

h(ch-retires(c)) = [0.1,0.1]N

h(strike(c)) = [0.4,0.5]N

h(price-drop(c)) = [0.7,0.9]N

h(stable(c)) = [0.5,0.6]N

Assume that for all other ground atoms A4, A(4) = [0, 1].
Now, suppose we want to compute Sp(/)(price-drop(c)). There are two ground rule
instances with price-drop(c) as their head in the set of all groundizations of rules in P:

price-drop(c):[0.4,0.9] «— (ch-sells-stock(c) Vs ch-retires(c)):[0.6, 1].
price-drop(c):[0.5, 1] < (strike(c) V;,4 accident(c)):[0.3, 1].

First we compute

o J((strike(c) V¢ accident(c))) = ca(h(strike(c)),accident(c)) = ¢4 ([0.4,0.5], [0,1])
= [min(1,0.4 + 0 — 0.4 *N0), min(1,0.54+1—0.5 *Nl)] =[0.4,1] C [0.3,1].

o /((ch-sells-stock(c) Vs ch-retires(c))) = c;qes(ch-sells-stock(c),ch-retires(c)) =N
¢iea([0.8,0.8],[0.1,0.1]) = [max(0.8,0.1), min(1,0.8 4+ 0.9)] = [0.8,0.9] C [0.6, 1].
Since both rules will fire, M = {[0.4,0.9],[0.5,1]}Nand therefore, Sp(%)(price-

drop(c)) = [0.4,0.9] N [0.5,1] = [0.5,0.9].

However, the Sp operator is not quite “right”. The reason is that in order to de-
termine F’s probability, it is not enough to merely look for rule instances whose head
is identical to F. For instance, F might be (p A, q). The probability of (p A, ¢) may
certainly be influenced by rules with head p : y"because such rules may impose ad-
ditional restrictions on p’s probability — and hence on (p A, g)’s probability. Thus,
Sp, by itself, does not allow us to accurately infer the probability associated with a
formula F. Sp needs to be augmented appropriately in order to do so. However, be-
fore defining Tp, we present a simple monotonicity property of Sp. Note that Sp is
monotonic regardless of what p-strategies appear in P.

Lemma 33. Sp is monotonic, i.e., if hy, hy are two formula functions and hy < hy, then
Sp(hy) < Sp(h).

Proof. Let F be a hybrid basic formula. We have %, (F) < hy(F). By definition of Sp,
Sp(h)(F) = NM,,

My ={uF:u—F :uy N---NF,:p,is a ground instance of some clause in
Py (Vj<n)h(F) C ;-

Since #;(F;) C i, can be rewritten as u; < h (F}), using transitivity of <, we obtain
that for any ground instance F : u«— F : yy A---AF, : p, of a rule of program
P, such that u € M, u € M,, where

My={uF:u—F :uy N---NF,:p,is a ground instance of some clause in
P (Vji<n)hy(F;) © pin

and therefore, M; CM,. Therefore, Sp(h)(F)=nNM,=(M;)N (M, —M)N
=Sp(m)(F) N (My — M;) C Sp(hy)(F) i.e., Sp(h)(F) < Sp(h)(F). O

Let us now define the 7p operator. Intuitively, the 7p operator builds on top of the
Sp operator because the probability interval assignments made by the Sp operator to
some formulas may allow us to derive sharper bounds for other formulas. However,
these sharper bounds may not be found by the Sp operator. The 7p operator defined
below takes such derivations into account.

Definition 34. Let P be a hybrid probabilistic program. We inductively define oper-
ator Tp : X FF — HFZF as follows:

1. Let F be an atomic formula.
o if Sp(h)(F) =0 then Tp(h)(F) = 0.
o if Sp(h)(F) # 0, then let

M = {{uo,p)|(F+,G):p—F 1y N--- NF, : u,,

where x € {V,A}rand o is a ground substitution of the annotation variables and
i€ 9 and (Vj<n)h(F;) C p0}. We define

To(h)(F) = (N{md, (10)| (i, p) € MY Sp(h)(F)N

2.(F not atomic) Let F=F x,---Mx,F.Let M"™= {{uo,i)|Dy *,---¥,
Di:pe—Ey:py Ao NEy i, € ground(P); (V1 <j<m)h(E;) C ;3 {F,...,F}N
C{Dy,...Di},n < k}.

Then:

To(h)(F) = S(h) ()N (O, (To()(G), To(h)(H))|G & H = F})r)
(N{md, (10)| (o i) € M'}).

The intuition underlying the 7» operator is as follows: (i) Consider an atomic for-
mula F: if Sp(h)(F) = 0, then this means that an inconsistency (to be made more for-
mal in Section 4.2) has occurred. For instance, if we have an hp-program containing
two facts a : [0,0]rand a : [1, 1], then whatever & we pick, Sp(h)(a) = 0, reflecting the
(in this case flagrant) inconsistency in P. Thus, Tp(h)rmust also assign @rto F. If
Sp(h)(F) # 0, then it may be case that Sp(h)rhas assigned too “wide” an interval
to F, because it ignores rules that are ‘“‘associated” with F. As F is atomic, there
might be rules whose bodies are satisfied by /, which include F in its head. We must
find all such rules, and “split” the rule head into its F part, and the non-F part, say G.
Clearly, the rule head must be of the form (F %, G)rwhere =(is either Vror A. As the
rule’s body is satisfied by A, it means that the head of this rule, viz. (F *, G) has prob-
ability in the interval u. The rule in question thus allows us to conclude that F’s prob-
ability ranges anywhere in md,(p) which is the “maximal interval” associated with F
w.r.t. the connective x,. We repeat this for each rule with F as part of the head.

(ii) When F is not a ground atom, there can be three sources of bounds on F’s
probability interval. The first source taken care of by the Sp operator are the rules
with F as their head. The second source consists of information that can be induc-
tively obtained by computing 7, for every pair G,H of formulas such that
G @ H = F (notice that we require both G and H to be non-empty), and using c,
to combine these values. Finally, some heads of the rules of the program may contain
F as the proper subset. The probability range of F from each of such rules is deter-
mined by the md, function. Combining (intersecting) the ranges obtained from all
three sources we obtain the final value of 7 operator.

It should also be pointed out, that while the 7p operator is defined to be the inter-
section of many possible intervals, there are at most two intervals which will actually
affect the final value of Tp(h)for any particular formula F (one interval to provide
the lower bound and one interval to provide the upper bound of 7»(%)(F)). Because
of this, one can see that while the number of intervals to be intersected to obtain
Tp(h)(F)raccording to the definition above can be large, there is a simple nondeter-
ministic algorithm that would perform this computation. This algorithm would
guess how the two relevant intervals are obtained, and will only perform computa-
tions to produce these two intervals.This suggests that the problem of computing 7

is NP-complete — however, a detailed study of complexity issues in hybrid proba-
bilistic programs is beyond the scope of this paper.
The following example demonstrates how 7p is computed.

Example 35. Let us consider the stock program P and the formula function /4 from
the previous example. Suppose we want to compute 7p(%)(price-drop(c)A,..buy-
stock(c))(i.e., the probability of the fact that the drop in price of stocks will result
in purchases of new stock of company c¢).

It is easy to see that Tp(h)(price-drop(c)A,.buy-stock(c))= c,..(Tp(h)(price-
drop(c)),T»(h)(buy-stock(c))), as the heads of all rules in P are atomic.

Tp(h)(price-drop(c)) = Sp(h)(price-drop(c)) = [0.5,0.9]N(see Example 3). Tp(h)N
(buy-stock(c)) = Sp(h)(buy-stock(c)). To find the latter we consider the following
ground rule in P:

buy-stock(c):[0.7, 1] «— (price-drop(c) A, stable(c)):[0.3,1].

Recall from Example 3 that A(price-drop(c)) = [0.7,0.9]nand A(stable(c))N
=[0.5,0.6]. Then, h((price-drop(c) As. stable(c))) = ¢ (h(price-drop(c)), h(sta-
ble(c))) = ¢i,([0.7,0.9],[0.5,0.6]) = [0.7 %0.5,0.9 %r0.6] = [0.35,0.54] C[0.3,1],
which entails that Sp(%)(buy-stock(c))) =[0.7, 1]N

Finally, Tp(h)(price-drop(c) Ap..buy-stock(c)= c,..(Tp(h)(price-drop(c)), Tp(h)N
(buy-stock(c)) = B).([0.5,0.9],10.7,1]) = [min(0.5,0.7),min(0.9, 1)] = [0.5,0.7].

Let us consider another example:

Example 36. In this example we will consider a simple knowledge-base about the
possible sales of three items: a, b and ¢. The unary predicate s(X) is to be interpreted
as “item X has been sold”. Suppose the program P looks as follows:

$(@) Vina $(b) Vina s(c) : [0.4,0.6] — .

s(a) Nige () :[0,0.5] «— .

s(a) Nine s(c) = [min(% +0.1,5), %] — s(c) : [V, W]

s(c) :[0,0.3] — .

The first rule of the program states that the probability that at least one of the
three items had been sold under the assumption of independence between possible sales
is between 40% and 50%. The second rule states that the probability that both items
a and b have been sold computed under assumption of of ignorance about the rela-
tionship of possible sales will be not more than 50%. The fourth rule just states that
the probability that item ¢ had been sold is no more than 30%.

Finally, the third rule of the program, states that if we know that the probability
that item ¢ had been sold is in the range [V, W], then the probability that both items a
and ¢ have been sold, considered under the assumption of independence between pos-
sible sales, will be not more than W/2 and no less than the minimum of
V/2+40.1 and W /2.

Now let us look at how we can compute the 7p operator for this program. Let us
take A(F) = [0, I]ior all basic formulas F (i.e. our / is the bottom function).

In this example we will be tracing all atomic formulas (s(a), s(b)ands(c)) as well as
a few more complex formulas, such as s(a) V. s(c), s(a) Nig s(b)rand s(a) Aue s(c).
e First we have to compute Sp(%). Clearly, we have the following:

Sp(h)(s(a)) = Sp(h)(s(b)) = [0,1]N

Sp(h)(s(c)) = [0,0.3]n
Sp(h)(s(a) Viua s(c)) = [0,1]N
Sp(h)(s(a) Aige s(b)) = [0,0.5]N

Sp(h)(s(a) A s(c)) =10.1,0.5]N

Every Sp(h)rtomputation except for the last one is straightforward, since for each
formula there is either only one rule (with an empty body) in the program that
has it as its head, or there are no such rules at all. In the first case, the probability
interval from the head of the rule gets to be the value of Sp(%), in the second case,
it will be [0, 1].

The last computation requires more effort. Indeed, the third rule of our program is
not ground (because of the variable annotation), therefore it will produce more than
one ground instance. However, there will be only one ground instance of this rule
which will have the body, ‘“‘satisfied” by 4:

s(a) Nie s(e) : [0.1,0.5) «— s(c) : [0, 1] (HN

since A(s(c)) = [0, 1]twe also point out that min($+0.1,1) =3+ 0.1 = 0.1). There-
fore, [0.1,0.5]rwill be the value of Sp(h)(s(c)).
e Now let us compute the values of the 7p operator.
1. Tp(h)(s(a)). s(a)rappears in the heads of 3 rules of interest: first and second
rules of the program and in the ground instance of the third rule shown
above (1). This means that

Tp(h)(s(a)) = md;a([0.4,0.6))N mdi,.(]0,0.5])N md,.([0.1,0.5])N
= [0,0.6]Nn [0,1]n [0.1,1] =[0.1,0.6]N

2. Tp(h)(s(b)). s(b)rappears in the heads of first two rules of the program.
Therefore:

T (h)(s(b)) = meka([04,0.6])1) md([0,0.5]) = [0,0.6] 1 [0, 1] = [0,0.6]

3. Tp(h)(s(c)). s(c), besides constituting the head of the fourth rule of the pro-
gram, is also a part of the heads of the first rule the program and rule (1).
Applying the definition of the 7p operator here we obtain:

Tp(h)(s(c)) = Sp(h)(s(c))N md;,4([0.4,0.6]))N md,,.([0.1,0.5])N
=10,0.3]N[0,0.6) N [0.1,0.5] = [0.1,0.3]N

4. Tp(h)(s(a) Vi s(c)). s(a) Viua s(c)rappears as a part of the head of the first
rule of the program. By definition of 7p operator:

T (h)(s(a) Vina 5(€)) = mdya(10.4,0.6))1 cuna(To(h)(s(@)), To(h) (s(c)))r)
=10,0.6]N ¢ ([0.1,0.6],[0.1,0.5))N
=[0,0.6)N[0.1 +0.1 —=0.1-0.1,0.6 +0.5—0.6-0.5] = [0,0.6]n [0.19,0.8]N
=[0.19,0.6]N

5. Tp(h)(s(a) Nige s(b)).

Tp(h)(s(a) Nige $(b)) = Sp(h)(s(@) Nige $(b))N cige(Tr(R)(s(a)), Tp(h)(s()))N

(
= [0,0.5)N cie([0.1,0.6, [0, 0.6])
— [0.0.5] N [max(0,0.1 + 0, — 1), min(0.6,0.6)] = [0,0.5]" [0,0.6] = [0,0.5]"
6. Tp(h)(s(a) A s(c)).
Tp(h)(s(a) Nine 5(c)) = Sp(h)(s(a) Nine 5())V cine(Tp(h)(s(a)), Tp(R)(s(c)))N

=10.1,0.5]1 ¢ie([0.1,0.6],0.1,0.3]) = [0.1,0.5]N [0.1-0.1,0.6-0.3]N
= 1[0.1,0.5] N [0.01,0.18] = [0.1,0.18]

It follows immediately from the definition of the 7, operator that, for any pro-
gram P, formula function / and formula F, Tp(h)(F) C Sp(h)(F). The following re-
sult says that regardless of which p-strategies are considered in P, the Tp operator is
guaranteed to be monotonic.

Theorem 37. 7p is monotonic, i.e., if hy, hy are two formula functions and hy < hy then,
Tp(hy) < Tp(hy).

Proof. Let F be a hybrid basic formula. We proceed by induction on rank(F), i.e
number of atoms in the formula.
oﬂF is an atomic formula. We have 7 (F)<hy(F). Let us assume that both
Sp(h)(F)rand Sp(hy)(F)N are non-empty. (Otherwise, we must have
Sp(hy)(F) = () which implies Tp(h,)(F) = 0 and therefore, it must be the case that
Tp(hy)(F) C Tp(hy)(F)). By lemma Sp(h1)(F) < Sp(hy)(F). Let us consider

M ={u(F*,G):pp—F : gy A+~ ANF, - b, where * € {V,A}rand p
€ & and (Vj<n)h(F) C p;}.
Since 4 (F;) C p, can be rewritten as u; < h (F;), using transitivity of <, we ob-

tain that for any ground instance F : u«— F : yy A--- A F, : u, of a rule of pro-
gram P, such that u € M,, u € M,, where

My ={p|(F*,G) : u«—F : iy A--- NF, : p,is a ground instance of some
clause in P; (Vj <n)h2() C w}.
Therefore, M, C M,. But this means that M= {md(p)|p e M} C M,
= {md(u)|p € Mp}. Then M, CN M|, ie., M|< Mm
Since Tp()(F) = Sp(h)(F) N (M), Tolha)(F) = Sp(ha)(F) 1 (M),
Sp(h)(F) < Sp(hy)(F)rand M]< M}, we obtain that

Tp(h)(F) < Tp(ha)(F).
o(Let the theorem hold for all basic hybrid formulas of ranks less than k. Let
rank(F)=kand F=F V,---V,F,or F=F A, ...\, F,.

From Lemma 1 we know that Sp(h)(F) < Sp(hy)(F).
Let G,H be such formulas, that G & H = F. By the induction hypothesis, (since
rank(G) < k and rank(H) < k, we have Tp(h)(G)< Tp(h)(G)rand Tp(hy)(H)N
< Tp(hy)(H), therefore, by monotonicity axiom for p-strategies (applied twice)
we have:

o (Tr(h2)(G), Tp(h2)(H)) € ¢, (Tp(h1)(G), Tp(hi)(H))N

ie.

cp(Tp(m)(G), Tp(m) (H)) < ¢, (Tp(h2)(G), Tp(h2) (H)).
From this is follows that

(M{ep(Tp(h1)(G), Tp(h1)(H))|G & H = F})N
< (e, (Tp (1) (G), Ty(ha) (H))|G & H = F})N

Finally, let M;={Dy *,---(%, Dy :pt—E; : py A+ NE, : , € ground(P)|N
(VI1<j<m)h(E;) C w; {Fi,....F} C{Dy,...Dy},n <k}rand My ={D; *,---N
#pDp = Ey iy Ao Ey 2y, € ground(P)|N(V1<j<m)hy(E;) C s {F, ..., F, 10
C{Dy,...Dy},n <k}. Let M| = pu|D : u < Body € My and M) = u|D : u < Body €N
M,.

Since /4y < h,, we can claim that if some ground instance C € M;, C also is in M>,
ie.,, My CM,. Therefore (N{plp e M;}) C (N{pulpeM}), e, (N{ulue M})N
< (M{ulu € M3}).

Combining the established results into one, using the formula for 7p(%)(F) we ob-

tain the desired Tp(h)(F) < Tp(h)(F). O

Again, note that the above result applies regardless of what set of p-strategies occur
in program P. It is easy to see now that we may define the iterations of Tp as:

Definition 38.

1. 79 = h,-where LNis the atomic function that assigns [0,1]Nto all ground
formulas F.

2. T} = Tp(Tp ")rwhere « is a successor ordinal whose predecessor is denoted by
o—1.

3. T} = L{T}|o < y}, where y is limit ordinal.

In Ref. [9] it was established that if all clauses in P have only constant annotations
then I/fp(Tp) = T, where Ifp(Tp)ris the least fixed point of 7p. This, however, turns
out to not be the case when P has clauses with variable annotations. The following
example is from Ref. [25].

Example 39 [25]. Consider the program
A:[0,V/2] — A4:[0,V]N

B:[0,0] < 4 :[0,0]N

The second rule of the program states that if the probability of 4 is known to be
[0, 0] then the probability of B is also [0, 0]. The first rule of the program states that if
we know that the probability of A lies between 0 and some V, we should conclude
that the probability of 4 lies in fact in the bottom half ([0, V' /2]) of the interval [0, V].

Since Tp(4) = [0, 1], after the first iteration T} (4) = [0,0.5]. At each subsequent
iteration, we will get the interval assigned to 4 narrow by half. A 7 assigns 4 the
intersection of all T}, / < w, it will assign [0, 0]finterval to A. Then 7! will finally
assign [0,0]rto B.

Example 40. Let us return to the two rule HPP in Example 24
price-drop(C) : [0.4,0.9] «— (ch-sells-stock(C) Ay, ch-retires(C)) : [0.85,1].
price-drop(C) : [0.05,0.2] « (ch-sells-stock(C) A ch-retires(C)) : [1, 1].

Suppose we have in addition, the two facts:
ch-sells-stock (ibm) : [1,1] — .
ch-retires(ibm) : [0.9,1] — .

In this case, the assignment made by 7}’ to price-drop(ibm)ris [0.4,0.9] as the first
rule of the program will fire and the second — won’t.

Example 41. Now, if in addition to the two rules from Examples 24 and 40 we add
one fact

(ch-sells-stock (ibm) A ch-retires(ibm)) : [1,1] «— .

T3 (price-drop(ibm)) will be equal to §). Indeed, the fact above makes the second rule
fire immediately. Also, decomposing this fact we obtain 7;(ch-sells-stock(ibm))N
= [1, 1Jrand Ty (ch-retires(ibm)) = [1, 1]rwhich is sufficient to make the first rule
fire. Intersecting [0.4,0.9]rand [0.05,0.2]Nleads to the assignment of (N to
T (price-drop(ibm)).

Definition 42. A hybrid probabilistic program P is said to satisfy the fixpoint reach-
ability condition iff

(VF € bf#(L))(Fn < w)(Ufp(Tp)(F) = Tp(F)).

Intuitively, if an hp-program P satisfies the fixpoint reachability condition, then
this means that for every formula F, if u O Ifp(7p)(F)ris, then this means that there
is a finitely long justification of this fact.

4.2. Probabilistic model theory

We are now ready to define a logical model theory for hp-programs. For this pur-
pose, hybrid basic formula functions will play the role of an “interpretation”. The
key inductive definition of satisfaction is given below.

Definition 43. Satisfaction. Let /1 be hybrid basic formula function, F' € bf«(B;),
u € C[0,1]. We say that
hEF:uiff h(F) C u.
hEFR A ANE o, (VIS j<n)h EF:p,.
hEF :u—F N ANF,) iffeither h = F:uor hEF iy A ANF, .
hlE (3x)(F : wriff & = F(¢/x) : p for some ground term ¢.
hE (Vx)(F : p)iff h = F(t/x) : u for every ground term ¢.
A formula function /& is called a model of an hp-program P (k| P) iff
(Vp € P)(h k= p). As usual, we say that F' : pi is a consequence of P iff for every model
h of P, it is the case that h(F) C pu.

Recall, from Section 4.1, that we can have cases where a hybrid formula function,
h, could assign @) to some formula. When A(F) = (), & is “saying” that F’s probability
lies in the empty set. This corresponds to an inconsistency because, by definition,
nothing is in the empty set.

Definition 44. Formula function /% is called fully defined iff
V(F € bfy(B))(h(F) # 0).

The following important result fully ties together, the fixpoint theory associated
with hp-programs, and the model theoretical characterization of hp-programs, re-
gardless of which p-strategies occur in the hp-program being considered.

Theorem 45. Let P be any hp-program. Then:

1. & is a model of P iff Tp(h) < h.

2. P has a model iff lfp(Tp) is fully defined.

3. If Ifp(Tp) is fully defined, then it is the least model of P, and F : p is a logical con-
sequence of P iff lfp(Tp)(F) C u.

Proof.
(1) Claim 1. Tp(h) <h = h | P.

Let F € bfy(By).

Let P = {p € ground(P)|pis of form F: u— F, : gy A---ANF, : w, }.

Two cases are possible. If P = () then P has no rules with F in the head and

therefore 4 = P"by def.

Let P£ .
Considerarulep € P.pisofaform F : u«— F : yy A--- A F, : p,. Two cases are
possible.
o (V1<j<n)(u; <h(F})). In this case, we know that
hEF :uy A - NF,:u,. We have to show that
hF:pu,ie h(F)Cpu.
By our assumption, Tp(h)(F)<h(F), ie., h(F) C Tp(h)(F). By definition of
T» and Sp operators, it is always the case that 7p(h)(F) C Sp(h)(F). We now show
that Sp(h)(F) C u.

By definition, Sp(h)(F) =NF where & = {u|F :u—F iy A---ANE, 2, is a
ground instance of a rule in P;(VN1<,j<n)(u; <h(F;))}. We know that
P u e F, therefore, Sp(h)(F) C u, which implies that 7p(4)(F) C u. Combining
together we obtain: h(F) C Tp(h)(F) C Sp(h)(F) C p which implies & = F : p,
therefore, h | p'.
e(3N1<j<n)(h(F;) € p;)Nin this case h = F;: pu,;, therefore, h ¥ Fi:py A--- AN
F, : u,, and therefore, 1 = p'.

This proves the first claim.

Claim 2. h =P = Tp(h) <h.

Let F € bfy(B;). We prove the claim by induction on rank(F).
e Base Case. rank(F) =0, i.e., F is atomic. Let

(F*p, Gi) i vy — ...

be the list of all rules from program P that contain F in the head, such that, /&
satisfies their bodies.

By definition of Tp, Tp(h)(F) =u;, py -0 py md, (vi)N---Nmd, (V).
Since /4 satisfies all the bodies of these rules, 4 must also satisfy all the heads,

e, (VN1 <y <h)(A(F) C p)and(VN1 <3< 1) (A(F *,, G) Cv;). From first set of

inequalities we obtain: 2(F) C p; iy -+ -N .

From second set of inequalities: i(F x, G) = c, (h(F),h(G))Nand therefore

h(F) C md, (v;). This leads to h(F) C md,, (vi) N ---N md, (v,), which combined

with previous result gives us desired h(F) C Tp(h)(F) i.e., Tp(h)(F) <h(F).

e Induction Step. Let our claim hold for all basic formulas of rank less than k. Let

rank(F) =k and F =4, *,--- (¥, 4;.

Let

F:p — ...

Fop — ...

be all the rules with F as the head, such that / satisfies their bodies. We must there-
fore, conclude that for each of these rules / satisfies its head, i.e.,
hF)Cw w0y =Sp(h)(F).

Let now G and H be basic formulas such that G® H = F. By definition,
rank(g) < k and rank(H) < k, therefore, by the induction hypothesis,
h(G) C Tp(h(G)) and h(H) C Tp(h(H)).Since G ® H = F, G %, H = F and there-
fore h(F)=h(G %, H) Cc,(h(G),h(H)) C c,(Tp(h)(G), Tp(h)(F)N(the last in-
equality is due to monotonicity property of composition function). Therefore
we conclude that

h(F) S (Mc,(Tp(h)(G), Tp(h)(H))|G & H = F})N

Now, let
(F*le) CVp — .

(F#pDy) i vy — ...
be all the ground instances of rules in P such that / satisfies their bodies and Fis a
part of their heads. Since A =P, hl= (F*,Dy) :vi,....h|E (F*,D;) : v, le.,
(V1<j<s)(h(F*,D;) Cv;). But we know that &A(Fx*,D;)Cc,(h(F),
h(D;)) C v;. For this to be true it must be the case that #(F) C md,(v;). Therefore,
h(F) C md,(vi) N -+ -0 md,(v).
Combining the three inequalities together we obtain:

h(h) € Sp(F)N (N{e,(To()(G), To(h) (H))|G & H = F})
N(md,(vi) N --- N md,(vy)) = Tp(h)(F) \

which proves the theorem.

(2) Let Ifp(Tp) be fully defined. Since we know that Tp(Ifp(Tp)) = Ifp(Tp), it is also
the case that Tp(Ifp(Tp)) < Ifp(Tp). According to part 1 of this theorem, Ifp(Tp) is
a model of P.

Assume now that P has a model /4. By definition of a model, / is fully defined. We
know that 7p(h) < h. By construction of /fp(7p), and because of the monotonicity

of Tp operator 1fp(Tp) < Tp(h). Therefore Ifp(Tp) < h. This means that for all basic

formulas F, h(F) C Ifp(Tp)(F). Since h is fully defined, /fp(7p)rhas to be fully de-

fined too.

(3)Part 3 of this theorem is a direct corollary of Part 2 and Theorem 2. [

The second result above links consistency of P programs with the fully defined-
ness property of Ifp(Tp). an integer i such that either S, or 7}, are not fully defined,
then T cannot be fully defined either, and hence, P would not have a model.

5. Proof procedure

At this stage, we have provided a complete description of the logical consequences
of an hp-program P. In this section, we develop three query processing procedures.
e The first query processing procedure (Section 5.2), termed hp-resolution, builds

upon previous approaches of Ng and Subrahmanian [26] by first requiring that

programs P be compiled to a new set, CL(P). Queries are then processed by a pro-
cess akin to linear input resolution, with the difference that clauses from CL(P)N
may be considered input clauses. This process suffers from the major flaw that
usually, construction of CL(P), which is based on computation of /fp(7p)ris pro-
hibitively expensive. Because of that, two more refutation procedures have been
introduced.

e The second procedure (Section 5.3), termed HRp-refutations, is more pragmatic.
Rather than requiring a compilation step, when a query Q is posed, HRp refuta-
tions allow relevant parts of the CL(P)rto be dynamically constructed. This has
two advantages over hp-refutations. First, hp-refutations often “lose” right at
the beginning, as the compilation process may take a tremendous amount of time
and space. This does not happen with HRp-refutations. Second, HRp-refutations
only need a small part of CL(P), not all of it, and this small part may be construct-
ed as needed.

e The third procedure (Section 5.4), expands upon HRp, to use tabling, as initially
introduced in logic programming by Tamaki and Sato [36]. This procedure as-
sumes caches (or tables) are bounded a priori in size — a situation certainly true
in practical implementations where tables cannot grow in an unbounded fash-
ion. Furthermore, table management in probabilistic logic programs is much
more complicated than in ordinary logic programming for many reasons. First,
a query does not merely have a set of answers. Rather, a query has associated
answer substitutions, each of which has an associated probability range. As
computation proceeds, these ranges may get refined or sharpened — something
that does not happen in classical logic program tables. Second, caches in our
framework may contain basic formulas with associated probabilities. Such cach-
es implicitly contain probability ranges for basic formulas implied by the cached
formulas, as well as basic formulas that imply the cached formulas. A third dif-
ference between our work and classical logic program tabling is that there are
often many ways to update a table in the case of probabilistic logic programs.
We define cache update strategies, and show several different such strategies.
We show how HRp-refutations may be extended with arbitrary cache update
strategies.

Unlike classical resolution, when dealing with annotated conjunctions and dis-
junctions, unifiers may not be unique, as noted by Ng and Subrahmanian [25]. Be-
fore proceeding to describe our different notions of resolution, we summarize
observation of [25] below as it is necessary for the further development of our proof
procedures.

5.1. Unification in HPPs

As rules of clauses in hp-programs may contain annotated basic formulas, any no-
tion of unification must be able to handle unification of annotated basic formulas. In
this section, we recapitulate from Ref. [25, pp. 175-179] how this may be done. The
contents of this subsection are not new contributions.

Definition 46.
e O is a unifier of annotated conjunctions

Ci=A1 N, Ny A, and Co =By Ay -+ Ny, iff p,p' € €0N ¢ and p = pand
e O is a unifier of annotated disjunctions

D=4V, --V,B,,and D =By V,---V,B,, ff p,p€ 259 ¢ and p=p"

In order to proceed we need to define a notion of maximally general unifier.

Definition 47. Let U(Cy,C;)Ndenote the set of all unifiers of C; and C,. Let
0,0, c U(C],Cz).

1. ©; < 0, iff there exists a substitution 7y, such that @, = @,y.

2. @1 = @2 iff @1 <@2 and @2<@1.

3. Let [@] = {0 € U(C,,(,)|0 = O'}.

4. [0,] < [O,] iff there exists such y that [@] = [@,].

5. [@1] < [@2] iff [@1} < [@2] and [@2] 75 [@1}

From the above definition, it is easy to see that = is an equivalence relation on
elements of U(Cy, C,) and < is a partial order on {[@]|@ € U(Cy, C;)}. We can de-

fine a notion of maximally general unifier.

Definition 48. © € U(Cy, ;) is a maximally general unifier (max-gu) of C, and C,
iff there is no such other unifier ©' € U(Cy, C;) that [0] < [O'].

The proof of the following result is quite complex and is given in Ref. [25, Lemma
12, pp. 176-179].

Lemma 49 (25, Lemma 12, pp. 176-179). If two basic formulas are unifiable then
they have a max-gu (not necessarily unique).

5.2. hp-Resolution

In general, in the presence of basic formulas, just “straight” resolution is not suf-
ficient for query processing. The reason is that to establish a basic formula, e.g.

(p A, q) : u, we might need to separately prove p : u, and ¢ : p, and then combine
U, U, using the composition function associated with p-strategy p. There are two
ways to do this: (i) allow resolution not against hp-clauses in P, but against hp-claus-
es in an expanded version of P, or (ii) introduce, in addition to resolution, new rules
of inference corresponding the the “expansion’ steps alluded above. Both cases are
essentially equivalent from the point of view of completeness. In this section we dis-
cuss the former procedure, while the latter one will be described in detail in the next
section.

First, we add to P all “tautologies”. Any formula of the form F : [0, 1] is a tautol-
ogy as F’s probability certainly lies in the [0, 1] interval.

Definition 50. Let P be an hp-program. Then REDUN (P) is defined as
REDUN(P) =PU{4:[0,1] — |4 € B}

In addition to the above tautologies, we need to “merge” rules together and/or
infer “implied” rules. For example, if one rule has F; : y; in the head, and another
has F : p, in the head, and these are unifiable via max-gu @, then these two rules
may jointly provide some information on the probability of (F; A, F>) where p is
some p-strategy. Likewise, if (F} =*, F3) : i is in the head of some rule, then this rule
certainly provides some information about F;’s probability, and /’s probability. The
closure of P, defined below, expands the rules in P by performing such merges and/or
inferences.

Definition 51. Let P be an hp-program. Then CL(P) (closure of P) is defined as fol-
lows
e CL’(P) = REDUN(P).
1. For each pair of clauses F : u; < Body, and F> : u, + Body, € CL/(P),
such that their heads F; and F, are unifiable via max-gu @ add clause
(Fi : u, py < Body, A Body,)® to CL/M(P).
2. Foreachclause F{ *, F; : u«— Body € CL/(P) add the following two clauses
to CL/™'(P):
Fy : md,(1t) < Body
P, : md,(ut) < Body
3. For each two clauses (4y *,---M,A4;):pu < Body and (By *,---N
*,B)) : 1, « Body, € CL/(P), k > 1,1 > 1, add the clause

(A *, -, Ag *, By %, ---%, B)) : ¢,(y, W) < Body, A\ Body,
to CL/™(P). }
4. if 4 and B are atoms, and CL/(P)contains clauses 4 : u, < Body, and
B : jty « Body,, add
(A%, B) : ¢c,(1y, 1) < Bodyy A Body,

for each p € 60N ¢ U 2.9 J1oCU* (P).

The following result says that the above steps are all sound. No new rule is pro-
duced that was not already a logical consequence of P.

Lemma 52. For every clause C € CL(P), P E C.

Proof. Let C be a clause in CL(P). Then C € CL/(P)(P) for some integer j > 0. We
proceed by induction on j.
e Base Case.
1. C € P. Then by definition of |=, P = C.
2. C€ P, C € REDUN(P). In this case C is of the form 4:[0,1] <, and 4 is a
ground instance of an atom. Let / be a formula function, such that 4 = P. It is
always the case that #(C) C [0, 1], which yields % |= C.
e Induction Step.

Assume that for each clause C € CL/(P), P = C. Let C € CL/™'(P) — CL/(P).

As C € CL/™'(P) — CL/(P), C must have been inserted into CL/"'(P) by the
means of one of the cases 1-4 from Definition 26. We have to consider each case
separately.

1. Suppose C was inserted by the means of case 1. Then there exist such clauses
Cy=F : u < Body, and C, = F, : i, « Body,, such that, C; € CL/(P),C, en
CL/(P), F;, and F, are unifiable via max-gu @, and

C=(F:p W < Body A Bodn)O.

We need to show that P = C. Suppose /4 is a model of P,i.e., h | P,and Cyisa
ground instance of C, such that 4 = (Body, A Body,)®7y. By the induction hypoth-
esis, & | Cy and & = C,, therefore, h = C10y and h | C,0y. As h = Body, 0y, we
conclude that 4(F10y) C u,. Likewise we can conclude that #(F,07y) C pu,.

But since ® is a max-gu of Fj and /5, F1@y=F,0y, and therefore
h(F10y) C o, ie. hEROY iy p.

2. Suppose C was inserted by the means of case 2. Then there exists such a clause
C) = (F *,F): p+ Body € CL/(P), that either

C =F : md,(1) < Body
or
C=F : md,(1) < Body.

We will consider the former case, the latter case is symmetric. We need to show
that P = C. Let Cy be a ground instance of C and let 4 | P and & = Bodyy. By
induction hypothesis, 4 = C;, and therefore, #((Fy *, F3)y) C u. By the definitions
of md, and h, this yields #(F) C md,(n), i.e., h = F : md,(u).

3. Let C be inserted by the means of case 3. In this case, CL/(P) will contain two
clauses,
Ci = (4 *,---M%, Ay) : 4 — Body, and C, = (By *,---¥,B)) : W, — Body,,
such that, £ > 1,/ > 1, and

C= (4, #,---(x, A *, By *,---%, B;) : c,(1ty,) < Body A Body;.

We need to show P = C. Let Cy be a ground instance of C and let 2 | P and
h | (Body, A Body,)y. By induction hypothesis, # = C; and 4 | C,, and therefore,
hiE Cyyand hl= Cyp. Since h | Bodyy and h = Body,y, we have hEN
(Al *p ot |"$<p Ak)'y i and & 'Z (Bl *p o I"*p B[)')) N i.e., h((A] *p 0 Ak)y)ﬂ
C py, and h((By *, -+ %, B;)7) C pp. But then,

h((Ar #, %, Ax %, By %, ¥, B;)y)N

= cp(h((Ar *p -+ xy Ar)y) h((Br *p -+ (%, B1)7)) € €1y, o),
which means 4 | C.
4. Finally, let C be inserted in CL/"'(P) by the means of case 4. Then, CL/(P) will
contain 2 clauses, C; = A4 : u; < Body, and C, = B : u, < Body,, such that both
A and B are atomic, and

C=(4%,B):c,(ty, 1) < Body A\ Body,

for some p-strategy p.
We have to show PEC. Let Cy be a ground instance of C and let
h | P and h = (Body, A Body,)y. By induction hypothesis, 4 = C, and & | C;,
therefore, h | Cyy and h | Cyp. Since h | Bodyy and h = Body,y, we obtain
hi=Ay:pu and h =By : w,, ie. h(4dy) C u, and h(By) C u,. Hence, h((4 *, B)y)N
= c,(h(4y),h(By)) C ¢,(py,), which means that i} Cy and therefore
heC. O

We now present a refutation procedure for query processing.

Definition 53. A query is a formula of the form 3(F : yy A---AF, : u,), where
(V1<i<n) (F, € bfy(By)). Fis need not be ground.

Definition 54. Suppose C=G: A —G : 44 A NGy, : 2, €CL(P)and Q=
A(F iy Ao ANFy o,)is a query. Let C and Q be standardized apart. Let also
G and F; be unifiable for some 1 <i<n. Then

3((F1 2‘111/\"'/\1‘—‘,-,1 :Aui—]/\Gl 2/11/\"'/\Gm5/1m/\E+1I,LlHl/\"'/\E,
L i) ©)N

is an hp-resolvent of C and Q iff:

1. © is a max-gu of G and F;

2. 20 and 1,0 are ground and 10 C 1,0

If © is a unifier but not necessarily a max-gu, we call the resolvent an unrestricted
hp-resolvent.

Definition 55. Let Q = 3(F, : y; A--- A F, : u,) be an initial query, and P an hp-pro-
gram. An hp-deduction of Q from P is a sequence (Q;,C,0,)---(0,,C,,0,)---N
where, Q= Q,, for all i>1 , C; is a renamed version of a clause in CL(P)N
and Q;, is an hp-resolvent of Q; and C; via max-gu 0;.

If the ©,’s are not restricted to be max-gu’s, we call the resulting sequence an un-
restricted hp-deduction.

Definition 56. Let 0 = 3(F : y; A--- A F, : u,) be an initial query, and P an hp-pro-
gram. An hp-refutation of Q from P is a finite hp-deduction {(Q,,Ci, 0,)...{0,,
C,, ©,) where, the hp-resolvent of O, and C, via O, is the empty query. ©,...0,
is called the computed answer substitution.

We are now in a position to state the soundness and completeness of hp-resolu-
tion.

Theorem 57. (Soundness of hp-refutation)Let P be an hp-program,and Q be an initial
query. If there exists an hp-refutation of Q = 3(Fy : uy A+ ANF, : w,) from P with the
answer substitution © then P =N((F : yy A - NF,:w,)0).

Proof. Let (Qy,Cy,0,)...(0,,C,, ®,) be our hp-refutation. We proceed by induc-
tion on .

Base case: n =1

In this case Oy = F : iy, C; = G, : vy —€ CL(P), F{®, = G0, and v; C y,. Let
h = P. By the previous lemma, % |= C;. Therefore, & = V(G : v;) and in particular
h EVY((G) :v1)0,). But, since F1@, = G0, and v, C u;, we get h £ V(F| : ;1) 0,).

Induction Step.

Suppose the theorem holds for any hp-refutation (Q,, C,, @,)...{0,,C,, 0,).

Consider an hp-refutation (Qy, Cy, @1),(0,,C>, @3) ... (0,,C,,0,). Let h = P. Let
O =F :yN---ANF,:u,) and C; = G : v« Body be (a renamed version of) a
clause in CL(P), such that for some 1<i<m, F;©, =GO, and v C y,. Then,
Oh=F AN ANFy: g ANBody NFyy : pipy A< ANFy)01, By induction
hypothesis, & EVY(0,0,...0,), ie. hEVYF iy AN---ANFy:u_ ABodyAN
Foi ity Ao ANFy i 1,)010,...0,). Therefore, hEYFE :p A AFg:
it ANFy t i AV AFy o 1,)010,...0,) and h = Y(Body®, ...0,). Since also
hEC, we obtain AEVY(GO,...0,):v). Since vCy, we obtain
hEY(FO,...0,):w)), ie. hEY(F:p)0;...0,). Combining with &[N
VE i A ANFoy sy ANFy s g Ao ANFy i 1,)0,0,...0,)Nwe get the de-
sired: h EV(010,...0,),ie, h EV(0,0). O

In order to prove completeness theorem we have to establish first a number of
facts. The following two lemmas can be proved by a straightforward application
of mgu and lifting lemmas for classical logic programming in Ref. [24]. Mirror image
proofs are given in Ref. [25].

Lemma 58 (Max-gu Lemma). Let Q be a query that has an unrestricted hp-refutation
from an hp-program P. Then, Q has an hp-refutation of the same length and if
O1,...,0, are the unifiers form the unrestricted hp-refutation, and OY,..., O"' are
the max-gu’s from the hp-refutation, then, for some y ©---0,, = 0f,...,O"}.

Lemma 59 (Lifting Lemma). Let P be an hp-program, Q be a query, © be a substi-
tution. Let QO have an hp-refutation from P. Then Q has an hp-refutation from P
of the same length. Also, if ©,,...,0,, are the max-gu’s from the refutation of
00 and O, ..., 0! are the max-gu’s from the refutation of Q then, for some substi-
tution y: 00, ...06, =067,...,0".

Now we can prove completeness theorem.
Theorem 60 (Completeness of hp-refutation). Let P be a consistent hp-program

which satisfies the fixpoint reachability condition (see Definition 42) and Q"be a query.
Then, if P = 3(Q') then there exists an hp-refutation of Q"from P.

Proof. Since P = 3(Q’), there exists such a ground substitution @ that P = 0'O. Let
0 = 0'6. We will prove that Q has an hp-refutation from P. By Lifting Lemma, Q"
will also have a refutation from P.

Let O=F :pyy A+~ AF, : p,. Since P = Q, it must be the case that P | F; : y;,
1<i<m. O

Claim 1. Let F : puand G : v be ground annotated formulas which have hp-refutations
from P. Then, so does F : u NG :v.

Proof. Let (F:pu,Cy,0,)...(0F,C;,0,)Nbe the hp-refutation for F:pu. Let
(G:v,Dy,T)...{Q¢,DyT) be the hp-refutation for G : v. Then, as F : pand G: v
are ground, the following will be the hp-refutation for F: uyAG : v :

<FZ,[1/\GZV7C1,@1>,<Q§/\GZV,Cz,@2>...<Qf/\GZV,C[,@1>,
(G:v,Di,) .. .(QF, DTN
This completes the proof of Claim 1. [

Now all we have to prove is:
Claim 2. Let P |= 3(F' : u). Then there exists a refutation of F' : u from P.

Proof. Since P | F' : i, there exists a ground substitution 6 such that P = F’ : uf. Let
F = F'0. We show that F : u has an hp-refutation from P, and by lifting lemma so
will F' : .

Since P |= F : pu, by Theorem 3, 7°(F) C p. By definition of 7, there exists such
an o < w that T7(F) C u. Consider the smallest such integer. We now proceed by in-
duction on .

Base Case: o= 0. By definition of 7}, TJ(F) = [0, 1]. Therefore, = [0, 1]. If F is
atomic, then, since F is ground, a clause

C=F:[0,1]<n

is in REDUN (P), and therefore it is in CL(P). Then, (F : u, C,e) (e is the empty sub-
stitution) is the hp-refutation for F : u.
Let F = (4; %, A2 *, --- %, A,), where each 4; is atomic. Then, a set of clauses

Ci=4;:0,1] —n

is in REDUN(P) and therefore each of these clauses is in CL°(P). By definition of
CL(P) and because for any p-strategy p c,([0, 1], [0,1]) = [0, 1], CL"(P) (and there-
fore CL(P)) will contain the clause

C= (41 %, A> *, -+ %, A,) :[0,1] — N

(In fact we can argue that the above clause will be contained in CL"®"(P)). Then
the refutation for F : u will be (F : u, C, e) (e is the empty substitution).

Induction Step. Assume that for any formula G : p such that 727! | G : u, there
exists a refutation & of G : u from P. We prove the claim by induction on the struc-
ture of F.

Base Case. F is atomic.

Let M' = {{/|G : ' «— Body € P;T¢"" £ Body, where G is unifiable with F}. We
notice that Sp(77 ") (F) = n{y/ |y € M'}.

Let M= {u"|(G*, H) : f""— Body € P;T#"" |= Body, where G is unifiable with
F}.
We have, by definition of 7} (« > 0):

T3(F) = Sp(T3)(F)N (Nfmd (W) |"e M"}) € .

Two cases are possible.
L. MuM"| =1.
Assume M (). Than, there is a unique rule C'=G: ' « Body € P, s.t., G
unifies with F, T 'EBody, and Sp(T¢')(F)=u. (Notice that
C' € P implies C' € CL(P)). Let ©®"be the max-gu for G and F.
By induction hypothesis, there exists an hp-refutation (Body,C;, @;)N
PN <Qk7 C]” @k>rf0r BOdy Then
<F R C,a @/>7 <BOdy7 Cla @1> ce <Qk7 Ck7 @k>m
is the refutation for F : u.

Assume now that M"% (). Then there is a unique rule C'=(Gx,H):
W < Body € P, s.t., G unifies with F via max-gu @', T7 ! Body and
Tp(T ") (F) = md,(i). Since C' € P, C' € CL'(P)rand therefore the following
clause C""= G : md, (i) < Body is in CL'(P). By the induction hypothesis, there
exists an hp-refutation for Body: (Body,C, ©,) ... (O, Ci, O)). Then

<F R C//7 @,>7 <BOdy7 Cla @1> cee <Qk7 Ck7 @k>ﬂ
is the refutation for F : p.
2. MuUM"| > 1.
Let ¢’ = {G: W < Body € P|T¢ ! £ Body}, where G is unifiable with F, and
M' ={/|G: W — Body € ¢'}.
Let also "= {(D *, H) : /""— Body € P|T¢"" | Body}, where D is unifiable with
F and M"={/"|(D*, H) : W"— Body € €"}.
Since all clauses from %"are in P, they are also in CL°(P). Let

G : {{'— Body,

G, : ("~ Body"

be all clauses in %’. Since they are in CL°(P), we can claim that the clause
C,=GO" 1" N — Body, A+ A Body"

will be in CL*(P)actually, it will already be in CL"®¢)(P)) where ©"is the max-

gu of Gy, ..., G, (such a substitution must exist since we know that each of G; is
unifiable with F).
Let

(D) *,, Hy) : 1y < Body,"

(D, *,, H,): u — Body"

”

be all clauses in %”. Since ¥""C P, every clause in ""lis also in CL’(P). Therefore,
the following set of clauses:

Dy : md, (1) < Body;"

D, : md,, (1) < Body,"

will be a subset of CL'(P). Then, we can claim that CL"(P)for even CL"%")(P)n
will contain the following clause:

C,=D0": md, (YN ---Nmd, (1) — Body| A --- A\ Body"
where @""is the max-gu for Dy,...D,.
Let / =max(r,s). Since both C; € CL(P)rand C; € CL/(P), the following

clause

C=GO ' N mdy, (YO N md, (1))

« Body| A --- A\ Body! A\ Body| A --- A Body!""

(where ©is the max-gu of G;@" 'and D;0") will be in CL""'(P) and therefore, in
CL(P).

Notice that u" ---Nw, md, (YN ---Nmd, (1) =T;(F) C u. Also, by in-
duction hypothesis, each Bodyj’.mand Bodyj’.’“ has an hp-refutation, therefore by
Claim 1 of the theorem, their conjunction has an hp-refutation.

Let (01, C1, 0y),...,(0., C., @,) be such an hp-refutation. Then the following is
an hp-refutation for F : p :
<F Tl Cv F>a <Q17 Cla @1>a sy <Qz, sz @Z>m

where I' is the max-gu of F and G0’

Induction Step. Assume that the theorem holds for every formula of size less than &
and let F = A, *,---(¥, A, where 4,,...,A; are atomic.

Let %, = {G: W < Body € P|T¢' | Body, where G is unifiable with F}, and
M, ={i/|G: i — Body € 6,}. Let %,{(Dx,E): " "— Body € P|T:"' E Body,
where D is unifiable with F}rand M, = {y"|(D %, E) : 4""— Body € %,}.

Let

G, : ('~ Body|"

G, : l'— Body!"
be all clauses in %,. Since they are in CL°(P), we can claim that the clause
Cl =GO W N~ Body| A+ ABody"
will be in CL*(P)rtactually, it will already be in CL'°®®)(P)) where ©"lis the max-gu

of Gy, ..., G; (such a substitution must exist since we know that each of G; is unifi-
able with F).
Let

(Dy *,, Ey): pf — Body,"

/N

(E, *,, E,): w — Body,

I

be all clauses in %». Since %> C P, every clause in %, is also in CL’ (P). Therefore, the
following set of clauses:

md (//) (_Body//ﬁ

D, : md, (1) < Body,"
will be a subset of CL'(P). Then, we can claim that CL"(P) (or even CL"°&")(P) will
contain the following clause:
C; =D10" md, (1N ---Nmd, (W) < Body] A--- A Body!"
where @"is the max-gu for Dy, ...,D,.
Now, consider any pair of basic formulas H and / such that H &/ = F. Since
F = (H *,I), we must conclude that 75(F) = T5(H %, I) = ¢,(T;(H), T5(I). By our
assumption 77 (F) C pu therefore, ¢,(T3(H), T3 (1)) C u. Let v = Tx(H),v"= T5(1).
We can now say that 7} = H : v; and T} =1 : v, such that ¢,(vy,v2) C .
By the induction hypothesis, there exist hp-refutations for A : v"and 7 : v". Let

(H:v,ct eyl ,cl,ely...(of c? o)
and
(I:V',Cl,O0(0,,Ch, 05 --- (0 C!.ehn

be these respective hp-refutations. Let us look at the clauses C¥ and C!. These claus-
es have to be of a (respective) form:

Cl'=H"™) «— Body"
where, 2 C v, ! = Body”, H"is unifiable with H, and
C, =1")" — Body"
where, 2 C v/, T¥! = Body”, I""is unifiable with 1.
By definition of hp-refutation, both C{ and C{ are in CL(P). Let w be the small-

est integer such that both C € CL"(P)rand C# € CL"(P). Then we can claim that
CL""!'(P)rwill contain the following clause:

ctol = (H' x,1') : cp(/l/,l”) « Body' A\ Body!

Since both Bodyand Body""have hp-refutations, so does Body' A Body”. In fact, we
know that (QY cC# @F)...(0",C" 6")nis an hp-refutation for Body"
(04 = Body') and (Q5,C} @) .. <Q,1,7 C’ e’)ﬂ is an hp-refutation for Body™
(Q% = Body'. Then, the following will be an hp-refutation for (H' x,1I') : c,(2,2"):

((H' #,1') 1 c,(X,2"),C"' ©), (Body' A Body",C3,0Y) ...

(0" A Body",C,0), (Body",C},@%) ..., (O, C!,O).

Let now A F{(H,,1,),...(Hy,1,)} be all possible pairs of basic formulas such that
for each (H,I) € #4 H @ I = F. By applying the reasoning above we will conclude
that for each pair (H;,I;) CL(P) contains a clause

Cy = (H *,1I}) : 2; < Body,

that 4; C u, (H] x, 1)) is unifiable with /" and #, is unifiable with H"and /; is unifi-
able with 7, T;™' | Body;, Let gq=max{qi,...qn}, where (V1<j<m)(C;
€ CLY(P) and C; € CL¥"'(P)). Then CL*""(P) will contain the clause

Cy=FOS:J 0y (Body A A Body,)O},

where @f is the max-gu of (H; *,1),---,(H, *,1,). Since all Bodyi, ... Body, have
hp-refutations, so does Body; A - - - Body,, (and therefore Body| A ... Body,,)©%). Now
we can combine clauses Cf, C5 and C% together into:

Cf=FO" : " W') — Body' A Body* A Body*,

7zl

where " is a max-gu of the heads of C', C§ and C¥, y/,;/""and / are probability
ranges of Cf, C§ and C¥ respectively and Body', Body* and Bod)® are their respec-
tive bodies. It is clear that (i) " ¢ A C wand (ii) C* € CL(P). We also know that
there exists an hp-refutation (Body' A Body* A Body®,CE, OF) ...
(08, CE,©%) of Body' A Body* A\ Body’. Then the following is an hp-refutation for

v

Fou
(F : u, C",0), (Body' \ Body* A Body*,CE,0%)---(0°, C*, OF),

where @ is a max-gu unifier of F and the head of CF. This completes the proof of the
completeness theorem. [

It is important to note that the above theorem only holds when P satisfies the fix-
point reachability condition. Past work on annotated logics [25] make this assump-
tion, and as this paper generalizes [25,19], it is not possible to remove this
assumption.

The hp-refutation paradigm extends a proof procedure developed in Ref. [25] for
probabilistic logic programs under the ignorance assumption. In particular, Items (4)
and (5) in the definition of CL(P) given in Definition 51 do not occur in the proof
procedure in Ref. [25]. The need for these two rules derives directly from the use
of arbitrary p-strategies. This causes the proof procedure of Ref. [25] to be much
simpler (and easier to implement) than that given in this paper.

5.3. HRp refutations for HP-programs

Note that the hp-refutation procedure assumes that CL(P) has been constructed
prior to processing a query. In practice, this is an extremely expensive process, both
in terms of time taken to construct CL(P), and in terms of space requirements. Even
for propositional programs it is easy to see that CL(P) can contain exponentially
many clauses. Thus, constructing CL(P) before construction of a refutation is at-
tempted, is often completely infeasible in practice. To avoid this a priori computa-
tion of CL(P), we provide a new procedure that allows that part of CL(P) needed
in a refutation to be dynamically computed on an “as-needed” basis. The HRp

refutation framework described here avoids the construction of CL(P).In the defini-
tion below, anytime a formula (F *, G) is written it is assumed that * € {A, V} and if
x = A then p e 404 ¢ and if x =V then p € 999 ¢.

Definition 61. Let P be an hp-program. We define a formal system HRp as follows:
1. Axioms of HRp include all clauses from P and all clauses of the form:
A4:10,1] — rwhere 4 € B;.
2. Inference Rules. There are 5 inference rule schemes in HRp.
e A — Composition: Let 41,4, € By
Ay iy < Body, A4y uy, +— Body,
(A1 *, A42) : ¢,(i, 1) < Body A Body,’
e F — Composition : Let 4y,...,4;,B1,...,By € By
(Ar *, ¥, Ap) iy < Bodn (Bi #,---M¥,B)): u, — Body,
(Ay #, %, Ax %, By %, %, B)) : c,(1ty, 1) — Body, A Body,

e Decomposition :

L — Decomposition R — Decomposition
(F*,G):pu Body (Fx,G):pu<« Body
F :md,(u) < Body G :md,(u) < Body

e Clarification :

Fy : py < Body, F, : 1y, — Body,
(Fi:p o < Bodyi A Body,)©

if F| and F, are unifiable via max-gu @
e FExchange: Let Ay, ..., A, € By, and let By,...,B; be a permutation of 4, ..., 4;
Ay *, ¥, Ay) : p — Body
(Bi *,---¥,By) : u« Body

3. A finite sequence C; ... C, of hp-clauses is called an HRp-derivation iff each clause
C; is either an axiom or can be constructed from one or more previous of
C,...Cj_; by applying one of the inference rule schemes to them. We call clause
C, the result of the HRp-derivation.

4. An hp-clause C is derivable in HRp iff there exists such an HRp-derivation
Cy,...C, that C, = C. We denote it by P+ C.

The following theorems tell us that the system of axioms and inference rules describ-

ing HRp precisely captures the closure, CL(P), of P.

Theorem 62 (Soundness of HRp w.r.t CL(P)(P)). For each hp-clause C, if P+ C then
C € CL(P).

Proof. We notice first that the set of all axioms of HRp, is exactly
PUREDUN(P) = CL°(P). Next we notice that the first 4 inference rule schemes pre-
cisely match the 4 rules used to add new hp-rules to CL(P). Finally, the last inference
rule scheme (Exchange) does not create a new basic formula, it just rearranges the
order of atoms in it. [

Theorem 63 (Completeness of HRp w.r.t. CL(P)). For each hp-clause C, if
C € CL(P) then P C.

Proof. If C € CL(P)Nthen there exists such an integer n that CCL"(P)N
and C € CL""'(P). We prove the theorem using induction on 7.

In the base case, n = 0 and we know that CL°(P) = P U REDUN(P). As it was no-
ticed in the previous theorem, this set is exactly the set of all axioms of HRp, there-
fore, C is an axiom of HRp.

On the induction step, we consider a clause C added to CL"(P). By Definition 26
C was added to CL"(P) by one of four rules. Since these rules match exactly the four
inference rules of HRp and by induction hypothesis for every clause C' € CL"'(P)n
we know that Pz, C’', we can obtain the proof of C in HRp by application of a
matching rule to the same clauses. [

Definition 64 (HRp-refutations). Let Q = 3(F : py A--+ AF, : u,) be an initial query,
and P an hp-program. An hp-refutation via HRpof Q from P is a finite sequence
<Q17 C17 @1> T <Qra Cr7 @r> Where,

O =0

0, is empty

PEC forall 1 <i<r

Q;+1 is an hp-resolvent of Q;andC; with max-gu @,, for all 1 <i < r.

The following results tell us that hp-refutations using HRp are both sound and
complete and thus,they constitute the first sound and complete proof procedure
for probabilistic logic programs (including those in Ref. [26]) that do not require
the construction of a program closure. Here is a simple example of HRp-refutations.

Example 65 (HRp refutations). Consider the HP-program P given by:
a:[1,1] « (b NpgcNiad):[0.25 1] A f:[0.5,0.9].
e:[1,1] «— (b ApgcNpad) : [0.25 1] A f: 0.5, 1].
(f Nina g) :[0.7,0.8] — b : [1,1].
(f Vigg) :[0.7,0.9] <N
b:[1,1] « (¢ Ainad) : [0.3,1].
¢:[0.6,1] —.d:[0.51] —.
A refutation of the query O = a[0.9,1] Ae: [1,1] is given by:
01 =0=4al09,1]Ae:[1,1]N
PoCi=a:[1,1]— (bNwcNmd) :[0251]Af:[0.50.9].
0y =(bNna € Npad) : [025 1] A f:[0.5,09] Ae: [1,1]N
PECy=(bNwcNpad):[0.3,1] — (¢ Nwa d) : [0.3,1].
O3 =(cNipad) (03, 1]Af:]0.509] Ae:[1,1]N
PHr C3 = (C Nind d) : [037 1]) —N
0s=f:[0509 Ae:[1,1]N
PECy=f:[0.7,09] — b:[1,1].
Os=b:[l,1]Ae:[1,1]N
P>Cs=b:[1,1] — (¢ Ayad) :[0.3,1].
O = (cNpad) : [0.3, 1] Ae: [1,1]N
Pt Cs=(cNpad):[0.3,1]) <N

O;=e:[l,1]Nn

PoC=e:[l,1] = (bNpacNpad):[025 1] A f:]0.5,0.1].
03 = (b Nipg € Nina d) = [0.25, 1] A f 2 [0.5,0.1].
PECs=(bApachipad) :103,1] — (¢ Nipa d) : [0.3,1].

Qo = (¢ Ninad) : [0.3,1] A f:[0.5,0.1].

Pk C9 = (C Nind d) : [037 1]) —N

QlO :fi [05,01}
PF Ciof :[0.7,0.9] — b :[1,1].
Q11 =b: [1,1]

P> C“ =b: [1, 1] — (C /\[nd d) : [()3’ 1]
O = (cNua d) :[0.3,1].

Pt Cip=(cNpad):[0.3,1]) <N

O =0

Here is another example of an HRp refutation, for a program that contains variable
annotations.

Example 66. Let us consider the program from Example 36. For convenience we re-
peat P below:

5(a) Vina $(b) Vina 5(c) : [0.4,0.6] —

s(a) Nige s(b) : 0,0.5] —

S() inc s() [mm(+0~17%)7%] ‘_S(C) : [V, W]
s(e) :10,0.3] —

Let us now look at how the refutation of the query O = (s(a) Aue s(c)) : [0.15,0.15]N
will proceed
01 = 0 = (s(a) Aue s(c)) : [0.15,0.15]N
PHC —s(a) me $(€) :[0.15,0.15] «— s(c) : [0.15,0.3]N
0, = s(c) : [0.15,0.3]N
PEC,=s(c) :[0.15,0.3] < s(c) : [0.1,0.3]N
0: = s(c) : [0.1,0.30
Pt Cy=s(c):[0.1,0.3] — s(c) : [0,0.6)n
0: = s(c) : 0,0.6n
P> Cs=5(c):10,0.3] —
05 =0,
Here is how the derivations of C;, C, and C; are done:
e Rule C; = s(a) Ayes(c) : [0.15,0.15] < s(c) : [0.15,0.3] is a ground instance of the
rule

5(a) Ame s(c) - [min <12/+ 01Z’>Vﬂ —s(e): [V, W)

with V= 0.15 and W = 0.3(min (%2 +0.1,%) =% =0.15).
e C; =3s(c):[0.15,0.3] < s(c) : [0.1,0.3]N is derived as follows:

C, = s(a) Nine 5(c) :[0.15,0.15] « s(c) :[0.1,0.3] is a ground instance of the rule
V W\ W
s(@) Nipe s(c) [min (54- 0.1,7>,7} —s(c): [V, W]N

with ¥ =0.15 and W = 0.3. Applying the inference rule of R-Decomposition to C;'
we obtain C)'=s(c) : [0.15,1] < s(c) : [0.1,0.3]. Combining C; with the rule

C; =5(c) :[0,0.3] — . € P using the inference rule of Clarification we obtain
C, as [0,0.3]N[0.15,1] = [0.15,0.3].
e The derivation of C; = s(c) : [0.1,0.3] < s(c) : [0,0.6] is similar to the derivation
of C,:
C, = s(a) Nine 5(c) :10.1,0.3] « s(c) : [0,0.6] is a ground instance of the rule

5(@) A s(c) [min (12/+ 0.1,V§>] —se): [V, W,

where ¥ =0 and # = 0.6 (min(3+0.1,%%) =9+ 0.1 = 0.1). Applying the inference
rule of R-Decomposition to Cj' we obtain the rule C; =s(c):[0.1,1] —nN
s(c) : [0,0.6]. Combining C}"with C; = s(c) : [0,0.3] < € P using the inference rule
of Clarification we obtain C; as [0,0.3]N[0.1,1] = [0.1,0.3].

The soundness and completeness of HRp-refutations follow immediately from the
soundness and completeness theorems for HP-refutation and soundness and com-
pleteness theorems for HRp w.r.t. CL(P).

Theorem 67 (Soundness of HRp)-Refutations). Let P be an hp-program, and Q be an
initial query. If there exists an hp-refutation via HRp of Q = 3(Fy : gy A+~ AF,)N
from P with the answer substitution © then P EN((Fy : py A+~ ANF, : 11,)0).

Proof. Suppose (Qi,Ci,0,),...,{(0,,C,,0,)Nis an HRp refutation of Q. Let
C = {C;| C; ¢ P}. By bullet (3) in the definition of HRp-refutations, it follows that
PF C; forall C; € C. By Theorem 62, we know each such C; is in CL(P), and hence,
(0y,C1,04),...,{(0,,C,, 0,) is an hp-refutation. By the soundness of hp-refutation
(Theorem 57), the result follows. [

Theorem 68 (Completeness of HRp-Refutations). Let P be a consistent hp-program
which satisfies the fixpoint reachability conditions and Q" be a query. Then, if
P E 3(Q') then there exists an hp-refutation of Q" from P via HRp.

Proof. By the completeness of hp-refutations (Theorem 60), it follows that there ex-
ists an hp-refutation of Q'fromP. Suppose (Q;, C, 0,),...,{(0,, C,, ©,) is such an hp-
refutation. Then, by definition of hp-refutations, each C; is in CL(P). But then, by
Theorem 63, each C; is either in P, or is such that P+ C, and hence,
(01,C1,01),...,(0,,C,, 0,) is also an HRp refutation. O

Before concluding this section, we briefly reiterate that HRp refutations avoid
compile-time construction of CL(P)+ an expensive and time/space consuming
process.

5.4. B-Cache

We are now ready to study efficient tabled query processing techniques for HPPs.
In this section, we will first define caches and bounded caches. Intuitively, a cache
contains formulas with established probability ranges. As resolution based process-
ing of a query occurs, we will gain information about certain basic formulas. These
will need to be “added” to the cache. For this purpose, we will define in this section,

a family of updating strategies and introduce several example strategies. Later, in
Section 5.5, we will show how to use these tables and table update strategies hand
in hand with the resolution based proof procedure.

5.4.1. Definitions

Definition 69. A cache is a finite set of annotated basic formulas. If b is an integer, a
bounded b-cache is a finite set of annotated basic formulas containing at most b at-
oms each.

Basically a b-cache is a collection of hybrid probabilistic basic formulas, where
each formula’s length is bounded by a constant b. Note that a b-cache may be con-
sidered to be a hybrid probabilistic logic program all of whose clauses are “facts”.

Definition 70. Let 7 be a b-cache, F be a basic formula (not necessarily ground). By
T[F]rwe denote the set of all such pairs {{u, ®)}, where © is a substitution for
F and u C [0, 1]is the smallest interval such that 7 = V(FO : p).

Intuitively T[F]rrepresents what the b-cache T ““thinks” about the possible prob-
ability ranges of instances of F. Note that if Fis ground, then {u|(u, ©) € T[F]} is a
singleton set. Without loss of generality we will abuse notation in this case and write
T[F] =

5.4.2. B-Cache Update strategies

We fix an integer b > 0, a logical language L as defined in Lloyd [24], and a set &
of p-strategies. Let 7 [b, L, ¥]rdenote the set of all possible h-caches over bfs(B.).
Whenever b, L and . are clear from the context we may use J instead of
T|b,L, 7).

We are interested in developing a resolution-based query processing procedure
that is irredundant in the sense that it does not “re-infer” facts that it has already
inferred. In the case of classical logic programs, caches and their utilization are rel-
atively simple: caches contain facts; when performing resolution on an atom 4 in the
query, we check to see if A4 is subsumed by the cache (Tamaki and Sato [36]). An al-
ternative approach is due to Warren et al. who check the cache for variants of 4
[10,8]. However, in the case of probabilistic logic programs, b-caches are somewhat
more complicated.

As the resolution triggered by a query proceeds, more and more information is
being established and any time new information is obtained, we want to insert it into
our b-ache. However simple addition of a new basic formula to 7 is not enough, be-
cause as we add new probabilistic information — we might be able to update the
probability intervals for some other basic formulas already in 7. Also, the way such
an update can be defined is not unique — in fact, there is a variety of possible “intu-
itive” updates.

Rather than defining a specific update procedure, we first proceed by defining a
notion of an update strategy — a function that takes a b-cache and a basic formula
as input, and returns a new “improved” b-cache. We will establish a number of basic
properties of any update strategy. Later we will define a number of specific update
strategies that are “‘natural” or “intuitive”.

In the definition below CN(S), where S is a set of hp-formulas denotes the set of
all logical consequences of S.

Definition 71. A function f : 7 X bfy(B;) x C[0,1] — 7 is called a b-cache update
strategy iff it satisfies the following conditions:

1.
(VT € 7)(VF € bf,(B,))(Yu € C[0,1])CN(T) € CN(f(T,F, 1))\
C CN(TU{F :).
2.
(VT € 7)(VF,G € bf(B1))(Vu,v € C[0, 1)) f(f (T, F,), G,v) \
:f(f(T’ va)aFnu)'
3.

(VT € ‘9—)<VF € bff/(BL))(v.u € C[O7 1])f(f(T,F,ﬂ),F, :u) :f(TvFv M)'
We will use the Wroperator to denote b-cache update functions. When more than
one update function is considered, we will use the W, notation and annotate
F with pu. (So, f(T,F,pn) =TW,F: p).

Clause (1) in the above definition says that an update of a b-cache (i) should not
decrease the amount of information that is contained in, or that can be deduced from
the b-cache, but at the same time (ii) may not increase the content of the table “un-
reasonably”. Notice that b-caches, by their very definition, automatically pose cer-
tain restrictions on how complete the update is — if the length of an updating
formula is greater than b — the formula itself cannot be stored in the b-cache.

Clause (2) of the above definition says that the order in which we apply the update
operator f should not matter. Updating a table 7 with F : u first and then G : v
should be the same as doing it the other way around.

Finally, Clause (3) states that “redundant” updates should not change the b-
cache.

Definition 72. Let P be an hp-program and T be a b-cache. We say that T is sound
w.r.t. P (P ET) iff for each formula F: pn€ T, PEF : u.

Lemma 73 (soundness of b-cache update). Let P be an hp-program, T be a b-cache
and F be a basic formula. Let f be any b-cache update strategy. Then if
PETand P = F : pithen also P |= T W, {F : u}.

Proof. Let F": i/ € T, F : u. Two cases are possible.

1. F» i/ € T. In this case, since P |= T, it has to be P = F'": .

2.F"™ W e T. We know that T, F : u|= F"™ i/, hence F'": i/ € CN(T W, F :). We
also know that CN(T W, F : p) C CN(T U {F : u}), therefore, we can obtain that
TU{F:u}EF™yu. But, P=Tand P} F: p implies that P T U{F : u}.
Combining the obtained results together we get P | F™ v/. O

In order to simplify notation we define an update of a b-cache with a finite set of
formulas as follows:

Definition 74. Let S = {F, : y,,...,F, : p,}(be a finite set of annotated basic formu-
las and u- a b-cache update strategy. We define

TW,S=(..(TY,F:), ..)8, F:wu,).

The order in which we write Fjs is irrelevant as by the second property of the b-
cache update strategy (commutativity), the result of updating a b-cache with a se-
quence of basic formulas does not depend on the order of formulas. (Second prop-
erty establishes it for a sequence of 2 basic formulas. It is easily extended onto the
case of sequences of 3 or more formulas).

As the reader may notice, there are numerous functions that satisfy the definition
of an update strategy. Some of these are intuitively “more complete” than others.
The following definition captures this informal notion.

Definition 75. Let u and w be two b-cache update strategies. We say that u is
more complete than w (denoted u = w) iff (VT € 7)(VF € bfs(B.))(Vu € C[0,1])N
CN(TW, F:p) CCN(TW, F : p).

Two update strategies u and w are equivalent iff if both u > w and w > u.

An update strategy u is maximally complete iff (Vw)(u = w).

As we have pointed out earlier, Clause (3) of the definition of a h-cache update strat-
egy postulates that no change in »-cache should occur when an update is repeated.
However, this is not the only possible redundant update. The following proposition
tells us how b-cache update strategies handle some other redundant updates:

Proposition 76. For any b-cache T, and b-cache update strategy f, any basic formula F
and any interval p € C[0,1]Nthe following holds: if TEF :u then CN(T)=nN
CN(T W, F : p).

Proof. Since T = F : u, CN(T) = CN(T U{F : u}). Since CN(T &, F : p) C CN(TuN
{F : u})rand CN(T) C CN(T W, F : p)rwe obtain the desired equality. O

5.4.3. Examples of update strategies

In this section, we will provide examples of a number of different update strate-
gies, and show how these strategies are related to one another w.r.t. the “more com-
plete” relationship.

The first kind of update strategy we consider is a relatively simple “atomic up-
date”.

Definition 77 (Atomic Updates). Let T be a b-cache and 4 be an atomic (not neces-
sarily ground) formula. An atomic update of T by A4 : u, denoted T W, {4 : u} is de-
fined as follows:
1.If T has no atomic formulas that unify with 4:p, then T, {4:u}ln
=TU{4d:u<}n
2. Otherwise we proceed in a number of steps:
(a) If there is a formula 4 : v in T, we replace it with 4 : = v.
(b) For all B, such that B:v € T and 40 = B for some substitution @, we re-
place B:vwith B:v p.

() Let B={v|B:veT A (IO)BO =A}. We add 4 : ¢ N(Nyezn{v}) to T.
(d) For each B such that B:v € T and 40, = BO, for some substitutions
O, and O, we add 40, : n vtoT.
(e) If no clause for 4 had been added to T on previous steps, we add 4 : u to 7.

An atomic update is not a “complete’ b-cache update per se, but it will be at the
core of a number of updates that we consider further. Informally, we can describe
this process as follows: we check to see if T contains any formulas unifiable with
A. If not, we just add 4 : u to T. Otherwise, we look for formulas in 7" which have
probabilities that can affect the probability of A, or vice versa (see example). Then we
update probability ranges for all such formulas.

Example 78. Suppose our b-cache 7= {p(a,Y):[0.4,0.7],p(b,Y): [0.6,0.9],
p(X,a) :[0.5,1]}. Below we show the results of 7', 4 for a number of given atoms
(we consider variables in all the formulas to be standardized apart).

A TW, A

p(X,Y):10.5,0.95]N {p(a,Y) :10.5,0.7], p(b,Y) : [0.6,0.9],
p(X,a):[0.5,0.95],
p(X,Y):]0.50.95}IN

pla,a) : [0.3,0.6]N {pr(a,Y):10.4,0.7],p(b,Y) : [0.6,0.9],
p(X,a):[0.5,1], p(a,a) : [0.4,0.6]}N
p(b,Z) :10.4,0.8]N {r(a,Y):10.4,0.7),p(b,Y) : [0.6,0.8], p(X, a) :

0.5, 1], p(b, @) : [0.5,0.8]}N

Atomic updates do not update annotated basic formulas that are not atomic, and
hence the cache that results from an atomic update may not be maximally complete,
i.e. it may be the case that T U{F : u} E G : i/, but (T W, F : u) E G : u"for a non-
atomic G. An alternative update strategy that propagates such updates is given
below.

Definition 79 (Propagated Atomic Update — pat). Let T be a b-cache, F be a basic

formula. A Propagated Atomic Update strategy (pat) is defined as follows:

1. Fis atomic. T Wy, F:p=TW, F: p.

2. Let F=(F *,---M%,F,). TWy Fipu=(..(TW,F :md,(l) Wy ...) W0y
F, :md,(u)).

The Propagated Atomic Update strategy extends atomic updates onto complex
formulas.

Among the advantages of this strategy are its relative simplicity and the fact that it
works for any bound b on a b-cache. However it is a rather weak strategy in the sense
that because every updating formula gets broken into the atoms that constitute it,
some information about the probability ranges of associated formulas is lost, i.e.
it is not maximally complete. The following example demonstrates this fact.

Example 80. Let 7 =0 and F = (p(a) Aucq(a)) : [0.3,0.6]. By definition
I'=TW,uF={q(a):[03,1],p(a) : [0.3,1]}. Now we have T'[(p(a) A q(a)]N
=[0.3 %M0.3,1] =[0.09, 1] 2 [0.3,0.6]. However, if the bound b is greater than 1,

we could try to store F itself in 7, and preserve information about its probability
range.

The above example suggests how the PAT strategy can be modified to be able to
be more complete.

Definition 81 (Elementary b-cache update). Let T be a b-cache, F be a basic formula.
We define an elementary b-cache update strategy (denoted W, as follows):
1. Case 1. |F| = 1. (Fis atomic). T W, {F : u} = T W, {F : u}.
2.Case2. | <|F|<b.Let F=F x,---¥,F,. We proceed in a number of steps.
(@) Let " =T W, F : p.
(b) Let {(v1,01),...,{v, O} C T'[F] be all pairs from T'[F], s.t., vZ u. We
proceed in steps. Let 7° = T". Consider T (0 <i < k) constructed. We now con-
struct 77!,
o If FO,, : v € T"we replace it with F : ¢ v and declare the new b-cache to
be the result of an update operation, ie. T = (T'—{FO;, :v})N
U{F®O;. :u v}
o If FO, v e Iwe declare TH' = T'U{FO;,, : u v}
(c) Now we declare T W, F : u = TF.
3. Case3. |[F| > b.Let F =F *,---M,F,. Let By, Ba,...B; be all subformulas of F
of size b. Then T We, {F : p} = (T Wy F) Wep By = md,, (1) Wep - . . Wep By = md,, ().

It is easy to notice that

Proposition 82. (i) (Vb > 0)eb = pat (ii) el = pat.

Proof. (i) Let F be a basic formula and u € C|0, 1]. Three cases are possible:

e F is atomic. In this case by definition of eb TWy, F:u =NT W, F:pu =N
TWpu F .

e 1 < |F|<b. In this case T W, F : p is computed starting from 7" = T W, F : u via
a series of iterations which modify/add information about formulas unifiable with
F. This means that for all basic formulas G not unifiable with F and for all inter-
vals ve C[0,1], if G:ve CN(T") (ie., T"EG:v) then G:veE CN(T We, F : p)N
(e, TWy F:ptEG:v).

Let now H be a basic formula unifiable with Fand let 77 = H : v. This means
that there exists a substitution @ such that (v, @(c T'[F] and H = F'©. But then,
by definition of elementary b-cache update strategy, T W, F : u will contain for-
mula FO:u v=H:pu v. Clearly, © vCv and therefore, {H:u v}n
EH:vie, TWy F:ukE=H:v.

From the above we imply that CN (T Wy F : 1) C CN(T W, F = p).

o |F|>b.

Let S be the set of all subformulas of F of size b. By definition of the elementary
b-cache update we get:

TWep Fipp= (T Wy F 1 1) ey S.

But by definition of an update strategy we get CN(T Wy, F:)N
CCN((T Wy F =) Wep S = CN(S).

(ii) To prove that el = pat we first note that for any formula F one of two possible

cases holds:

e Fis atomic. In this case T W F : = T W,, F : p by definition.

e Fis not atomic. In this case |F| > 1. Let F = 4; %, - -, 4;. By definition of el-
ementary b-cache update T We F:p=(...(T Wy F :) We1 Ay : md, (1)) ... 5ey
A cmd,()N= (o (T W F o 1) Wy Ay = md, (1) - . Wy Ai = md, (1)) (the latter
equality holds, since all 4; are atomic). Since (V1 <i<k)F :uE A4;:md,(u) we
conclude that CN ((T Wy F @ pt) Wy A; - md, (1)) C CN(T W, F :). On the other
hand, by definition of an wupdate strategy, we know that the reverse
(CN((T Wy F 2) Wy A; : md, (1)) 2 CN(T Wy F 2 p)) is true. Therefore
CN((T Wy F = 1) Wy A; - md, (1)) = CN(T W,y F = 1) which implies that

(o (T g F o) W Ay 2 md, (1)) - Wy A mdy (1) = Ty F o O

Elementary updates allow us to capture more information about the updating for-
mula, but these updates still allow for the loss of information as is shown in the fol-
lowing example.

Example 83. Let 7 =0 and F = (4 Aie B Nie C) : [0.4,0.6]N(A4,B,C are ground
atoms). Let 7T'=TwWw;sF. By definition above T"= {(4 AipeB Ninc C):
[0.4,0.6],4 : [0.4,1],B:[0.4,1],C : [0.4,1]}.We notice that T'[(4 Aw. B)] = [0.16,1].
However, it is clear that F = (4 Ay, B) : [0.4,1].

The following strategy is more complete than elementary b-cache updates, but is
also more difficult to compute.

Definition 84 (Full b-cache update). Let T be a b-cache, F be a basic formula. We de-

fine a full b-cache update strategy (denoted Wp,) as follows:

1. Case 1. |F| = M\ (Fis atomic). TWp, F: u=TW, F : p

2. Case2.Let F=F x,---¥,F,, m<b.Let By, ...B; be all the subformulas of F of
size <m. We declate TWyF:u=TWyF : Wy B :md,(1t) Wep ... Wep
By md,(p).

3. Case3. |[F| > b.Let F =F *,---M,F,. Let By, B,,...B; be all subformulas of F
of size <b. Then T W, F @ pt = (T Wy F) Wep By = md,,(1t) Wep - . . Wep By = md,, ().

The following result tells us that the full h-cache update strategy is more complete
than the elementary b-cache update strategy.

Proposition 85. (i) (Vb > 0)fb > eb (ii) f1 = el = pat update strategy.

Proof. (i) Let b >0, T € 7, F € bfy(B,) and p € C|0, 1]. Three cases are possible:
1. |F| =1 (i.e., Fis atomic). In thiscase T Wy, F : u =T W, F: u=T W F : .
2. 1< |F|<b. Let B;...B; be all proper subformulas of F. Then
T Wep {F : ,u} =T H‘JebF iy Wep Bl : mdp(,u) Wep - - - Wep Bk : mdp(,u) Then, by defini-
tion of an update strategy, CN(T W, F : 1) C CN (T Wy, {F : pu}).
3.|F| > b. Let Sy = {B, ... By} be all subformulas of F; let S¢ = {Gy, ..., G,} be all
subformulas of F of size strictly less than b and Sy = {H,,...H,} be all subfor-
mulas of F of size of exactly b. Clearly Sz = Sy U Sg.

Using the commutativity property of b-cache update strategies we can obtain
the following:T Wp, F 2 = (T Wy F 2) Wep By = md, (1) Wep - . . Wep By = md, ()N
= (T L‘!‘Jpa, F) Wep SH L+JebSG = T&JebF : ,LtL‘!‘Jeb Sg.

From this we immediately conclude CN(T W, F :) C CN(T Wy F :).

(i1) Same as the proof of part (ii) of Proposition 82. [

As the reader may easily notice from the definitions, implementing atomic updates
is easy, however, PAT is more efficient than the elementary b-cache strategies eb,
which get less efficient as b gets larger — and finally, implementing the full b-cache
strategies is hardest of all, with the efficiency of these updates degrading as b increas-
es. This will become apparent from the examples shown in the next section.

5.5. Proof procedure for HP-programs with b-cache

In the previous section, we presented a query refutation procedure for hybrid
probabilistic programs. We now modify that refutation procedure for the case of
query resolution from an hp-program with b-cache.

Informally the desired resolution procedure works as follows. Initially we have
query Q, program P, a b-cache update strategy u and our b-cache T is (initially) emp-
ty. On each resolution step, we select a basic formula F : p from current query and
perform a lookup for the probability range of this formula in our current b-cache. To
do this we have to compute T'[F]. Once T[F] is computed we compare it to u. In case
T[F] C u we consider the current resolution step done. Otherwise, we use refutation
procedure described above to perform one resolution step. If we decide that this res-
olution step resulted in proving new basic formula, we use b-cache update strategy u
to update the current b-cache with one or more newly proven formulas.

Definition 86. Let 0 = 3(F : yy A--- A F, : u,) be an initial query to hp-program P.

A b-cache supported initial query O is defined as follows: Let F;, : g, ... F, : i, bean

arbitrary permutationof Fy : yy A --- NF, : n,. Then O = ((F p;,,0),...,(F, : p;,,0)).
Any initial b-cache supported query is a b-cache supported query.

It is clear from the definition above that one query to P of size n can generate
n! different b-cache supported queries.

Definition 87. We define a b-cache supported resolvent and a b-cache update proce-
dure simultaneously. Let P be an hp-program, 7'— a b-cache and u - a b-cache update
strategy. Let Q =({(Gr: 1, 8), .., (Gt Wy, Sm)), where foreach 1 <i<m, S, is a set
(possibly empty) of annotated basic formulas (not necessarily ground). Two cases
have to be considered:

1. There exists (i, ®) € T[G], such that, u C u,. Let C = G0 : y —. Then

0"= (G20 : 11,,8:0),...,(G,0O : p,,S,0))N
is a b-cache supported resolvent of Q and C.
A b-cache update procedure ¢, for this case can be defined as follows:
¢, (0, T,C,0) =T14,S06.
2. There is no (i/,0") € T|G,], such, that p/ Cyu,. In this case, let
C=G:L—F : N ANF,:2,, G unifies with G via max-gu © and 1 C p,.

Let F, @ 4; ... F, : /;, be any arbitrary permutation of Fy : 4y A+ AF, : 4.
We deﬁne a b- cache supported resolvent of O, C and T to be

QmE <(E1@ N)L,-l,@), e (z,,@)Lln,SIQ U {GIQ}) (Gz@ . ,U,Z,Sz@), ceey (Gm@

: :um7 SWI @)> :
A b-cache update procedure for this case is defined as follows:
(a) Body of C is empty.

$,(0,T,C,0) =T, G0 :1,56.
(b) Body of C is not empty.

$,(0,T,C,0) =T

Definition 88. Let P be an hp-program, Q — a query and u — a b-cache update strat-
egy. A b-cache supported refutation of Q from P via HRjp is a finite sequence

<Q\17C17@17Tl> </Q\r7Cr7@r7 T;”>7

where

0, is b-cache supported initial version of Q.

7 =01

0, is empty.

foreachlgigreillgtrPl—C,-orT,-l—Ci. R

for each 1 <i < r, Qi is a b-cache supported resolvent of Q; and C; with max-gu
..

for each 1 <i <r, Toy = $,(0;, T}, Ci, ©,)N

Example 89 (2-cache supported hp-refutation with elementary update strategy). Let
us return to the hp-program shown in Example 65 and the query considered there.
We present below, a refutation using a 2-cache (i.e. b = 2) using the strategy e2,
i.e. elementary 2-cache update. The reader will notice that using this strategy cuts
the number of steps in the resolution by 3 steps, leading to an over 20% reduction
in the length of a proof. Note that had we used a different update strategy, the reduc-
tion may have been different.

L. 01 ={((a:[09,1],0),(e:[1,1],0))N
Ti=0:P3C—a:[1,1] — (b ApacAmd): [0251]Af: [0.5,0.].

2. 05 = (b Awa @ A d) ¢ 0.25,1],0), (f [0.5,0.9), {a : [1, 1]}), (e : [1, 1],0))1
T=0:PF C = (bAmcAmd): [03,1] — (¢ Apad) : [0.3,1].

3. Q3 = <((C /\ind d) . [03, 1],
{(b Nipa € Nina d) : [0.3,11}), (f : [0.5,0.9],{a: [1,1]}), (e : [1,1],0)) \
T3:(Z),P|_C3 (C/\mdd) [03 1]<— \

4. 04 =((f:[05,0.9],{a: [1,1]}), (e : [1,1],0))\

Ty = (T3 Wy (¢ Nipa d) = [0.3, l])) Wae (b Aing € Nina d) = [0.3,1] = {c : [0.3,1],
d:[0.3,1],6:[0.3,1], (¢ Aia d) : [0.3,1], (b Aia ©) : [0.3,1], (b Njwa d) : [0.3, 1]}N
PECy=f:10.7,09] < b: [1,1].

5.0s={(b:[1,1,{f :10.7,09],a: [1,1]}), (e : [1,1],0)) \

Is = T4§T[b] = [0'37 1] Z [15 1]§
P>Cs=b:[1,1] — (c N d) : [0.3,1].

6. Q6:<(c/\md d): , a:[1,1]} (e: [1,1],0))N
Ts=Ts =Ty Ts (C/\mdd)]z[,l]g[
7.07= <((1, 1],0)n
T = (T Wae (¢ Aiga d) 1 [0.3,1]) Wa {b: [1,1],/:[0.7,0.9],a: [1,1]} = {c:]0.3,1],
d:[0.3,1],6:[1,1],(c Aa d) : [0.3,1],
(b Nipa €) :10.3,1], (b Aipa d) : [0.3,1], 1 :[0.7,0.9],a : [1,1]}N
P3Cr=c:[1,1] < (b Npa € Nina d) [0.25,1] A f :[0.5,0.1].
8. Os = (b Nina ¢ Nina d) : [0.25,1],0), (f : [0.5,0.1], {e : [1,1]}))N
T8:T7;T8[(b/\ind0/\md)]:[37 1] [025 1]
9. Qo = ((f:[0.5,0.1], {e: [1,1]))}
Ty =Ty = T5; Io[f] = [0.7,0.9]
10. Oy =0

The following two important results state that irrespective of which update strat-
egy is used, b-cache supported hp-refutations are guaranteed to be sound and com-
plete. (Completeness assumes that the program P is consistent). The proofs are
straightforward, as we know that HRp is sound and complete, and the b-cache sup-
ported hp-refutation via HRp is just its conservative extension.

N
C [0.5,0.9n

Theorem 90 (Soundness of b-cache supported hp-refutation via HRp). Let P be an
hp-program, Q be an initial query, and & be any update strategy. If there exists a b-
cache supported refutation via HRp of Q = 3(Fy : yy A--- NF, :) from P with the
answer substitution © then P =N((Fy : yy A - NF, o w,)0).

Proof. Suppose

<@\17C1a@1aTl> </Q\V7Cr7@r7 Tr>m

is a b-cache supported hp-refutation of Q w.r.t. HRp. We proceed by induction on r.
Base Case (= 1). In this case, as 7} = (), it is immediate that (0, Cy, ©;) is an
HRp-refutation of Q and the result follows immediately by the soundness theorem
for HRp-refutations.
Inductive Case (r + 1). Consider the b-cache supported refutation

(05,Cs,0,,T3)...(0,,C,, 0,, T,)N

— 1t is easy to see that this may be viewed as a b-cache supported refutation of
O, from P U T,. Hence, by the inductive hypothesis, (PUT)EN
(V)0,0"where ®' = ©,--- O,. But T, only contains ¢,(Q;,T;,Ci, @) and as u is a
b-cache supported update policy, it follows that CN((P U T3))N
D CN(¢,(01, T, Cy,0,))—hence, ¢,(01,T1,C1,0,) E (P U T) and we are done. [

Theorem 91 (Completeness of b-cache supported hp-refutation). Let P be a consis-
tent hp-program which satisfies the fixpoint reachability conditions let Q"be a query,
and W be any update strategy. Then, if P |= 3(Q') then there exists a b-cache supported
hp-refutation of Q"from P via HRp.

Proof. The proof is immediately obtained from the fact that every HRp-refutation is a
b-cache supported refutation — to see why, observe that the fourth bullet in the def-
inition of a h-cache supported refutation requires either P - C; or T+ C;. The first

case is the same as for HRp refutations, and thus, every HRp-refutation is a b-cache
supported refutation. As HRp-refutations are complete, so are b-cache supported ref-
utations. [

Though we have not implemented the proof procedures described in this paper,
two proof procedures for hybrid probabilistic programs have been implemented
since the initial version of this paper was circulated. The first implementation, by
Terrence Swift at the University of Maryland, uses the XSB system [29] to implement
a large fragment of HPPs. The second is an implementation of a somewhat different
fragment of HPPs by Stoffel at the University of Neuchatel in Switzerland. Stoffel in
particular, has also suggested some performance-enhancing optimizations to the
methods described here.

6. Related work and conclusions

Logic knowledge bases have been extended to handle fuzzy modes of uncertainty
since the early 1970s with the advent of the MYCIN and Prospector systems [12].
Shapiro was one of the first to develop results in fuzzy logic programming [32]. Bald-
win [2] was one of the first to introduce evidential logic programming and a language
called FRIL. Van Emden [38] was the first to provide formal semantical foundations
for logic programs that was later extended by Subrahmanian [34] and then complete-
ly generalized in a succession of papers by Blair and Subrahmanian [4], and Fitting
[14], Ginsberg [15], and applied to databases by Kifer and Li [18] and Kifer and
Subrahmanian [19]. Al the above works did not obey the laws of probability.

The first works in the area of probabilistic logic programming were due to Ng and
Subrahmanian who, in a series of papers [25,27], developed techniques for probabi-
listic logic programming under the assumption of ignorance. Their work built upon
earlier work on probabilistic logics due to Fagin and Halpern [13] and Nilsson [28].

In contrast, Kiessling and his group [16,37,31] have developed a framework called
DUCK for reasoning with uncertainty. They provide an elegant logical axiomatic
theory for uncertain reasoning in the presence of rules, and using the independence
assumption.

Perhaps the most significant related work is the elegant recent work of Lakshma-
nan’s group [22,21,23,33]. Lakshmanan’s group [23,33] have been developing a para-
metric framework to represent varied probabilistic strategies in logic programs. This
work, which was developed slightly ahead and independently of this paper?, can ex-
press some of what we try to express here, though there is no support for basic for-
mulas in the heads of rules, and hence there is also no need for decomposition
functions. However, by a rather complex translation that significantly increases
the size of a program, and by introducing specially programmed functions, they
can express some hp-programs with atoms (not basic formulas !) in the heads in their
syntax. Thus, the two approaches share a common intersection, but neither appears
to subsume the other.

4 Actually, the first paper that allows different conjunction and disjunction strategies to be incorporated
into logic programs was [35].

In addition, Lakshmanan and his colleagues complement our results with elegant
query optimization results. Developing such results in the general setting of hp-pro-
grams remains a significant challenge, and will need to build upon the foundation
laid by them in that arena. In contrast, our work offers a variety of cache-based que-
ry processing algorithms that complement their query optimization work, and merg-
ing the two offers much promise because query processing and optimization using
materialized views (which is what a cache is) is well known to be very useful in en-
hancing performance [1].

There has been a substantial body of work on probabilistic extensions of relation-
al databases, which we do not discuss here as their relation to logic programming is
not immediate. For the sake of completeness, such works include [3,7,11,17,20]. In
particular, [20], among other things, introduces a set of operations on data which
compute probabilities of compound events based on probabilities of simple events
and the assumptions about the connections between the events. Our current work
extends the framework of Ref. [20] onto logic programming by adding a notion of
a “‘decomposition” function, which guides the computation of the probabilities of
simple events based on the probability of the compound event.

In sum, our paper’s goal was to provide a flexible probabilistic logic programming
framework. Past approaches to logic programming with probabilities assumed that
knowledge about all events in the real world represented by propositional symbols or
predicate symbols took one single form — either we assumed ignorance of all depen-
dences between such events (e.g. [25]) or we assumed independence (e.g. in most Al
expert systems). In practice however, a probabilistic logic programming system must
be flexible enough to allow the logic programmer to explicitly specify any domain
specific knowledge he has about dependences (or lack thereof) between events.
Our approach allows this, through the use of syntactic connectives that represent
generalized conjunction/disjunction strategies. We have provided a formal model
theoretic and fixpoint semantics for such hp-programs and shown that they are
equivalent. We have further proposed three alternative execution paradigms for
hp-programs.

In future work, we plan to build an hybrid probabilistic deductive database sys-
tem that incorporates many of the ideas proposed in this paper. This system will
be built on top of our ProbView [20] probabilistic relational database system. We
hope to use this implementation, when complete, to experiment with different prob-
abilistic query evaluation algorithms such as those described here, as well as proba-
bilistic query optimization techniques that we hope to develop in the future. In
addition, we are working on temporal-probabilistic extensions of the HPP paradigm.

Acknowledgements

This work was supported by the Army Research Office under Grants
DAAH-04-95-10174, DAAH-04-96-10297, and DAAH04-96-1-0398, by the Army Re-
search Laboratory under contract number DAAL01-97-K0135, by an NSF Young In-
vestigator award [R[-93-57756, and by an award from Lockheed Martin Advanced
Technology Labs. We would like to thank the anonymous reviewers for pointing out
a bug in an earlier version of the paper and for a number of useful comments.

Appendix A. Proof of Proposition 1

In this section we provide the complete proof of Proposition 5, which states that
all strategies defined in Section 2.1 are indeed coherent, conjunctive or disjunctive
p-strategies.

Proposition 5 inc, igc and pcc are continuous conjunctive coherent p-strategies. Simi-
larly, ind, igd, pcd and ncd are continuous disjunctive coherent p-strategies.

Proof. First we notice that all the composition functions under consideration satisfy
the axiom of Separation. Indeed in the definition of every composition function
Cines Ciges Cpecs Cind, Cigd Cped» Cnea the lower bound of the result is dependent only on
the lower bounds of the arguments and similarly, the upper bound of the result de-
pends only on the upper bounds of the arguments. Also, we notice that all compo-
sition functions mentioned above are continuous as all the functions that compute
their lower and upper bounds are continuous in both arguments. Now, we prove
the rest of the axioms for each individual strategy.
e inc is a conjunctive coherent p-strategy.
oflnc is a conjunctive p-strategy.
Let us establish that inc satisfies all the axioms of a conjunctive p-strategy.
1. Commutativity. C,-,,C([Cll,bl}, [(lz, bz]) = [alaz, blbz] = [azal, bz, bl] = Cinc

([az, b2], [ar, bi]).

2. Assomatmty c,m(c,m([al,bl] [az,bz]) [a3,b3]):cinc([alaz,blbz},[a3,b3])
[a1a2a3,b b2b3] [al(azag),b (b3)]:c,-,,c([a1,bl],[a2a3,b2b3])ﬂ =Cinc
((la1,b1]) ¢ine([a2,b2), [a3,b3]))-

3. Inclusion Monotonicity. Let [ay,b)] C [a3,bs], ie. a3 =a; =0
and 0 < b] < b3.

Cinc([abblL [027172]) = [alaz,blbz]-

Cine([a3, b3], [az, bo]) = [azas, b3bs].

a, = az = 0 1mphes aja, = asay; 0 < b] < b3 1mphes b1b2 < b3b2, which in

turn, means that [ayay, b1by] C [azay, b3by).

4. Bottomline. cinc([ahbl], [Clz,sz = [6116127b1b2]. Since O<a17a2 < 1,
aap < a and ayap < aj, ie. a)ay < min(al, az).
Similarly, since 0 < by, by < 1, b1by < min(by, by).

This implies [a;a2,b1b;] < [min(ay, az2), min(by, by)].

5. ldentity. ci,.([a,b],[1,1]) =[a- 1,b- 1] = [a,b]\

6. Annihilator. ¢;,.([a, b],[0,0]) = [a- 0,5 - 0] = [0,0].

ofinc is a coherent p-strategy.

We know that dlm([]) {<[a1,] [az,b2]>|[a1a2,b1b2} = [a,b]}, i.e.,
([a1, b1], [az, b2]) € dine([a, b])r]ﬂ' Cine([ar1, b1], [a2, b2]) = [a, b], which means that
inc is a coherent p-strategy.

e jgc is a conjunctive coherent p-strategy.
ofigc is a conjunctive p-strategy.

Let us establish that igc satisfies the axioms of conjunctive p-strategy.

1. Commutativity. ce.([a1,b1],[a2,b2]) = [max(0,a; +a, — 1), min(by, b,)]
[max(ay +ay — 1,min(by, bs)] = ciee([az, o], a1, bi]).

2. Associativity. cie(Cipe([a1,b1],]az,b5)),[as,bs]) =Mtie.((max(0,a; +a,—1),
min(bl,bz)],[a3,b3]):ﬂ

=N

=N

[max(0,max(0,a; +a,—1)+a;—1),min(min(b,b,),b3)] =N
[max(0,0+a3 — 1,(11 +ar+as —2),min(b1,b2,b3)}ﬁ
=[max(0,a; +ay+a; —2),min(by,b,,b;3)] = [max(0,a; +max(0,a;+a;—1)N
—l),min(bl,min(bz,b3))]rtc,~gc([a1,bl],c,-gc([az,bz],[a3,b3])).

3. Inclusion Monotonicity. Let [a;,b] C[a3,b;], i.e. a1 = a3 =0and 0<b,
<bs.

C,‘gc([tll,bl}, [az, bz]) = [max(O, a; +a, — 1), min(bl, bz)]

Cigc([LZ}, b;], [612, bz]) = [max(O, as + a, — 1), min(b3, bz)]

Since a = ay = 0, a; +a; — 1 = az+ay — 1, i.e., max(O,m +a; — l)ﬂ

> max(0,a3 +ar — 1).

Since 0<b;<b;, min(by,b,) < min(bs,b,). From this we obtain

c,»gc([al,blL [a27b2]) = [maX(O,d] +a;— 1),min(b1, bz)] - [max(O,a3 “+a, — 1),

min(b3,b2)] = c,-gc([a3,b3], [az,bz]).

4. Bottomline. C,-gc([a1 , b]], [az, bz]) = [max(O, a +a, — 1),min(b1,b2)].

Clearly, 0 < min(ay, ay). Also since a, < 1, a; + a — 1 < a;. Similarly, since

a1 <1, a;+a; — 1 <a,. The two inequalities allow us to deduce that

ay + a, — 1 < min(ay, a;)rand, therefore, max(0,a; + a; — 1) < min(ay, a;).

From this we obtain [max(0,a; + a; — 1), min(by, b,)]N <, [min(a;, ay),

min(b1,b2)].

5. Identity. c;.([a,bd],[1,1])N= [max(0,a + 1 — 1), min(d, 1)] =Nmax(0, a),

min(b, 1)] = [a, b].
6. Annihilator. c¢;.([a, 5], [0,0]) = [max(0,a + 0 — 1), min(b,0)] = [0, 0].
ofigc is a coherent p-strategy. Let [a, b], [a1, b1], [a2, b2] € CI0, 1].
Let ([a1,b1], (a2, b2]) € dig([a, b]). We consider the following two possibilities
for the relationships between a, a; and ay:
a =0 and a; + a, < 1. In this case max(0,a; +a, — 1) =0 =a.
a>0and a; +a, — 1 =a.

As far as the relationships between b, by and b, are concerned, by definition
of dige, b=bifby<byanb=>b,if b,<b;, which means that
b= mil’l(bl,bz).

Combining our results together we obtain: c([a1, bi], [a2, b2])N

= [max(0,a; + a — 1),min(by, by)] = [a, b].
Let cig.([a1,b1], [a2,b2]) = [a,b]. Then, we know that [a,b] = rmax(0,a;+N
a — 1), min(by, b;)]. This means that if ¢ =0, max(0,a; +a, — 1) =0, i.e.,
ait+a<landifa>0thena=a; +a,— 1.

Similarly, b = min(b;,b,)N implies, b= b, when by <b, and b =b,

when b, < b;.
This means that by definition of di,. ([a1, b1], [a2, b2]) € diee([a, b]).
e pcc is a conjunctive coherent p-strategy.
ofpcc is a conjunctive p-strategy.
Let us establish that pcc satisfies the axioms of conjunctive p-strategy.
1. Commutativity. c,.([a1,b1],[az,b,])=[min(a;,a,),min(b;,b,)]=N[min(a,,
Cll), min(bz,bl)chcc([az,bﬂ,[611,bl])ﬂ
2. Associativity. cpec(cpec([a1,01],[a2,02]),]a3,b3])=cpec ((min(ay,a,), min(by,
bz)],[a3,b3]):[min(min(a] ,az),a3),min(min(b1 ,bz),b})]:m [min(al ,az,a3),
(min(by,b,,b3)]N =[min(a;,min(az,a3)),min(b;,min(b,,b3))N =cpec([a1,b1],
Cpec ([a2,02],[as,b3])).
3. Inclusion Monotonicity. Let [a),b,]Clas,b;], i.e. a; =a; =0and0<b <bs.

CPCC([Cll s bl], [az, bz]) = [min(al, 612), min(bl, bz)]

Cpcc([(13, bz], [az, bz]) = [min(ag, a3), min(bl, bz)]

Since a; > a3; >0, min(a,a,) > min(as,a;3); since 0< b < b,

min(by, by)] < min(by,b,)]. This implies [min(a;,a,), min(by, b2)] CN

[min(a3,a3),min(b17b2)].

4. Bottomline. ¢, ([a1,b1],[a2,b,]) = [min(a,,a,),min(by, b)), [min(a;,a,),
min(by,b,)|rGsince <, is reflexive).

5. Identity. c,..([a,b],[1,1]) = [min(a, 1), min(b, 1)] = [a, b].

6. Annihilator. c¢,.([a, b], [0, 0]) = [min(a, 0), min(b, 0)] = [0, 0].

ofpcc is a coherent p-strategy.
Let [a, b]7 [611, bl], [az, bz] S C[O7 1]
Let ([a1,b1], [a2, b2])N € dpee([a,b]). Then either a=a; and a = a; or a
= a, and a; = a,. In either case a = min(ay, a).

Similarly, since either b = b, and b, = by or b = b, and by = by, we get

b= min(bl,bz).

Therefore cp..([a1, b1], [a2, b)) = [min(a1, a>), min(by, b,)] = [a, b].

Let cpcc([al,bl], [le,bz]) = [a,b]. Then a= min(al,az)(and b= min(bl,bz).
This means that either ¢ = a; and a, > a; or a = a, and a; > a, and similar-
ly, either b= b, and b, > b or b = b, and b; > b,. But this means that
<[alvb1]v [a2’ b2]> € dPCE([av b])
e ind is a disjunctive coherent p-strategy.
ofind is a disjunctive p-strategy.
Let us establish that ind satisfies the axioms of disjunctive p-strategy.

1. Commutativity.
ca([ar,bi], (a2, b3]) = a1 + ay — ayaz, by + by — b1by] = [a,
+ay — aray, by + by — byby| = cipa([az, by), [ar, by]).

2. Associativity. c,»,,d(c,-,,d([al, bl], [a27 bz])7 [a3, bg]) =N c,—,,d([al +a, —aas,
b1+b2—b1b2],[a3,b3]):[a1+a2—a1a2+a3—(al+a2—a1a2)a3,b1 +b2—b1b2
+b3—(b1+b2—b1by)b3|=[a1+ar+a;—aiay—araz —ayaz+a axa3,b1+by+bsy
—blbz—b2b3—b1b3 —|—b1b2b3]=[a1—|—(a2—|—a3—a2a3)—a1(a2—|—a3 —a2a3), b]
+(by+b3—b2b3) —b1 (by+b3—b2b3) | P=Cine ([a1,b2] ,Cine ([a2,b2], [a3,D3]))-

3. Inclusion Monotonicity.

Let [al,bl] - [Cl3,b3], 1e. a = ay = 0 and 0<b1 <b3

cina([ar, b1], (a2, B2]) = a1 + ax — ayaz, by + by — by by].

c,»,,d([a3, bﬂ, [612, bz]) = [a3 + ar — azas, b3 + b2 - b;bz].

Since a = ay = 0, we have a) —ayay = Cll(l — ag) = a3(l — Clz) = a3 — aza

and therefore a+a —arar = az + a, — azas.

Similarly, since 0<b;<b;, we have by —bby=0>b(1-5b)N

<b3y(1 —b;3) = b3 — b3b, which in turn implies that b, + b, — bib,

< by + by — b3by.

From this it follows that |[a)+a —ajay,by+by —biby] C[as

“+a, — asay, b3 + b2 - b3b2].

4. Bottomline. c,-,,d([al,bl], [a27b2]) = [611 +a; — alaz,bl + bz — blbz].

We have to show that a; +a,—aja; > max(a;, a)rand b,

+b2 — b]bz = max(bl,bz).

Indeed, since 0 < aj,a, <1, a» — aja» = 0 and a; — aya, = 0. Therefore,

a; + (az — alag) = a + 0 and a, + ((11 — alaz) = a + 0, ie. a; +a, —ayar

> max(a, as).

Similarly, since 0<by,b,<1, by — biby, =0 and by — b1b, = 0. There-
fore, bl + (b2 — blbg) = bl + 0 and b2 + (bl — blbz) = b2 + 0, 1e. b1 + b2
—b]b2 = max(bl,bz).

5. ldentity. ¢;,y([a,b],[0,0]) =[a+0—ax0,b+ 0 — b 0] = [a, b].

6. Annihilator. ¢;,4([a,b],[1,1]) =[a+ 1 —ax*Nl,b+ 1 —b=N1] = [1,1].

ofind is a coherent p-strategy.

Let [d7b], [al,bl], [dz,bz] S C[O, 1]
Let <[a1,b1], [az, b2]> S d,-,,d([a, b]) Then a; +a, —aja, = a and b, +b,
7b1b2 = b, which means that C,~,7d([a1,az}, [bl s bz]) = [a1 +a, —aas,
b1 + b2 - blbz] = [a,b].
Let c,-,,d([al,bl],[a27b2]) = [Cl,b]. c,-,,d([al,bl],[a27b2]) = [al +a —alaz,bl
+b2 — blbz], which means that a = a +a —a1ar and b = bl + bz — blbz.
Therefore,([a] s b]], [az, bz]) € d,»,,d([a, b])

e jgd is a disjunctive coherent p-strategy.

ofigd is a disjunctive p-strategy.

Let us establish that igd satisfies the axioms of disjunctive p-strategy.

1. Commutativity. cigd([ar1, b1], [a2, b2]) = [max(ay, az), min(1, by + b,)]N
= [max(az, al), Il’lil’l(l7 b2 + b])] = Cigd([az, bz], [al, b]])

2. Associativity. c,»gd(c,-gd([al 5 b]], [az, bz]), [613, b3]) = Cigd ([min(m s az),
max(1l,by +by)], [as, b3]) =N [min(min(ay, ay),as), max(l, max(1,d,
+b2) —|—b3)]ﬂ: [min(a17a2,a3),max(1,b1 +b2 +b3)] = [min(al, min(ag,ag),
max(1,b; +max(1,by +b3))] = ciga([a1,b1], ciga([a2, 2], [a3, b3])).

3. Inclusion Monotonicity.

Let [CI],b]] Q [a3,b3], ie. a = as = 0 and Oébl <b3

cigd([a] s b]}, [az, bz]) = [max(m s az), min(l, b] + bz)}

cigd([a3a b3}a [a27 b2]) = [max(a3, a2)7 min(l, by + bZ)}

Since a; = a3 = 0 we have max(a;,a,) = max(a;,a;). Since 0 < by < b;

we have min(1, by + b,) < min(1, b3, b3).

This implies [max(a;, a;), min(1, by + b,)] C [max(as, az), min(1, b5 + b5)].

4. Bottomline. c;py([ar, b1], [a2, b)) = [max(ay,a,), min(1, by + by)].

We have to show that min(1,b; + b,) > max(b;,b,;). This is clearly so,

since, by,b, <1, ie. max(b;,b)<1, and b,b, =0, ie., b <bh

+b, and b, < by + by, which makes max (b, b,) < b + by, therefore yielding
the desired result.

5. Identity. c;o4([a, 8], [0,0]) = [max(a,0), min(1,5)] = [a, b].

6. Annihilator. c;;4([a, b], [1,1]) = [max(a, 1), min(1,b+ 1)] = [1,1].

ofigd is a coherent p-strategy.
Let [(J b] [al,bl], [az,bz} € C[O, 1]
Let ([a1,b1], (a2, b2]) € dipe([a, D]).
Then either a=a; and a; <a; or a =a, and a; <a,. In either case
a = max(a,a,).

Also, either we have b =1 and b, + b, = 1 or b < 1 and b; + b, = b. In ei-

ther case b = min(1, b; + by).
But then, we get ci([a1, b1], [a2, b2]) = [max(ay, a2), min(1, by + b,)] = [a, b].
Let cigc([al,bl], [az, bz]) = [a, b]

In this case a = max(a;,a)]rand b = min(l, b, + bp). This means that
either a=a; and a, <a; ora=a, and a; <a, and also either
b=1and by +b, =1 o0orb<1and b, + b, =b.

But then, <[a1,b1], [a27b2]> S d,-gc([a,b]).
e pcd is a disjunctive coherent p-strategy.
ofpcd is a disjunctive p-strategy.
Let us establish that pcd satisfies the axioms of disjunctive p-strategy.

1. Commutativity. cpea([ar, b1], a2, by]) = [max (a1, az), max(b;, b)) =N
[max(az, al), max(bz,bl)] = Cpcd([az, bz], [Cll, bl]

2. Associativity. cpt.d(cpcd([al, bl], [az, bz]), [613, b3]) = cpcd([max(al, az),
max(by, by)], [as, b3])N = [max(max(ay,ay),a;), max(max(by, by), b3)|N
= [max(m ,ay, a3), max(b1 s bz, b3)} =N [max(m s I’IlaX(LZz7 (13)), max(bl,
max(by, b))] = cpa(lar, b1, cpea(laz, ba], [a3, b3])).

3. Inclusion Monotonicity.

Let [al,bl] - [a;,b3], 1e. a = ay = 0 and 0<b1 gb}

cmd([al s b]], [az, bz]) = [max(al s az), rnax(b] s bz)}

cpcd([a3, b3], [az, bz]) = [max(a3, az), max(b3, bz)}

Since a; = a3 >0 we have max(a;,a;) > max(as,a). Similarly, since

0 < by < by, we have max(by, by) < max(b;, b,).

This implies [max(a;, ay), max(by, by)] C [max(as, ay), max(bs, by)].

4. Bottomline. c,,cd([al,bl], [az,bz}) = [max(al,az), max(bl,bz)]ﬂg [[max(al,
az)7 max(bl,bz)}.

5. Identity. c,..([a, b], [0,0]) = [max(a,0), max(b, 0)] = [a, b].

6. Annihilator. ¢,.,(|a, b],[1,1]) = [max(a, 1), max(b, 1)] = [a, al.

ofpcd is a coherent p-strategy.

Let [d7b], [al,bl], [dz,bz] S C[O, 1]
Let ([a1,b1],[a2,b2]) € dpea([a,b]). Then either a=a; anda; > a,
or a = a, and a, > a,. In either case @ = max(a;,a,). Similarly, we have ei-
ther b = by and b, > b, or b = b, and b, > b,. In either case b = max(by, b,).

Therefore c¢,eq([a1, bi], (a2, by]) = [max(ai, a,), max(by, by)] = [a, b].

Let cpa([ar, 1], [a2,02]) = [a,b]. In this case a=max(ay,az)N
and b = max(b;,b,). This means that either a=a) and a; > a,
ora=a, and a, > a; and also either b = b, and by = b, or b = b, and b,
> by. Therefore, ([a1,b1], (a2, b2]) € dpea([a, b]).
e ncd is a disjunctive coherent p-strategy.
ofmcd is a disjunctive p-strategy.
Let us establish that ncd satisfies the axioms of disjunctive p-strategy.

1. Commutativity. c,.([ar, b1, [a2,5,]) = [min(1,a, +a,), min(1,b; + b,)]N
= [mln(l, a) + Cll)7 min(l, b2 + b])]ﬁi C,,Cd([az, bz], [al, b]])

2. Associativity. c,,cd(c,,cd([al, b]], [612, bQD, [613, b3])ﬂ: c,md([min(l, a —|—a2),
min(1,b; + b,)], [as, b3]) = [min(1,min(l,a; + @3) +a3), min(l, min
(L,by +by)+b3)]=[min(l,a, +ay+a3),min(1,b; +b, +b;3)]=[min(1,a
+min(l,a, +a3)),min(l,by +min(1,b,+b3))] = cuea([a1,61],Cnea([az,b2],
[as,b3])).

3. Inclusion Monotonicity.

Let [al,bl] - [a37b3], 1.e. a = ay = 0 and 0<b1 <b3

cmd([al, b]], [az, bz]) = [min(l,m + az),min(l,bl + bz)]

c,wd([a_g, b]], [03, bz]) = [mln(l, as + az),min(l, b3 + bz)]

Since a;>a3>0 we have a;+a,>a3+a, and therefore,

min(1l,a; + a;) = min(1,a; + a). Similarly, since 0<b; <b;, we have

min(1,5; + by) < min(1, b3 + bs).

This implies [min(1,a; + ap), min(1, by + b,)] C [min(1, a; +a),
4. Bottomline. c,,cd([a] s b]], [612, bz]) = [mll’l(l, a; + 612), I’Ilill(l7 b] + bz)]
We need to show min(l,a; +a2) > max(a;,a)rand min(l,b; +b2)N
> max(by, by).
Since, a1,a, < 1, we can get max(a;,ay) < 1, and since aj,a; > 0, we have
a; <ay + a; and ay < ay + ap, which makes max(a;,a;) < a; + ay.
Similarly, since, b, b, < 1, we can get max(b;,b;) < 1, and since by, b, = 0,
we have b; < b, + b, and b, < by + by, which makes max(by, b,) < b; + b,
therefore yielding the desired result.
5. Identity. c,.4([a, b],[0,0]) = [max(a,0), max(b,0)] = [a, b].
6. Annihilator. ¢,.,([a, b],[1,1]) = [max(a, 1),max(b, 1)] = [1, 1].
ofmicd is a coherent p-strategy.
Let [a,b], [a1,b1], [az,bz} S C[O, 1]
Let ([ai,bi],[az2,b2]) € duea([a,D]). Then we know that either a =1 and
ai+a; = 1ora<1and ay + a = a. This implies « = min(1,a; + ay). Sim-
ilarly, either b=1 and b; + b, = 1 or b < 1 and b + b, = b, which, in turn
implies » = min(1,b; + b,).
From this it follows that C,,ag([al s b]], [az, bz]) = [mln(l, a —|—a2),
min(1, b, + b)) = [a, b].
Let Cnm'([al, b] [a27 bz]) = [a, b] Then a = min(l, a; + az)mnd b =N
min(1,b; + b,). This means that if a=1thena +a,>1 and if
a < 1 then a; + a = a. Similarly, we get : if =1 then by +b, > 1 and if
b < 1 then by +b, =b.
From this we infer {[a;,b1], [ay, b3]) € d,ca([a, b]).

References

[1] S. Adali, K.S. Candan, Y. Papakonstantinou, V.S. Subrahmanian, Query processing in distributed
mediated systems, Proceedings of 1996 ACM SIGMOD Conference on Management of Data,
Montreal, Canada, June 1996.

[2] J.F. Baldwin, Evidential support logic programming, J. Fuzzy Sets and Systems 24 (1987) 1-26.

[3] D. Barbara, H. Garcia-Molina, D. Porter, The management of probabilistic data, IEEE Trans. on
Knowledge and Data Eng. 4 (1992) 487-502.

[4] H. Blair, V.S. Subrahmanian, Paraconsistent logic programming, Theoret. Comput. Sci. 68 (1989)
135-154.

[5] L. Blum, M. Shub, S. Smale, On a theory of computation and complexity over the real numbers: NP-
completeness recursive functions and universal machines, Bulletin (New Series) of the American
Mathematical Society 21 (1) (1989) 1-46.

[6] G. Boole, The Laws of Thought, Macmillan, London, 1854.

[71 R. Cavallo, M. Pittarelli, The theory of probabilistic databases, Proceedings of VLDB 1987.

[8] W. Chen, D.S. Warren, A goal-oriented approach to computing well-founded semantics, in: K.R. Apt
(Ed.), Proceedings of 1992 International Conference on Logic Programming, MIT Press, Cambridge,
1992.

[9] A. Dekhtyar, V.S. Subrahmanian, Hybrid probabilistic logic programs, in: L. Naish (Ed.),
Proceedings of 1997 International Conference on Logic Programming, MIT Press, Cambridge,
1997.

[10] S. Dietrich, D.S. Warren, Extension tables: memo relations in logic programming, SUNY
Stonybrook Tech. Report 86/18 (1986).

[11] D. Dubois, H. Prade, Certainty and uncertainty of vague knowledge and generalized dependencies in
fuzzy databases, in: Proceedings of International Fuzzy Engineering Symposium, Yokohama, Japan,
1988, pp. 239-249.

[12] R.O. Duda, P.E. Hart, N.J. Nilsson, Subjective Bayesian methods for rule-based inference systems,
Proceedings of National Computer Conference, 1976, pp. 1075-1082.

[13] R. Fagin, J. Halpern, Uncertainty, Belief and probability, in: Proceedings of IJCAI-89, Morgan
Kaufman, Los Altos, 1988.

[14] M.C. Fitting, Logic programming on a topological bilattice, Fundamenta Informatica 11 (1988) 209—
218.

[15] M. Ginsberg, Multivalued logics: A uniform approach to reasoning in artificial intelligence,
Computational Intelligence 4 (1988) 265-316.

[16] U. Guntzer, W. Kiessling, H. Thone, New directions for uncertainty reasoning in deductive
databases, Proceedings of 1991 ACM SIGMOD, 1991, pp. 178-187.

[17] W. Kiessling, H. Thone, U. Guntzer, Database support for problematic knowledge, Proceedings of
EDBT-92, Springer LNCS Vol. 580 1992, pp. 421-436.

[18] M. Kifer, A. Li, On the semantics of rule-based expert systems with uncertainty, in: M. Gyssens, J.
Paredaens, D. Van Gucht (Eds.), Proceedings of Second International Conference on Database
Theory, Springer Verlag LNCS 326, Bruges, Belgium, 1988, pp. 102-117.

[19] M. Kifer, V.S. Subrahmanian, Theory of generalized annotated logic programming and its
applications, J. Logic Program. 12 (4) (1992) 335-368.

[20] V.S. Lakshmanan, N. Leone, R. Ross, V.S. Subrahmanian, ProbView: A flexible probabilistic
database system. ACM Transactions on Database Systems 22 (3) (1997) 419-469.

[21] V.S. Lakshmanan, F. Sadri, Modeling uncertainty in deductive databases, in: Proceedings of the
International Conference on Database Expert Systems and Applications (DEXA’94), 7-9 September
1994, Athens, Greece, Lecture Notes in Computer Science, vol. 856, Springer, Berlin, 1994, pp. 724—
733.

[22] V.S. Lakshmanan, F. Sadri, Probabilistic deductive databases, in: Proceedings of the International
Logic Programming Symposium (ILPS’94), Ithaca, NY, MIT Press, November 1994.

[23] V.S. Lakshmanan, N. Shiri, A parametric approach with deductive databases with uncertainty, IEEE
Trans. on Knowledge and Data Eng., accepted for publication .

[24] J.W. Lloyd, Foundations of Logic Programming, Springer, NewY ork/London, 1987.

[25] R. Ng, V.S. Subrahmanian, Probabilistic logic programming, Information and Computation 101 (2)
(1993) 150-201.

[26] R. Ng, V.S. Subrahmanian, A semantical framework for supporting subjective and conditional
probabilities in deductive databases, J. Automated Reasoning 10 (2) (1993) 191-235.

[27] R. Ng, V.S. Subrahmanian, Stable semantics for probabilistic deductive databases, Information and
Computation 110 (1) (1995) 42-83.

[28] N. Nilsson, Probabilistic logic, AI Journal 28 (1986) 71-87.

[29] P. Rao, K. Sagonas, T. Swift, D. Warren, J. Freire, XSB: A system for efficiently computing WFS, in:
J. Dix, U. Furbach, A. Nerode (Eds.), Proceedings of the fourth International Conference on Logic
Programming and Non-Monotonic Reasoning, Lecture Notes in Artificial Intelligence, vol. 1265,
Springer, Berlin, 1997, pp. 430-440.

[30] S. Ross, Introduction to Probability Models, Academic Press, New York/London, 1997.

[31] H. Schmidt, W. Kiessling, U. Guntzer, R. Bayer, Combining Deduction by Uncertainty with the
Power of Magic, in: Proceedings of DOOD-89, Kyoto, Japan, 1987, pp. 205-224.

[32] E. Shapiro, Logic programs with uncertainties: A tool for implementing expert systems, in:
Proceedings of the IJCAI 83, William Kauffman, 1983, pp. 529-532.

[33] N. Shiri, On a generalized theory of deductive databases, Ph.D. Dissertation, Concordia University,
Montreal, Canada, August 1997.

[34] V.S. Subrahmanian, On the semantics of quantitative Logic Programs, in: Proceedings of the Fourth
IEEE Symposium on Logic Programming, Computer Society Press, 1987, pp. 173-182.

[35] V.S. Subrahmanian, Generalized Triangular Norm and Co-Norm Based Semantics for Quantitative
Rule Set Logic Programming, Logic Programming Research Group Technical Report LPRG-TR-88-
22, Syracuse University, 1988.

[36] H. Tamaki, T. Sato, OLD resolution with tabulation, in: E. Shapiro (Ed.), Proceedings of the Third
International Conference on Logic Programming, Springer, Berlin, 1986, pp. 84-98.

mailto:R@�.RP@Z

[37] H. Thone, W. Kiessling, U. Guntzer, On cautious probabilistic inference and default detachment,
Annals of Operations Research 55 (1995) 195-224.

[38] M.H. Van Emden, Quantitative deduction and its fixpoint theory, J. Logic Program. 4 (1) (1986) 37—
53.

[39] C. Zaniolo, S. Ceri, C. Faloutsos, R. Snodgrass, V.S. Subrahmanian, C. Zicari, Advanced Database
Systems, Morgan Kaufman, Los Altos, CA, 1997.

