When Plans Distinguish Bayes Nets

Alex Dekhtyar

Judy Goldsmith

Janice L. Pearce

We consider the complexity of determining whether differing probability distributions
for the same Bayes net result in different policies, significantly different policy outcomes
or optimal value functions.

1. Introduction

One of the classic Al problems is that of planning . In recent years, planning
has moved from Blocks World and other toy domains to complex, realistic, and
sometimes mission-critical, scenarios. With this move has come the need, in these
uncertain days, to solve planning problems for stochastic systems.

Whether the system being modeled is a medical scenario or a military one,
a social-service provider network or a university, or a simple vacation ranch with
horse riding, there are uncertainties about the effects of a controller’s actions. These
uncertainties can be modeled as probability distributions over possible outcomes.
The controller’s choices are guided by knowledge of goals or utilities; the controller’s
job is to optimize the expected outcome.

One can model a controlled stochastic system as a Markov decision process: a set
of states, a set of actions and their stochastic outcomes, and the utilities associated

with the states and actions. A planning problem consists of such a model, plus the
time the system will run, and the optimization criterion: total expected reward,
discounted expected reward, etc. However, one can also refer to the model itself as
a planning problem, if time horizon and evaluation criterion defaults exist.

In many of the settings mentioned above, the Markov decision process models
are enormous. One way to manage huge state spaces is to factor them, either by
expressing them in a STRIPS-like model ® or as a Bayes net 26.

A plan or policy for a Markov decision process (MDP) is a function mapping
states to actions. While some have considered stochastic functions, we assume here
that all functions are deterministic, that is, a planning algorithm outputs the same
policy each time it is applied to a given MDP. Papadimitriou and Tsitsiklis showed
that, for infinite horizon policies, the problem of finding an optimal policy is in P
24 Tt is not known what the complexity is for the finite horizon, but it is between
P and NP.

When the domain is represented as a Bayes net, the size of the model might
shrink logarithmically. This does not, however, lead to a corresponding improvement
in complexity, nor does it necessarily cause the size of the actual policies to shrink.
The problem of finding an optimal policy for an MDP in the Bayes net model
is exponential-time hard 23. Note that the translation from MDP to Bayes net is
usually via a dynamic Bayes net, which explicitly represents time steps. However, in
this paper, we do not restrict our consideration to dynamic Bayes nets. The results
apply to either the general Bayes net model or the dynamic Bayes net model.

The problems considered in this paper arise in the process of building Bayes
net models of real-world planning domains. Consider the question: Where do the
numbers come from? There are algorithms for learning conditional probabilities
from data, and there are techniques for eliciting probabilities from experts. Suppose
that two experts are consulted, or two sets of data, or that an expert’s predictions do
not match those learned from data. It is not always clear how to combine differing
conditional probabilities.

The problem of combining knowledge from different sources in probabilistic mod-
els (also known as the information fusion problem) ° is a challenging one. If, for
instance, the probabilities come from independent data sources of known sizes, one
can take an average of the probabilities, weighted by the size of the sample 29-22.
However, if the relative importance or reliability of sources is not known, it is more
difficult to choose weights. The problem of fusion of interval probabilities — an ap-
parently easier problem, since intervals can be combined via union or intersection
— is addressed by Ferson, et al. 7; in that work, the authors discuss the various
properties different amalgamation or fusion methods might have. None are shown
to be optimal for all circumstances.

In the best of all possible worlds, if one knew that the two sets of
conditional probabilities led to the same policies, the differences in the
conditional probabilities would not matter. If it were easy to determine this,
then one could circumvent the fusion problem in such cases.

The problem addressed in this paper is to determine whether a particular plan-
ning algorithm, and two different sets of conditional probability distributions for a
Bayes net, yield equivalent policies.

We consider two different notions of equivalence for policies. Given a particular
planning algorithm, and two different sets of conditional probability distributions
for a Bayes net, we get two policies. We ask whether those policies:

e are the same;
e have the same expected rewards or probabilties of success.

Note that we are assuming that the planning algorithms run in polynomial time.
Implicit in that assumption is that they do not necessarily find optimal policies.
Thus, the planning algorithm must be a component of the input in the complexity-
theoretic problem. As it happens, the proofs given in this paper also give hardness
results for optimal policies.

We show that the problem of determining, for a given (polynomial-time) plan-
ning algorithm and two Bayes nets for the same dependency graph, whether the
policies produced are the same is coNP-complete.

We make the simplifying assumption that policy evaluation is in P. Given this,
we show that determining, for a given (polynomial-time) planning algorithm and
two Bayes nets for the same dependency graph, whether the policies produced have
the same expectation of success or the same expected reward is coNPYF-complete.

Note that the brute-force solution to these problems is to apply the planning
algorithm directly to both Bayes nets and compare the policies and their expected
outcomes. However, the policies themselves could be exponential in the size of the
model, the time needed to find them could be equally large, and the time needed to
simply evaluate them might also be exponential. We ask, is there a faster method?

If P # NP, these problems are not in P. However, showing that problems are
NP- or coNP-complete immediately indicates the possibility of applying well-studied
heuristics. In fact, showing that a problem is NPFF or coNPPP—complete also leads
to the consideration of heuristics 20-21:19.

2. Definitions

In this section, we formally define Bayes net representations of planning problems,
and planning algorithms.

Definition 1. Let V = {v1,...,v,} be a set of random variables with domains
dom(vy),...,dom(v,) respectively, all finite.

A Bayes net B consists of a directed acyclic graph (DAG) G = (V, E), and a set
of conditional probability distribution functions P, : dom(parents(v)) x dom(v) —
[0,1] for each v € V, such that for each set of values of parents(v), P, defines a
probability distribution over dom(v).

A dynamic Bayes net or two-phase temporal Bayes net is a Bayes net on a

directed, acyclic bipartite ® graph G = (V,V', E), where |V| = |V'| and the nodes
in V have in-degree 0. The nodes in V' represent the same state variables as those
in V', but at a subsequent time step. This allows us to address the frame problem:
How does a node’s current state affect its next state? It also allows us to explicitly
model Markov decision processes.

A total state s of B is a total function s : V. — U, dom(v;) such that s(v;) €
dom(v;), for all 1 < i < n. Let S be the set of all possible states of the system.

A partial state s' of B is a partial function s’ : V. — UL dom(v;) such that
s'(v;) € dom(v;), for all 1 < i < m.

We often abuse terminology by referring to both total and partial states as
simply states. Note that |S| is generally exponentially larger than the number of
random variables |V].

We can interpret a function P, as a probabilistic function from the values of
parents(v) to the values of v. In this interpretation, the collection of P,s models
the probabilistic evolution of states of the Bayes net.

The most common use of Bayes nets is for inference: given a set of values of some
nodes, compute the most likely values of other nodes (either parents or children).
However, we are interested in the use of Bayes Nets for planning.

We consider the extension of Bayes net models that allows us not only to model
the probabilistic evolution of the system, but also to model an outside controller
that can affect that evolution. As the means of modelling possible effects of an
outside controller on the system, we employ actions, defined formally below.

Definition 2. Let G = (V, E) be a directed acyclic graph. An action a on G is a set
of conditional probability distribution functions P, , : dom(parents(v)) x dom(v) —
[0,1] for each v € V.

A Bayes net representation of a planning domain B is atuple (G = (V, E), A, F),
where G is a DAG, A is a set of stochastic actions on G and F is a set of states
called goal states .

A Bayes net may also model a Markov decision process, by including an explicit
wtility function r : S — R instead of F.

While simple Bayes nets are useful in modelling situations for which we have
no control, Bayes net planning domains are useful when there is an opportunity
to affect the outcome of a process. For the rest of this paper, we will use “Bayes
net” to refer to a Bayes net planning domains. Note that the initial definition of

aGenerally speaking, dynamic Bayes nets need not have bipartite graphs. However, as Littman
showed!” that for any Bayes net with synchronous arcs there is an equivalent Bayes net with
asynchronous arcs, we assume that dynamic Bayes nets do have bipartite graphs.

bPOne can easily convert a goal state Bayes net to a utility based Bayes net. For the purposes of
later theorems it is easier to use the goal-state formalism. This does not increase the complexity
of the computational problems considered.

a Bayes net corresponds to a Bayes net in the extended definition with only one
action, where F is the set of all states.

We describe the set of choices a controller makes as a policy. For the purposes of
this paper, we consider the simplest form of policies, namely mappings from states
to actions. This imposes consistency on the controller’s choices.

Definition 3. Given a Bayes net B, a policy for B is a mapping 7 : S — A.
A planning algorithm A is a function that maps Bayes nets to plans for those
Bayes nets.

A policy can be represented as an explicit list or table of values, as a function
specified by some computational device, or implicitly by specifying its values on
subsets of the domain, and giving a combining function. We assume that the plan-
ning algorithm and the Bayes net themselves form an implicit representation of the
policy; when they and a state of the system are specified, we can easily determine
the action for that policy.

Other definitions of policies exist in the literature, including time-dependent and
history-dependent policies. The hardness proofs in this paper can be easily modified
to give the same complexity results for time-dependent policies. (These two notions
differ if the underlying system is not fully observable.)

One can see how good a particular planning algorithm is by evaluating the
policies that it produces. There are at least two ways to evaluate a policy: goal-
state—oriented and reward—oriented. If the former is used, the probability of reaching
a goal state following the policy is used as the key evaluating factor. The second
way assumes that certain rewards, which accumulate over time, are associated with
taking actions in different states of the system. The total accumulated reward over
time serves as the evaluation criterion in this case. Thus, the task of a controller is
to maximize the probability of reaching a goal state. Note that, in many cases, the
optimization criterion is a discounted expected reward: All rewards at future steps
are discounted by a factor of v € [0, 1].

Note that the problem of finding an optimal policy for general Bayes nets is
E X P-complete '7. However, for this paper, we assume that the planning algorithms
are tractable. This implies either that the Bayes nets fall into some special subclass,
or that the planning algorithms are approximate. In particular, we often assume
planning algorithms A such that, for any Bayes net B and state s of B, computing
the action A(B)(s) can be done in time polynomial in |B|.

3. Example

Consider the following example which features a small (fictitious) horseback riding
summer resort. The resort consists of a number of trails and a stable compound
which attract horse owners for recreational purposes. The owners of the resort are
interested in maximizing their profit, which is determined by the rates they charge
the riders for the use of their stables and trails as well as by the number of riders

/
@ \
q\ E

Fig. 1. Sample Bayes net: Horseback Riding Resort

that visit the resort over a period of time. The profit is also adversely affected by
the expenses that the owners incur. In this simple example, we assume that the
number of riders visiting the resort is influenced by the weather conditions, state of
the trails, and by the current trail and stable rates. The owners may choose to spend
the money on advertising the resort, and on grooming trails: each action possibly
resulting in an increased number of visitors.

This situation can formally be represented as the Bayes net depicted in Figure
1. Two types of variables are present in the network: random wvariables and action
variables, the latter drawn as diamonds in the Figure. The values of random vari-
ables are determined stochastically based on the values of other variables in the
network. The values of action variables are set by the actions (decisions) of resort
owners and thus are deterministic. The random variables are:

e rain: the presence or absence of rain or other inclement weather;

e trails: fair or poor condition of trails;

e riders: high or low ridership on trails;

e expenses: high or low expenses to support the resort operation;

e profit: at the end of the period, the resort can turn in low or high profit.

The action variables are:

Node: trails
P(trails = fair)

Node: rain .
P(rain = yes) groom rain Set1 Set2 Set3
Set1 Set? Set3 no no 0.6 0.6 0.6

5 5 5 no yes 0.3 0.3 0.3
02 02 0 yes mo 10 1.0 1.0

yes yes 0.8 0.8 0.8

Node: expenses
P(expenses = high)
groom advertise riders Set1 Set2 Set3

no no low 0.35 035 0.35
no no high 0.5 0.5 0.5
no yes low 0.5 0.5 0.5
no yes high 0.65 0.65 0.65
yes no low 045 045 045
yes no high 0.6 0.6 0.6
yes yes low 0.65 0.65 0.65
yes yes high 0.75 0.75 0.75

Table 1. Sets of Conditional Probability Distributions for Horseback Riding Resort Bayes Nets
(Part I).

e rates: high or low rates charged for the use of the stable and trails;

e groom: indicates whether the trails are groomed or not.

e advertise: indicates whether the resort is advertising to the potential visitors
or not.

All variables are binary for simplicity®. As mentioned above, the owners of the
resort can take certain actions in order to affect the situation with the goal of max-
imizing the probability of turning high profit. These actions are represented in the
model as the assignment of values to the action variables rates, groom and advertise.
The actions affect the conditional probability distributions associated with certain
nodes of the Bayes net. An atomic action is the assignment of a value to a single
action variable. Values to different action variables are assigned independently, thus
there are eight compound actions that the owners may choose. The effects of atomic
actions are described in Table 3. Basically, each atomic action produces one positive
and one negative effect. Compound actions produce overlapping effects: e.g., adver-
tising and grooming trails result in a high probability of incurring high ezpenses

¢The SPUDD planning algorithm 3:11 that we have used in our example requires binary variables.

Node: riders
P(riders = high)

rates advertise trails rain Set1 Set2 Set3

low no poor no 0.5 0.5 0.5
low no poor yes 0.3 0.35 0.3
low no fair no 0.9 0.85 0.9
low no fair yes 0.6 0.55 0.6
low yes poor mno 0.9 0.85 0.9
low yes poor yes 0.65 0.7 0.75
low yes fair no 0.95 0.9 0.95
low yes fair yes 0.8 0.75 0.8
high no poor mno 0.25 0.3 0.25
high no poor yes 0.2 0.25 0.2
high no fair no 0.7 0.7 0.7
high no fair yes 0.4 0.4 0.4
high yes poor no 0.35 0.3 0.35
high yes poor yes 0.3 0.3 0.3
high yes fair no 0.8 0.8 0.8
high yes fair yes 0.5 0.5 0.5

Node: profits
P(profits = high)
rates advertise expenses riders Set1l Set2 Set3

low no low low 0.45 045 0.4
low no low high 0.65 0.65 0.6
low no high low 0.35 0.35 0.3
low no high high 0.45 045 0.4
low yes low low 0.45 045 0.4
low yes low high 0.65 0.65 0.6
low yes high low 0.35 0.35 0.3
low yes high high 0.55 0.55 0.5
high no low low 0.55 0.55 0.65
high no low high 0.75 0.75 0.85
high no high low 0.4 0.4 0.45
high no high high 0.5 0.5 0.55
high yes low low 0.55 0.55 0.65
high yes low high 0.75 0.75 0.85
high yes high low 0.4 0.4 0.45
high yes high high 0.6 0.6 0.65

Table 2. Sets of Conditional Probability Distributions for Horseback Riding Resort Bayes Nets
(Part IT).

but also in a high probability of attracting high ridership (both probabilities higher
than those for individual actions) as well as in trails being in fair condition.

We have considered three different sets of conditional probability assignments
associated with the Bayes net in Figure 1, which we will call Set 1, Set 2 and Set 3
CPTs. Tables 3 and 3 show all three sets of CPTs. The differences of Sets 2 and 3
from Set 1 are highlighted in boldface.

For our planning algorithm we have used SPUDD, an on-line system for planning

Action Implications
Rates

Charge low rates Increased probability of high ridership
Decreased probability of high profit
Charge high rates Increased probability of high profits
Decreased probability of high ridership
Groom

Do not groom trails Decreased probability of fair condition of the trails
Decreased probability of high expenses

Groom trails Increased probability of fair condition of the trails
Increased probability of high expenses

Advertise

Do not advertise Decreased probability of high ridership
Decreased probability of high expenses

Advertise Increased probability of high ridership

Increased probability of high expenses

Table 3. Implications of Actions.

under uncertainty, developed by Hoey, St.-Aubin, Hu and Boutiler '*!!, to come
up with the optimal policies for maximizing profit in our Horseback Riding Resort
domain under each of the three sets of conditional probability tables.

SPUDD output consists of two decision trees: the optimal policy decision tree
and the value function (expected reward) decision tree. Figure 2 illustrates the
optimal policies for all three sets of CPTs returned by SPUDD.

We can see that the first two CPTs (Sets 1 and 2) yield the same ppolicy (the
decision trees are rendered differently by SPUDD but are isomomorphic), whereas
Set 3 yields a drastically different policy. On the other hand, the three value func-
tions are all distinct. (They are not included in the text because the trees are wide
enough that they cannot be rendered in readable formats. Interested readers can find
the decision trees for the optimal value functions at http://www.cs.uky.edu/ dekht-
yar/dblab/fusion.html.)

Careful inspection of the three sets of probability tables might not reveal these
outcomes. This is not surprising, given the intractibility of distinguishing Bayes
nets, as shown in what follows.

It is not, however, surprising that the same policy applied to Bayes nets with

dSPUDD web page is http://www.cs.ubc.ca/spider/staubin/Spudd/index.html. At
http://www.cs.ubc.ca/spider/staubin/Spudd/form.html one can run SPUDD interactively. We have
used default SPUDD settings. The data files describing our Horseback Riding Resort example, as
well as SPUDD output can be obtained from http://www.cs.uky.edu/~dekhtyar/dblab/fusion.html;
the data file for Set 1 is also included in Appendix Appendix A.

—

()

Fig. 2. Decision trees for SPUDD optimal policies for Sets 1 (a), 2 (b) and Set 3 (c) CPTs in
Horseback Riding Resort example.

different CPTs might yield different value functions. One might expect it to be
difficult to find different CPTs that yield the same value function for any but the
crudest policies.

It is also interesting to note how three different notions of Bayes net equivalence
with respect to planning relate to this example. Suppose the owners ask three
different consultants to evaluate the operation of the resort, resulting in Sets 1-
3, respectively. The owners must make an information fusion decision: choose one
set or combine them somehow. What they choose depends on what they want:
advice on what actions to take, or expected profit under some pre-determined policy,
or perhaps the optimal expected profit. (If they are considering bankruptcy, the
bank might for instance be interested in the latter.) These three criteria correspond
precisely to the three definitions of Bayes net equivalence under planning discussed
in this paper.

Because the example considered here is so small, the problem of finding an
optimal policy for it with SPUDD is tractable. Thus, we have used an optimal
planning algorithm, so the optimal value and policy value are the same here.

4. Detecting Identical Policies

We first consider detecting identical policies.

Definition 4. Let B; = (G, P;) and By = (G, P») be two Bayes nets over the same
graph G. Let A be some planning algorithm. The triple (B, Ba, A) is in BN Plan
if and only if for every state s of B; and B»,°

A(Bhs) = "4(3275)

Intuitively, two Bayes nets over the same structure belong to the class BN Plan
together with the planning algorithm A if the algorithm does not distinguish be-
tween the Bayes nets.

When the planning algorithm is fixed, we will denote as BN Plan® the set of
pairs of Bayes nets (Bj, By) such that for all states s, A(Bj,s) = A(Bs, s).

Also, given the graph structure G of a family of Bayes nets BN, we can consider
the sets BN Plang C BN Plan and BNPlcmé C BNPlan” of Bayes net pairs
whose graph structure is G.

First, we study the problem of the complexity of determining that a triple
(B1, B2, A) belongs to class BN Plan. The following results show that this problem
is coNP-complete.

Theorem 1. The BNPlan problem is coNP-hard.

Proof. We consider the dual problem of determining (B;, B2, A) ¢ BN Plan and
will show that this problem is NP-hard.

€Since both By and Bz are Bayes nets over the same graph, their sets of nodes, and thus of states,
coincide.

Yes
o o/
[0 o

cl

ck
0/ \1

L [

@)

x1 X2 XN

Fig. 3. Bayes net structure for Satisfiability problem and the the decision tree for the Yes node for
net Bj.

Let ¢ be a propositional Boolean formula over variables z1, . .., x,. Without loss
of generality we can consider ¢ to be in 3CNF.

Given ¢, we will construct a pair of Bayes nets Bf and By (we will omit the
superscripts where this does not generate ambiguity) and a planning algorithm A
such that ¢ € SAT if and only if (BY, BY, A) ¢ BN Plan.

The Bayes net graph structure G underlying both By and Bs is shown in Fig-
ure 3. The net will consist of three levels of nodes which take on the values of 0 and
1 (false and true). At the lowest or initial level, a node will be associated with each
of the variables x1, ..., z, of . At the second or middle level, the nodes represent
the clauses of p. Each node ¢; from the second level is connected to exactly three
nodes representing Boolean variables variables.

The third level of the network consists of one node, which we will label as Yes.

Its parents will be all second level nodes ¢y, ..., cg.
The conditional probability distributions P; associated with the Bayes net B;
will faithfully simulate the computation of the truth value of ¢. Each node x4, ..., x,

is a binary decision node, its value controlled from outside.

For each second level node ¢ with parents z,z', and ', the conditional prob-
ability table will simulate the truth table for the conjunct represented by c. E.g,
if c =2z V -z’ Va" the conditional probability table will be: P;(¢ = 0|z = 0,2’ =
1,2" =0) = 1;Pi(c =1z = 0,2 = 1,2" = 0) = 0 (this is the only combination
that makes c false) and Pi(c =0z = a,2' =a',2" =d") =0; Pi(c = 1|z = a,2’ =
a',z'" = a'") = 0 for any other combination of truth values for z,z', and z".

Finally, the probability distribution for the node Yes is defined as P;(Yes =
lley =1,...,c,=1) =1, PL(Yes = 0Jc; = 1,...,¢;, = 1) = 0 and P;(Yes = 1|c; =
ai,...,c, = a) = 0; Pi(Yes = 0|y = ay,...,cr = ai) = 1 for all other combina-
tions of values of ci, ..., cg. This distribution, represented explicitely will take 2%
rows to describe. However, it can be represented compactly, by explicitely specifying
only the probability row P;(Yes = 1|e; = 1,...,¢, = 1) = 1, or, alternatively, by
a simple decision tree of size O(k) which checks the values of each node ¢y, ..., ¢
and outputs 0 anytime it observes a 0, as depicted on Figure 3.

The probability distribution tables P, for the Bayes net B, are designed to
mimic the probability distributions P; on the lower and middle layer of the nodes.
For the node Yes, P, specifies that the probability of it becoming true is always 0.

The actions associated with these two Bayes nets correspond to setting the
values of the lower level nodes (which represent the Boolean variables). The goal
states are those with the Yes node set to 1.

We can now specify the planning algorithm A. Let state s of By and Bs be
a sequence (ai,...,a,) of binary digits representing the truth values of variables
Z1,...,T,. We denote the state of B; and Bs which is a lexicographic successor of
the binary string ajas .. .a, as succ(s). To make sure that the planning algorithm
described below always produces result we set succ(1™) = 0™.

Algorithm A4 will leave the state s unchanged if s induces Yes = 1. Otherwise,
it returns the set of actions that change the current state of the BN By or Bs to
the state succ(s).

We assume that A is represented either as a Turing machine, or as a program
in some agreed-upon programming language. Note that the complexity of BN Plan
is measured in terms of |By| + |Ba| + | A|, i.e., the size of the representations of the
inputs.

In order to see why this construction works we need the following.

(1) The Yes node of B; is set to 1 if and only if the initial state s of B; corresponds
to a satisfying assignment to the variables xy,...,z, of the formula .

(2) The Yes node of By will never be set 1.

(3) The policies constructed by A for By and By will be identical on all states s
unless there is a state s with Yes = 1.

From items 1 and 3 from the above we conclude that (B, By, A) ¢ BN Plan
if and only if p € SAT.

Theorem 2. The BN Plan € coNP.

Proof. Notice that, for Bayes net B, A(B, s) is an action; the size of the represen-
tation of actions is < |B|, since the specification of actions is part of B.

To show that (B;, B2, A) ¢ BNPlan, we need only guess state s such that
A(By,s) # A(Baz,s). This check is in polynomial time, and the guess is polynomial
sized. Thus, BN Plan € NP, so BN Plan € coNP.

5. Detecting Identical Probabilities of Plan Success

In the previous section, we considered two Bayes nets to be equivalent, relative to
a planning algorithm, if the algorithm produced the same policies. One can relax
this definition and ask, does this planning algorithm or policy produce the same
outcome, namely, the same probability of success?

We assume here that the specification of the Bayes net and/or the planning
algorithm includes the specification of a set of goal states or utility function for
each Bayes net. In what follows, we implicitly presume that the sets of goal states
for the two Bayes nets in question are the same.

Definition 5. Let B = (G, P) be a Bayes net with a given set of goal states. Let
A be a planning algorithm, and s a state of B. Then Succ(A, B, s, h) is the defined
to be the probability that the policy calculated by A, when applied to state s of B
and iterated for h steps, will reach a goal state.

Rather than requiring that the success probabilities be identical for the two
Bayes nets, we allow an extra parameter to specify how close they must be.

Definition 6. Let By = (G, P;) and B> = (G, P») be two Bayes nets over the
same graph G. Let A be some planning algorithm. The tuple (Bi, B2, A, h,0) is
in SBNPlan if and only if for every state s of By and Bs, |Succ(A, By, s, h) —
Succ(A, Ba, s, h)| < 6.

Note that we can also consider the value of a Bayes net relative to its optimal
policy.

Definition 7. Let B = (G, P) be a Bayes net with a given utility function. Let
ViB(s,h) be the optimal horizon h value function for B. Let By = (G, P;) and
B; = (G, P2) be two Bayes nets over the same graph G. The tuple (By, Ba, h,) is in
BNValue if and only if for every state s of By and Ba, |V, (s,h) —Vp, (s, h)| < 6.

Alternatively, one could further quantify SBN Plan over all policies; depending
on the complexity of policy descriptions allowed, this might easily increase the
complexity of the problem.

Before stating the next theorem, we remind the reader of some facts about the
class NPPF . The class PP (probabilistic P) consists of those languages L for which
a non-deterministic polynomial time Turing Machine N exists such that z € L if
and only if N(z) accepts on more than half of its computations. The class NPF¥
consists of the languages accepted by an NP computation with free access to PP
computation. Toran has shown 3! that NPT languages can be characterized as
“guess a proof of polynomial size and verify using a PP computation”.The following
inclusions show the positions of PP and NPFY
complexity classes.

with respect to some more well-known

P C NP C PH C PP C NPPP C PSPACE C EXP.

The set EMAJSAT is <”-complete for NPPF 18 A Boolean formula, natural
number pair {p, k) is in EMAJSAT if and only if there is a truth assignment to the
first k£ variables of ¢ such that at least half of its completions satisfy ¢.

Theorem 3. The SBN Plan problem is coNPYY -hard.

Proof. To show this, we give a reduction from EMAJSAT. As in Theorem 1, we
consider the dual problem of determining (Bi, B2, A, h,0) ¢ SBN Plan and will
show that this problem is NPY¥-hard.

Given a pair (p, k), we construct an initial Bayes net By as in the proof of
Theorem 1. There are nodes in the Bayes net representing each variable and each
clause, and an extra timekeeper node that turns the process off after one step.

Each clause node depends on the variable nodes for those variables it contains.
The dependence is deterministic. Variable nodes have no parents. The first k& variable
nodes are set by the user’s action; the remaining variable nodes are set to 1 with
probability 1/2, independent of the action chosen or the prior state. The timekeeper
node is dependent on all of the clause nodes. It has three states: starting, on and off.
The system starts with it in starting. Any action sets it to on; any further actions
set it to off. This enforces a horizon of 1.

The goal states are those in which all clause nodes are set to 1 and the timekeeper
node is set to on.

In the first Bayes net, By, the clause nodes depend on the variable nodes in the
manner indicated by ¢. In the second Bayes net, Bs, the clause nodes are uniformly
set to 0. Thus, By can never reach a goal state.

Note that a policy for B; determines a setting of the first k& variables. Further-
more, (p, k) € EMAJSAT if and only if there is some policy that reaches a goal
state with probability at least 1/2.

Consider the policy 7 which treats the current variable assignment x1, ...,z as
a binary string and increments it by one, and maps 1* to 0*. If (¢, k) € EMAJSAT
then some setting of the first k& variables witnesses that. Let s’ be the lexicographic
predecessor of that setting (or let s’ = 1*, if that setting is 0*), and let s be any state
of the system that extends s’. Then Suce(A, By,s,1) — Suce(A, Ba,s,1) > 1/2.

Thus, (¢, k) € EMAJSAT if and only if for some s, Succ(A, By, s, h) > } if and
only if (B, Ba, A, h, ;) g SBN Plan for any h > 1.

Corollary 1. The problem BNV alue is coNPYY -hard.

Proof. Consider the construction in the proof of Theorem 3. Note that if A is an
optimal policy for By, then, for some s, Succ(A, By, s,1) — Succ(A, Ba,s,1) > 1/2
if and only if (p, k) € EMAJSAT. By definition, then, Vg, (s, h) = Succ(A, B;, s,1).
Thus, (p, k) € EMAISAT if and only if (By, B2, h,0) € BNV alue.

To show coNPFF-completeness, we would need that SBN Plan € coNPYY. This
requires that policy evaluation be in PP. Given that assumption, the theorem follows
immediately from the appropriate characterization of the class coNPFF.

In his dissertation, Jacobo Toran 3! considers the closure of the class P under

polynomially length-bounded existential and universal quantifiers and under the
counting quantifier C. If K is a language class, then a language L is in CK if there
isa B € K,an f € FP, and a polynomial p such that

v €L [{y:lyl <p(lel) and Blz,p)}| > f(la]).

In particular, for f(xz) =1/2, PP = CK.

One can define the Counting Hierarchy over P analogously to the Polynomial
Hierarchy: it is the closure of P under polynomially length bounded existential,
universal, and counting quantifiers. Toran showed that, for any K in the counting
hierarchy, NPK = 3P K In particular,

NPPY = 3PPP = 3P CP and coNP'Y = vPCP.

This characterization gives us another method for showing membership in NPFF
and coNPFF | in terms of these quantifiers. Corollary 2 follows immediately from
this.

Corollary 2.

(1) If Succ(A, B, s,1) € PP, then SBN Plan € coNP*?,
(2) If Valg(s,h) € PP then BNV alue € coNP'Y,

6. Easier Cases

Although we have shown that, in the general case, it is computationally complex
to decide whether two sets of conditional probability tables are equivalent for a
Bayes net structure, there are some cases where these worst-case analyses do not
apply. It is an open question to characterize other useful categories of Bayes nets
and policies, but we give some preliminary thoughts on this.

For our analysis, let n be the number of nodes in the Bayes net in question. We
consider Bayes nets where the number of actions available is O(n). We refer to any
number k = O(logn) as a small number.

Suppose for some network structure G, A generates a policy where each action
is chosen based on a fixed, small set of nodes. Then for Bayes nets B; and By over
structure G, it is easy to determine whether (Bj, B2, A) € BN Plan: one merely
enumerates all possible values of those few nodes and asks whether the policies are
equivalent for those values.

For instance, if a policy in our Horseback Riding Resort example (see Section
3) is based solely on the number of riders then this case applies. This is perhaps
too trivial an example. Imagine, instead, that policies are based on the number of
riders and the weather. Then one need not consider the expenses incurred by the
resort.

Suppose, instead, that we have a network structure G consisting of a number
of disjoint subnetworks, each consisting of a small number of nodes. Suppose, in

addition, that the function that determines the goal state can be expressed simply,
for instance as the conjunction of a small number of independent node values. In
this case, the probability of the conjunction is the minimum of the probabilities
of achieving each given goal node value. Thus, Succ(A, B,s,h) > 6 if and only if
the probability of “success” for each goal variable is at least 6. To determine this
for all s, one need only consider the subnetworks containing goal variables, and
evaluate the probability of success for each of the polynomially many states of that
subnetwork.

Given two Bayes nets By and Bs over such a “factored” structure GG, and given
respective policies 71 and 72 generated by planning algorithm A, it is not much
harder to compute

max |Succ(Ay, By, s, h) — Succ(Az, Ba, s, h)|

than to compute Succ(A;, B;, s, h) for any particular s. We need only compute, for
individual subnetwork Cg (i € {1,2}) over structure G7, max; |Succ(A;, Cf, s, h)—
Succ(As, Cg, s,h)|. If any of these values is greater than a given 6, then
max; |Suce(Ay, By, s, h) — Succ(As, Ba, s, h)| > 0, and (A, By, B>, h) ¢ SBPlan.

7. Related Work
Sensitivity Analysis

The most common notion of robustness is an insensitivity to variation of one or
more parameters in a network. One technique for gaining insight into this notion
of robustness is sensitivity analysis. The basic idea is to systematically vary one or
more of the conditional probability values of the Bayes net and to study the resultant
effects on the output '®. One recent development, SAMIAM 2, is an implemented tool
for actually computing the sensitivity of one parameter to another. Varying each
probability in the network individually while studying each of the individual effects
on the output is called one-way sensitivity analysis. In an n-way sensitivity analysis,
n of the probability assessments are varied simultaneously, which demonstrates each
of the individual effects of varying each of the n probabilities and also reveals joint
or synergistic effects.

Unfortunately, the brute-force approach to one-way sensitivity analysis of a
Bayes net is computationally time consuming, since for each probability value un-
der study, a number of propagations must be investigated where each propogation
requires computing the output from the network. Thus, using this approach, the
computational burden for even a one-way sensitivity analysis can be prohibitive
even for a small Bayes net 3.

Laskey was the first to address the computational complexity of sensitivity anal-
ysis of Bayes nets. She introduced a method for using the partial derivative of prob-
ability values to yield a first-order approximation of the effect of varying a single
probability parameter. While her method requires considerably less computation

than the brute-force approach, it provides insight only in the effect of a small vari-
ation of a probability; a larger variation will rapidly break the technique down
15 This has been extended to consider “admissable deviation” of parameters by
Renooij and van deer Gaag *2. However, their work does not consider planning.

Undertaking a complete one-way sensitivity analysis is a computationally diffi-
cult task for non-trivial problems. Instead of it, attention has been directed to using
the graphical structure of the network in order to determine independences of the
output on probabilities in the network. This information is then used to eliminate
the varying of probabilities that will not change the output >. Some recent progress
has also been made in developing a methodology for n-way sensitivity analysis which
requires fewer outward propagations of the network to determine upper and lower
bounds on the probabilities ™.

However, Henrion et al. have found that diagnostic performance with Bayesian
belief networks is often surprisingly insensitive to imprecision in the numerical prob-
abilities 1. Therefore it makes sense to consider how the probability data is obtained
in a given application before choosing a technique for evaluating the robustness of
the output. In the case when two or more experts are consulted to determine prob-
abilities, their estimates of each of the probabilities in the Bayes net may differ,
giving two different Bayes nets on the same graph. This leads us to the problem
considered in this paper: deciding whether those differences matter to the planner.

The notion of robustness in the sensitivity analysis literature that is closest to
ours is that of Pradhan, et al., who consider the experimental effects of varying all of
the parameters at once 27. This is called uncertainty analysis by Kjelrulff and van
der Gaag '* and is also considered by Henrion, et al. 1°. Qur work differs from theirs
in three key aspects: we consider planning, rather than inference, and we introduce
planning into the problem explicitly; we consider the algorithmic complexity of
determining robustness, and we compare two explicit sets of probabilities, rather
than varying one set.

Integration of Probabilistic Information

The problem of integrating probabilistic information has been considered by re-
searchers in a variety of different fields of computer science and statistics. As men-
tioned in Section 1, the largest body of work on the fusion of uncertain data comes
from the area of multisensor fusion (see ! for early summaries). The basic prob-
lem addressed in this field is similar to ours: a number of sensors provides the
user /reasoning agent with a set of data streams carrying uncertain data which need
to be combined together. For example, Rehg, Murphy, and Fieguth 28 study the
problem of detecting whether a human, watched by four independent sensors, is
speaking. Each sensor watches for particular features on the human face (face de-
tection, skin color detection, skin texture, mouth motion) and the output of each
sensor is a Bayes net. The reasoning agent then combines (fuses) the nets into one
that allows it to detect whether a human is speaking. This work has been extended

recently by Pavlovic et al. 25.

Different methods of fusion of probabilistic information have been proposed.
Most of them fall into one of the two categories: (i) integration techniques for spe-
cific problems and (ii) so called “toolbox” approaches. The multisensor fusion work
mentioned above belongs to the first category: the solutions proposed in 28:2°
specific to the particular problem being investigated and to the particular sensors
being used. Other examples of this approach include the work of Druzdzel and Diez
6 and the power prior approach of Thurston and Ibrahim 3°. Laskey and Mahoney!®
propose to use on-line learning for integration of probabilistic knowledge. In ¢ the
problem of combining the knowledge from different sources when building Bayes
nets is considered. This problem is similar to our. Druzdzel and Diez gave a de-
tailed analysis of the integration problem for a particular Bayesian model. On the
other hand, our motivating question is “When can we skip the integration phase
altogether?”

An example of a “toolbox” approach is the work of Dekhtyar, Ross, and Sub-
rahmanian on combining probabilities in Temporal Probabilistic databases 4. They
introduce a special compaction operation whose purpose is to combine the proba-
bilities from different probability distributions. This operation is parameterized by
the combination function that dictates how the probability integration should pro-
ceed. Users are allowed to define their own combination functions to be used in the
system. While more flexible, this approach factors the problem of developing the
actual integration methods out of the Temporal Probabilistic database framework.

are

8. Discussion

The question of whether two sets of probability distributions for a Bayes net struc-
ture are equivalent (in any sense) is a natural one, and one that anyone building
Bayes nets must address at some point. We have considered equivalence of Bayes
nets with respect to planning. Although this question has been addressed in terms
of sensitivity analysis, we are not familiar with any work that compares entire sets
of conditional probability tables at once in the context of planning. This might be
explained by our results, namely, that it is computationally infeasible in the gen-
eral case to do so. However, Section 6 offers the first glimmerings of hope that this
problem might in fact be tractable for some cases that occur in real life.

Because more and more heuristics for NP- and coNP-complete problems are be-
ing developed, as well as some heuristics for NPPP-complete problems 19, there is an
additional hope that the equivalence problems described here might be approached
heuristically. Future work could include an extension of the results in Section 6,
heuristics for these equivalence problems, and further consideration of the notion
of equivalence with respect to planning for Bayes nets.

9. Acknowledgements

The work of the second author was partially supported by NSF grant CCR-0100040.
The authors would like to thank the anonymous reviewers for suggesting ways to
improve the paper. We are also grateful to Jesse Hoey for providing us with useful
information about SPUDD.

1.

2.

10.

11.

12.

13.

14.

15.

16.

M.A. Abidi and R.C. Gonzalez, editors. Data Fusion in Robotics and Machine Intel-
ligence. Academic Press, Inc., San Diego, CA, 1992.

Hei Chan and Adnan Darwiche. When do numbers really matter? In Proc. Uncertainty
in AI pages 6574, 2001.

Veerle M.H. Coupe and Linda C. van der Gaag. Practicable sensitivity analysis of
bayesian belief networks. In M. Huskova, P. Lachout, J.A. Visek. Prague Stochastics
’98 — Proceedings of the Joint Session of the 6th Prague Symposium of Asymptotic
Statistics and the 13th Prague Conference on Information Theory, Statistical Decision
Functions and Random Processes, Union of Czech Mathematicians and Physicists,
pages 81 — 86, 1998.

. Alex Dekhtyar, Robert Ross, and V.S. Subrahmanian. Probabilistic temporal

databases, i: Algebra. ACM Transactions on Database Systems, 26(1):41-95, 2001.
Marek J. Druzdzel and F. Javier Diez. Criteria for combining knowledge from different
sources in probabilistic models. In Working Notes, Workshop on Fusion of Domain
Knowledge with Data For Decision Support, UAI 00, pages 23—29, 2000.

Marek J. Druzdzel and F. Javier Diez. Criteria for combining knowledge from different
sources in probabilistic models. In Working Notes, Workshop on Fusion of Domain
Knowledge with Data For Decision Support, UAI 00, pages 23—29, 2000.

Scott Ferson, Vladik Kreinovich, L. Ginzburg, K. Sentz, and D.S. Myers. Constructing
probability boxes and Dempster-Shafer structures, 2002.

Richard Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2(3 and 4), 1971.

D. Hall. Mathematical Techniques in Multisensor Data Fusion. Artech House, Boston,
MA, 1992.

Max Henrion, Malcolm Pradhan, Brendan Del Favero, Kurt Huang, Gregory Provan,
and Paul O’Rorke. Why is diagnosis using belief networks insensitive to imprecision
in probabilities? In Proc. 12th Conference on Uncertainty in Al pages 307-314, 1996.
Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier. SPUDD: Stochastic plan-
ning using decision diagrams. In Proceedings of the Fifteenth Conference on Uncer-
tainty in Artificial Intelligence, pages 279-288, Stockholm, Sweden, 1999.

Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier. SPUDD: Stochastic plan-
ning using decision diagrams. In Proceedings of the Fifteenth Conference on Uncer-
tainty in Artificial Intelligence, pages 279-288, Stockholm, Sweden, 1999.

Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier. Optimal and approximate
stochastic planning using decision diagrams. Technical Report TR-00-05, University
of British Columbia, 2000.

Uffe Kjeerulff and Linda C. van der Gaag. Making sensitivity analysis computationally
efficient. In Proc. Uncertainty in Al pages 317-325, 2000.

Kathryn Blackmond Laskey. Sensitivity analysis for probability assessments in
bayesian networks. IEEE Transactions on Systems, Man, and Cybernetics, 25(6):136—
142, 1995.

Kathy Laskey and Suzanne Mahoney. Knowledge and data fusion in probabilistic
networks, 2002. Manuscript.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Michael L. Littman. Probabilistic propositional planning: Representations and com-
plexity. In Proceedings of 14th National Conference on Artificial Intelligence. AAAT
Press / MIT Press, 1997.

Michael L. Littman, Judy Goldsmith, and Martin Mundhenk. The computational
complexity of probabilistic plan existence and evaluation. Journal of AI Research,
9:1-36, 1998.

Michael L. Littman, Stephen M. Majercik, and Toniann Pitassi. Stochastic Boolean
satisfiability. Journal of Automated Reasoning, 27(3):251-296, 2000.

M. Majercik and Michael L. Littman. MAXPLAN: a new approach to probabilistic
planning. In Artificial Intelligence and Planning Systems, pages 86-93, 1998.
Stephen M. Majercik and Michael L. Littman. Using caching to solve larger probabilis-
tic planning problems. In Proceedings of Fifteenth National Conference on Artificial
Intelligence, pages 954-959, 1998.

Pedrito Maynard-Zhang and Daniel Lehmann. Representing and aggregating conflict-
ing beliefs. Journal of Artificial Intelligence (JAIR), 19:155-203, 2003.

Martin Mundhenk, Judy Goldsmith, Christopher Lusena, and Eric Allender. Com-
plexity results for finite-horizon Markov decision process problems. Journal of the
ACM, 47(4):681-720, 2000.

Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of Markov decision
processes. Mathematics of Operations Research, 12(3):441-450, 1987.

V. Pavlovic, A. Garg, J. Rehg, and T. Huang. Multimodal speaker detection using
error feedback dynamic Bayesian networks. In Computer Vision and Pattern Recog-
nition, volume 2, pages 34-41, 2000.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers, San Mateo, California, 1988.

Malcolm Pradhan, Max Henrion, Gregory Provan, Brendon del Favero, and Kurt
Huang. The sensitivity of belief networks to imprecise probabilities: An experimental
investigation. Artificial Intelligence, 85(1-2):363-397, 1996.

James M. Rehg, Kevin P. Murphy, and Paul W. Fieguth. Vision-based speaker detec-
tion using Bayesian networks. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 110-116, Ft. Collins, CO, 1999.

Pedrito Maynard Reid II and Ursula Chajewska. Aggregating learned probabilistic
beliefs. In Proc. Uncertainty in Artificial Intelligence (UAI ’01), number 17, pages
354-361, 2001.

Sally W. Thurston and Joseph G. Ibrahim. Informative prior specification for linear
regression models using parameter decompositions, 2001.

Jacobo Tordn. Complexity classes defined by counting quantifiers. Journal of the
ACM, 38(3):753-774, 1991.

L.C. van der Gaag and S. Renooij. Analysing sensitivity data from probabilistic net-
works. In J. Breese and D. Koller, editors, Proc. Seventeenth Conference on Uncer-
tainty in Artificial Intelligence (UAI ’01), pages 530-537. Morgan Kaufmann Pub-
lishers, 2001.

Appendix A. Appendix: Sample SPUDD Code

We provide here an example, in SPUDD format '2 from our Horseback Riding
Resort problem. The conditional probabilities are from Set 1 as described in Sec-
tionsec:example.

variables (rain trails expenses riders profit)
action LowRates
rain (0.2)
trails (rain (0.3) (0.6))
expenses (riders (0.5) (0.35))
riders (trails (rain (0.6) (0.9))
(rain (0.3) (0.5))
)
profit (expenses (riders (0.45) (0.35))

(riders (0.65) (0.45))
)

endaction

action HighRates
rain (0.2)
trails (rain (0.3) (0.6))
expenses(riders (0.5) (0.35))
riders (trails (rain (0.4) (0.7))
(rain (0.2) (0.25))
)
profit (expenses (riders (0.5) (0.4))
(riders (0.75) (0.55))
)

endaction

action GroomLowRates
rain (0.2)
trails (rain (0.8) (1.0))
expenses(riders (0.6) (0.45))
riders (trails (rain (0.6) (0.9))
(rain (0.3) (0.5))
)
profit (expenses (riders (0.45) (0.35))

(riders (0.65) (0.45))
)

endaction

action GroomHighRates
rain (0.2)
trails (rain (0.8) (1.0))
expenses(riders (0.6) (0.45))
riders (trails (rain (0.4) (0.7))
(rain (0.2) (0.25))
)
profit (expenses (riders (0.5) (0.4))
(riders (0.75) (0.55))
)

endaction

action AdLowRates
rain (0.2)
trails (rain (0.3) (0.6))
expenses(riders (0.65) (0.5))
riders (trails (rain (0.8) (0.95))
(rain (0.65) (0.9))
)
profit (expenses (riders (0.55) (0.35))

(riders (0.65) (0.45))
)

endaction

action AdHighRates
rain (0.2)
trails (rain (0.3) (0.6))
expenses(riders (0.65) (0.5))
riders (trails (rain (0.5) (0.8))
(rain (0.3) (0.35))
)
profit (expenses (riders (0.6) (0.4))
(riders (0.75) (0.55))
)

endaction

action AdGroomLowRates
rain (0.2)

trails (rain (0.8) (1.0))

expenses (riders (0.75) (0.65))
riders (trails (rain (0.8) (0.95))
(rain (0.65) (0.9))
)
profit (expenses (riders (0.55) (0.35))

(riders (0.65) (0.45))
)

endaction

action AdGroomHighRates
rain (0.2)
trails (rain (0.8) (1.0))
expenses(riders (0.75) (0.65))
riders (trails (rain (0.5) (0.8))
(rain (0.3) (0.35))
)
profit (expenses (riders (0.6) (0.4))
(riders (0.75) (0.55))
)

endaction

reward (profit (1) (0))

discount 0.9
tolerance 0.01

