
Databases for Interval Probabilities

Wenzhong Zhao�, Alex Dekhtyar�, and Judy Goldsmith�

Department of Computer Science, University of Kentucky, Lexington, KY
40503, USA

We present a database framework for the efficient storage and manipulation of interval prob-
ability distributions and their associated information. While work on interval probabilities
and on probabilistic databases has appeared before, ours is the first to combine these into
a coherent and mathematically sound framework including both standard relational queries
and queries based on probability theory. In particular, our query algebra allows users not
only to query existing interval probability distributions, but also to construct new ones by
means of conditionalization and marginalization, as well as other more common database
operations. c� 2004 Wiley Periodicals, Inc.

1 INTRODUCTION
A probability distribution represents the likelihoods of each of a set of possible

events. However, there are times when we are unsure about those likelihoods, either
because our information about the world is unreliable or because it is incomplete.
One way to represent such uncertainty is by using probability intervals 8,21.

Interval probabilities may arise in a specific application in many ways. While
small numbers of such distributions can be handled ad-hoc, with the increase of
application domain sizes, the amount of information eventually overwhelms ad-
hoc methods. Our work concentrates on the problem of efficiently and correctly
managing large quantities of interval probability distributions.

The hypothetical example we use (Section 2) is about an election in a town of
Sunny Hill. To everyone’s surprise, the Rhinoceros Party has won the senate seat
and swept local elections. However, a referendum that the Rhinoceros Party sup-
ported, to legalize AI conferences, has failed. Pundits and lawyers wish to inves-
tigate the fact that the usual indicators, polls, yard signs, etc., created expectations
that were not fulfilled. The data on which such analyses are based are probability
tables of various forms. To be useful, each table must be clearly labeled by its ori-
gin, format, and any implicit conditions, such as “From a poll of Elephant men at
their annual pig roast and fund raiser.”

In this work, we provide a flexible database framework for storing and managing
such labeled interval probability distributions. The data model for our framework,
Extended Semistructured Probabilistic Objects (ESPOs) (Section 3) allows us to
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store a wide variety of interval probability distributions and related information.
The querying mechanism for the ESPO model, ESP-Algebra (Section 5), provides
operations for accessing and manipulating this data.

In order to make sense of the operations on interval probability distributions, we
must fix a semantics. We choose the possible worlds semantics 8,9,15,23. This seman-
tics (Section 4) captures the idea that, while exact point probabilities distributions
are not known, they are known to lie within given intervals. There is a growing lit-
erature on interval probability distributions (see, for example, 2,3,6,8,14,16,23 and21,22.)
The work cited above, however, does not address the problem of efficiently and cor-
rectly managing collections of such distributions, which is the main contributions
of this paper. There has been some work on databases of probability distributions,
and of interval probabilities, but ours is the first to offer a query algebra specif-
ically designed to store and manipulate interval probability tables as the primary
data objects. (Discussion of other database management systems that use interval
probabilities can be found in Section 6.)

2 TROUBLE IN SUNNY HILL

In order to illustrate our motivation we offer some data about the Sunny Hill
election. It is understood that many people misrepresent the truth to pollsters. There-
fore, poll data, such as the collection shown in Figure 1, is assumed to have a margin
of error. A typical statement is, “The straight Donkey ticket for the Senate and may-
oral election is preferred by 33% of respondents +/- 3%” (See Poll1 table from
Figure 1). Although the actual polling data indicates statistical information about
respondents, it can be interpreted probabilistically as “The probability that a resi-
dent of Sunny Hills will vote straight Donkey ticket in the elections is between 29%
and 36% based on the October 18 poll.” (See the top line of Poll1 table in Figure 1.)

Given a database of polling data and the desire for a particular set of probabil-
ities, how can the pundits and lawyers access the information? Typically, polling
data is stored in a raw format by polling organizations, often in a relational DBMS,
and is analyzed using a variety of statistical and/or mathematical packages, such
as SAS, SPSS or MatLab. This software can be used to construct probability dis-
tributions such as those shown in Figure 1, and to perform other manipulations of
the data. However, neither traditional relational DBMS nor statistical software deal
with storage and retrieval of the probability tables constructed during the analysis.
Our DBMS allows the pundits and lawyers to answer questions such as:
- Find all probability distributions for voters from Downtown based on the surveys
taken within two weeks of the election date;
- Find the distributions of mayoral vote for voters who plan to vote for building a
new park;
- Find all distributions in which the Donkey mayoral candidate receives more than
40% of votes.

In order to answer such questions, our query language must be able to manipu-
late the probability distributions stored in the database and perform transformations
of the distributions according to the laws of probability theory. For example, the
second query above, applied to a joint distribution of votes for mayoral race and
two ballot initiatives (such as Poll2 in Figure 1), should result in the computation of
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id: Poll1
population: entire town
date: October 18
senate mayor � �

Donkey Donkey 29% 36%
Donkey Elephant 5% 10%
Donkey Rhino 5% 12%
Elephant Donkey 7% 14%
Elephant Elephant 25% 34%
Elephant Rhino 6% 13%
Rhino Donkey 4% 9%
Rhino Elephant 3% 8%
Rhino Rhino 8% 17%

id: Poll2
population: Donkey men
date: October 26
senate vote: Donkey
mayor park legalization � �

Donkey yes yes 44% 52%
Donkey yes no 12% 16%
Donkey no yes 8% 12%
Donkey no no 4% 8%
Elephant yes yes 5% 10%
Elephant yes no 1% 2%
Elephant no yes 3% 4%
Elephant no no 6% 8%
Rhino yes yes 2% 4%
Rhino yes no 1% 3%
Rhino no yes 3% 5%
Rhino no no 1% 4%

id: Poll3
population: entire town
date: October 22
senate vote: Donkey
mayor vote: Rhino
park legalization � �

yes yes 56% 62%
yes no 14% 20%
no yes 21% 25%
no no 3% 7%

id: Poll4
population: South Side
date: October 12
sample size: 323
mayor � �

Donkey 20% 26%
Elephant 42% 49%
Rhino 25% 33%

id: Poll5
population: Downtown
date: October 12
sample size: 275
mayor � �

Donkey 48% 55%
Elephant 25% 30%
Rhino 20% 24%

Fig. 1. Polling Data for Sunny Hills elections.

a marginal probability distribution for the mayoral vote and the park ballot initiative
(by excluding the second initiative from the distribution) and subsequent condition-
ing on park=yes.

This example indicates the importance of the following features: (i) probability
distributions and their associated, non-probabilistic information are treated as single
complex objects; (ii) probability distributions with different structures (e.g., differ-
ent number/type of random variables involved) are stored and accessed together;
(iii) query language facilities are provided for retrieval of full distributions based
on their properties, and for retrieval of parts of distributions (individual rows of
the probability tables); (iv) query language facilities are provided for manipulations
and transformations of probability distributions according to the laws of probability
theory; (v) interval probability distributions are correctly handled.

In this paper, we describe how Extended Semistructured Probabilistic Object
(ESPO) model and ESP-Algebra achieve these properties.

3 EXTENDED SEMISTRUCTURED PROBABILISTIC OBJECT (ESPO)
DATA MODEL

Semistructured Probabilistic Objects (SPOs) were introduced by Dekhtyar, Gold-
smith and Hawkes10. Each SPO contains a probability table of participating ran-
dom variables, along with conditionals, the given conditions on which the proba-
bilities in the table were conditioned, and context, the additional information about
known values of parameters which were not considered by the application to be
random variables.
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The extended semistructured probabilistic objects (ESPOs) differ from SPOs in
several ways. Most important is that probabilities are given as intervals rather than
exact values. In addition, we allow context and conditionals to be associated with
subsets of the participating variables. Finally, we include a path, an indicator of the
origin of an ESPO. Figure 2 shows the anatomy of ESPOs.

�: S
date: October 23
gender: male
respondents: 238, ��������
respondents: 195, �������	���
��
overlap: 184
senate legalization l u
Rhino yes 0.04 0.11
Rhino no 0.1 0.15
Donkey yes 0.22 0.27
Donkey no 0.09 0.16
Elephant yes 0.05 0.13
Elephant no 0.21 0.26
mayor: Donkey�������� ������	���
��

�� path expression

�� extended context

��random variables

��interval probability table

��extended conditional

Fig. 2. Extended Semistructured Probabilistic Object

DEFINITION 1. Let � � ���� � � � � ��� be a set of relational attributes and � �
���� � � � � ��� a universe of random variables. Let � � � be a set of participating
random variables.
A context entry is a pair ��� ��, where � � � and � � ��	���. An extended
context entry over� is a triple ��� ��
 �, where� � �, � � ��	��� and
 � � .
A conditional is a pair �����, where � �� � and � � ��	���. An extended
conditional is a triple �����
 �, where � �� � , � � ��	��� and
 � � .

The set � of relational attributes contains the non-stochastic variables present
in an application domain. A context entry is simply an assignment of a value to a
context attribute. An extended context entry associates a set of random variables
with such an assignment. Similarly, a conditional entry specifies a value or a set of
values for the specific random variable. An extended conditional associates a set of
random variables with such conditioning information.

In addition to extending context and conditionals and switching to interval prob-
abilities, we also define a path for an ESPO. The path of an ESPO  indicates its
origin. When an ESPO is inserted into a database it gets a unique id as its path. If
 is the result of a sequence of query algebra operations, the construction of  is
documented in its path. The exact syntax on construction of paths is explained in
Section 5.

We can now give the definition of an Extended SPO (ESPO).

DEFINITION 2. Let � � C[0,1] be a set of all subintervals of the interval ��� ��.
An Extended Semistructured Probabilistic Object (ESPO)  is a tuple � 	� �� �� ��
��� �
, where

� �� � ���� ��
 �� is a set of extended context entries;
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� � � ���� � � � � ��� � � is a set of random variables that participate in . We
require that � �� �;

� � � ��	�� � � � is the probability table of . � must be consistent (see
Definition 5 in Section 4);

��� � ������
 �� is a set of extended conditionals, such that ����������
 �
� �� � � �� � �;

� �, called a path of , is an expression of the Extended Semistructured Proba-
bilistic Algebra.

4 SEMANTICS FOR INTERVAL PROBABILITIES
Earlier work on Semistructured Probabilistic Objects used point probabilities 10.
In this paper we assume that the probability space is � � C[0,1], the set of

all subintervals of the interval ��� ��. This section formally introduces the possible
worlds semantics for probability distributions over � and the notions of consis-
tency and tightness for probability distributions. While there exist a variety of ap-
proaches to interpreting interval probabilities 21 the possible worlds approach has
been adopted by a number of researchers as the one that admits direct computa-
tions. In particular, the semantics described here follows the work of de Campos,
Huete and Moral8 and is similar to the work of Weichselberger 23. In the context of
databases, this semantics has been first used by Dekhtyar, et al. 11.

We discuss related work in more detail in Section 6.

DEFINITION 3. Let � be a set of random variables. A probabilistic interpretation
(p-interpretation) over � is a function �� � ��	�� �� ��� ��, such that�

�	�
���� � �� �	�� � �.

Given a set of random variables, a p-interpretation over it is any valid point
probability distribution. An interval probability distribution function (pdf) � �
��	�� � � C[0,1] represents a set of possible point probability distributions (a.k.a.,
p-interpretations). This corresponds to de Campos, et al.’s instance 8.

In the rest of the paper we adopt the following notation. Given a probability
distribution � � ��	�� � � C[0,1], for each 	� � ��	�� � we write � �	�� �
���	� ��	�. Whenever ��	�� � is enumerated as ��	�� � � �	��� � � � 	���, we write
� �	�� � ��� ��, � � � � 	. P is complete if it enumerates all possible events.

DEFINITION 4. Let � be a set of random variables and � � ��	�� � � C[0,1]
a complete interval probability distribution function over � . A p-interpretation ��
satisfies � (�� �� � ) iff ��	� � ��	�� �����	 � �� �	�� � ��	��

Let � be a set of random variables and � 	 � � � C[0,1] an incomplete interval
probability distribution function over � � ��	�� �. A probabilistic interpretation
�� satisfies � 	 (�� �� � 	) iff ��	� � �����	 � �� �	�� � ��	��

EXAMPLE 1. Consider a random variable � with domain ��� �� ��. Let probability
distribution functions ��, �� and �� and p-interpretations ��, ��, �� and �� be defined
in the following table. We have �� �� �� and �� �� ��; �� �� �� but �� ��� ��;
�� �� �� but �� ��� �� and, finally, �� ��� �� and �� ��� ��. Also, �� ��� ��, �� ��� ��,
�� ��� �� and �� ��� ��.
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�� �� �� �� �� �� ��
����� 	 
���� ���� ����� 	 
���� ��� ����� 	 
���� ���� ����� 	 ��� ����� 	 ��� ����� 	 ���� ����� 	 ���
����� 	 
���� ����� ����� 	 
���� ���� ����� 	 
���� ���� ����� 	 ��� ����� 	 ��� ����� 	 ���� ����� 	 ���
����� 	 
���� ���� ����� 	 
���� ���� ����� 	 ��� ����� 	 ��� ����� 	 ��� ����� 	 �

DEFINITION 5. An interval probability distribution function � � ��	�� � �
C[0,1] is consistent iff there exists a p-interpretation �� , such that �� �� � .

Consider the interval probability distribution functions ��, �� and �� described
in Example 1. As we saw, �� �� �� and �� �� ��, and thus, both �� and �� are
consistent.

On the other hand, notice that any p-interpretation � satisfying �� must have
���� � ��
, ���� � ��
 and ���� � ��
, hence ���� � ���� � ���� � ���, which
contradicts the constraint ���� � ���� � ���� � � on p-interpretations. Therefore,
no p-interpretation would satisfy �� and thus, �� is inconsistent. The following
theorem specifies the necessary and sufficient conditions for an interval probability
distribution function to be consistent. Proofs for this and following theorems can be
found in a technical report27.

THEOREM 1. Let � be a set of random variables and � � ��	�� � � C[0,1]
be a complete interval probability distribution function over � . Let ��	�� � �
�	��� � � � � 	��� and � �	�� � ��� ��. � is consistent iff the following two conditions
hold: (1)

��

	� � � �; (2)
��

	� � � �.
Let � 	 � � � C[0,1] be an incomplete interval probability distribution function

over � . Let � � �	��� � � � � 	��� and � 	�	�� � ��� ��. � 	 is consistent iff
��

	� � �
�.

DEFINITION 6. Let � � � � C[0,1] be an interval probability distribution func-
tion over a set of random variables � . Let � � �	��� � � � � 	��� and � �	�� � ��� ��.
A number � � ��� �� is reachable by � at 	� iff there exists a p-interpretation
�� �� � , such that ��	�� � �.

Reachability is another important property of interval pdfs. Intuitively points un-
reachable by an interval probability distribution function represent “dead weight”;
they do not provide any additional information about possible satisfying p-interpret-
ations. We note one important property of reachability: if two points � and � s.t.
� � � � � � �, are reachable by � at some point 	�, then so are all point
� � ��� �� 9.

DEFINITION 7. Let � � � � C[0,1] be an interval probability distribution
over a set � of random variables. � is called tight iff ��	� � ����� � ���	� ��	��
� is reachable by � at 	�.

Consider the interval pdf �� from Example 1. Although � ��� � ���� ����, no
p-interpretation � �� �� can have ���� � ���, because knowing that ���� � ��� and
���� � �� would lead to ���� � ���� � ���� � �� in violation of Definition 3. We
conclude that �� is not tight.

In their work, de Campos, et al. 8 call tight intervals “reachable”. As in their
approach, we replace interval probability distributions that are not tight with their
tight equivalents. This is done using a tightening operator.
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DEFINITION 8. Given an interval probability distribution � , an interval proba-
bility distribution � 	 is its tight equivalent iff (i) � 	 is tight and (ii) for each p-
interpretation � , � �� � iff � �� � 	.

A tightening operator � takes as an input a consistent interval probability func-
tion � � � � C[0,1] and returns its tight equivalent � 	 � � � C[0,1].

PROPOSITION 1. Each complete interval probability distribution � has a unique
tight equivalent.

The key feature of the tightening operator is that it produces a new interval pdf
that has the same set of satisfying p-interpretations as the input distribution func-
tion. We can compute the results of tightening efficiently as the following theorem
shows.

THEOREM 2. Let � � ��	�� � � C[0,1] be a complete interval probability dis-
tribution function over a set of random variables � . Let ��	�� � � �	��� � � � � 	���
and � �	�� � ��� ��. Then ��� � � � 	�

� �� ��	�� � ������� �
��
�	�

�� � ��������� �
��
�	�

�� � ����

In the rest of the paper we assume that all ESPOs under consideration have
consistent and tight probability distribution functions. The tightening operator al-
lows us to replace any probability distribution function that is not tight with its tight
equivalent. An ESPO  � 	��� �� �� ��� �
 is called consistent iff � is consistent.
Also,  is called tight iff � is tight.

5 EXTENDED PROBABILISTIC SEMISTRUCTURED ALGEBRA

Extended Probabilistic Semistructured Algebra (ESP-Algebra) is the query al-
gebra for the ESPO model. It includes five major operations on probabilistic ob-
jects: selection, projection, Cartesian product, join and conditionalization. In
our early paper25, we defined these query algebra operations for pure interval prob-
ability distributions (without context and conditionals) in a generic way. Here, we
ground the operations described there in the ESPO data model. The first four op-
erations are extensions of standard relational algebra operations. However, these
operations are expanded significantly in comparison with both classical relational
algebra20 and the definitions from Dekhtyar, et al. 10. The conditionalization op-
eration is specific to probabilistic databases and represents the procedure of con-
structing an ESPO containing a conditional probability distribution given an ESPO
for some joint probability distribution. Introduced as a database operation by Dey
and Sarkar13 for a relational model with point probabilities, this operation had been
extended to non-1NF databases by Dekhtyar, et al. 10 and considered for interval
probabilities25.

In the sections below, we describe each algebra operation. We base our examples
on the elections in Sunny Hill that we have described in Section 2. Figure 3 shows
different ESPOs representing a variety of polling data from Figures 1 and 2 and
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�: ��
gender: men
party: Donkey
date: October 26
mayor park legaliz- � �

ation
Donkey yes yes 0.44 0.52
Donkey yes no 0.12 0.16
Donkey no yes 0.08 0.12
Donkey no no 0.04 0.08
Elephant yes yes 0.05 0.1
Elephant yes no 0.01 0.02
Elephant no yes 0.03 0.04
Elephant no no 0.06 0.08
Rhino yes yes 0.02 0.04
Rhino yes no 0.01 0.03
Rhino no yes 0.03 0.05
Rhino no no 0.01 0.04
senate: Donkey

�: ��
date: October 23
gender: male
respondents: 238, ��������
respondents: 195, �������	���
��
overlap: 184
senate legaliz- � �

ation
Rhino yes 0.04 0.11
Rhino no 0.1 0.15
Donkey yes 0.22 0.27
Donkey no 0.09 0.16
Elephant yes 0.05 0.13
Elephant no 0.21 0.26
mayor: Donkey�������� ������	���
��

� ��
locality: Sunny Hill
date: October 26
park legaliz- � �

ation
yes yes 0.56 0.62
yes no 0.14 0.2
no yes 0.21 0.25
no no 0.03 0.07
mayor: Donkey

�: ��
locality: South Side
date: October 12
sample: 323
mayor � �

Donkey 0.2 0.26
Elephant 0.42 0.49
Rhino 0.25 0.33

�: ��
locality: Downtown
date: October 12
sample: 275
mayor � �

Donkey 0.48 0.55
Elephant 0.25 0.3
Rhino 0.2 0.24

�: ��
locality: West End
date: October 12
sample: 249
mayor � �

Donkey 0.38 0.42
Elephant 0.34 0.4
Rhino 0.15 0.2

�: ��
locality: Sunny Hills
date: October 26
sample: 249
mayor � �

Donkey 0.33 0.39
Elephant 0.32 0.37
Rhino 0.25 0.3

Fig. 3. Sunny Hill pre-election polls in ESPO format.

more. We assume that all these objects have been inserted into the database in their
current form, hence, each received a unique path id.

In a relational data model, a relation is defined as a collection of data tuples over
the same set of attributes. In our model, an Extended Semistructured Probabilistic
relation (ESP-relation) is a set of ESPOs and an Extended Semistructured Prob-
abilistic database (ESP-database) is a set of ESP-relations. Grouping ESPOs into
relations is done not based on structures, as is the case in the relational databases;
ESPOs with different structures can co-exist in the same ESP-relation. In the exam-
ples below we consider ESP-relation � � ��� �� �� �� �� � �� consisting of
ESPOs from Figure 3.

5.1 Selection

For each individual part of an ESPO we define a selection operation, namely:
selection based on context, random variables, conditionals, probabilities and prob-
ability table. The first three types of selections, described in Section 5.1, when ap-
plied to an ESP-relation produce a subset of that relation. Individual ESPOs do not
change (except for their paths). On the other hand, selections on probabilities or
on probability tables (described in Section 5.1) may may return only parts of the
probability tables. Table 1 lists some examples of queries that should be expressible
as selection queries on ESPOs. For each question we describe the desired output of
the selection operation.
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Selection on Context, Random Variables and Conditionals In this section, we
define the selection operations that do not alter the content of the selected objects.
We start by defining the acceptable languages for selection conditions for these
types of selects.

Recall that the universe � of context attributes consists of a finite set of at-
tributes ��� � � ��� with domains ��	����� � � � � ��	����. With each attribute � �
� we associate a set ����� of allowed predicates. We assume that equality and
inequality are allowed for all � � �. The definitions below formalize the selection
operations on a single ESPO.

Table 1. Selection queries to ESPOs.

# Query Answer
1. “What information is available Set of ESPOs that have date: October 26 in their context.

about voter attitudes on October 26?”
2. “What are other voting intentions of Set of ESPOs which have as a conditional mayor=Donkey.

people who choose to vote Donkey for mayor?”
3. “What information is known about Set of ESPOs that contain mayor in the set of participating

voter intentions in the mayoral race?” random variables
4. “What voting patterns are likely to occur In the probability table of each ESPO, the rows with probability

with probability between 0.2 and 0.3?” values guaranteed to be between 0.2 and 0.3 are found.
If such rows exist, they form the probability table
of the ESPO that is returned by the query.

5. “With what probability are voters likely to choose Set of all ESPOs that contain mayor and senate random variables,
a Donkey mayor and Elephant Senator? with the probability tables of each containing only the rows

where mayor=Donkey and senate=Elephant.
6. “Find all distributions based on more than Set of ESPOs that contain senate random variable and

200 responses about senate vote.” responses = X with � � ��� is associated with it in the context.
7. “How do people who intend to vote Donkey for Set of ESPOs that contain park random variable and

mayor plan to vote for the park construction conditional mayor=Donkey is associated with it.
ballot initiative?”

DEFINITION 9. An atomic context selection condition is an expression � of the
form “� Q � (���� ��)”, where � � �, � � ��	��� and � � �����. An
atomic participation selection condition is an expression � of the form “� � � ”,
where � � � is a random variable. An atomic conditional selection condition is
one of the following expressions: “� � ���� � � � ���” or “� � �” where � � � is a
random variable and �� ��� � � � � �� � ��	���. We slightly abuse notation and write
“� � �” instead of “� � ���”. An extended atomic context selection condition is
an expression ��
 � where � is an atomic context selection condition and
 � � �
is a set of random variables. An extended atomic conditional selection condition
is an expression ��
 � where � is an atomic conditional selection condition and

 � � � is a set of random variables.

DEFINITION 10. Let  � 	��� �� �� ��� �
 and  	 � 	��� �� �� ��� �	
 be two
ESPOs with �	 � �������.

Let � � ���� �� be an atomic context selection condition, then ���� � � 	�
iff there exists a tuple ��� ��
 � � ��, such that ��� �� � �; otherwise ���� � �.

Let � � � � � be an atomic participation selection condition, then ���� � � 	�
iff � � � ; otherwise ���� � �.



120 ZHAO, DEKHTYAR AND GOLDSMITH

Let � � � � ���� � � � � ��� be an atomic conditional selection condition, then
���� � � 	� iff �����
 � � �� and � � ���� � � � � ���; otherwise ���� � �.

Let � � � � � be an atomic conditional selection condition, then ���� � � 	�
iff �����
 � � �� and � � �; otherwise ���� � �.

Let � � ���� ���
 � be an extended atomic context selection condition, then
���� � � 	� iff there exists a tuple ��� ��
 � � �� such that (i) ��� �� � �; (ii)

 � � 
 ; otherwise ���� � �.

Let � � � � ���� � � � � ����
 � be an extended atomic conditional selection
condition, then ���� � � 	� iff �����
 � � ��, � � ���� � � � � ���, and 
 � �

 ; otherwise ���� � �.

Let � � � � ��
 � be an extended atomic conditional selection condition, then
���� � � 	� iff �����
 � � ��, � � � and
 � � 
 ; otherwise ���� � �.

We note that, whenever an ESPO satisfies any of the selection conditions de-
scribed above, its context, participating variables, probability table and conditional
are returned intact. The only part of the ESPO that changes is its path, reflecting
the application of the selection operation to the object. The semantics of atomic
selection conditions discussed so far can be extended to Boolean combinations in a
straightforward manner: ��
���� � ��������� and ������� � ����������.
Finally, for an ESP-relation �, ����� �

�
���������.

EXAMPLE 2. Consider our ESP-relation � (Figure 3). Below are some possible
queries to this relation and their results (we specify the unique ids of the ESPOs
that match the query).

id Type Query Result
Q1 context ������������	
���� ���� ��� ���
Q2 participation ����	�� ��� ���� ��� ��� ��� ���
Q3 conditionals ������������������ ����
Q4 ext. context �	�����������
�������������� ����
Q5 ext. context ������	���������	���	����� ����
Q6 ext. conditional ����	�������������������� ����
Q7 ext. conditional ����	�������������������������� 

Selection on Probabilities and Probability Tables The two types of selections
introduced in this section are more complex. The result of a selection operation of
either type depends on the content of the probability table, which itself is considered
as a relation (each row being a single record). In the process of performing the
probabilistic selection or selection on the probability table (see questions 4 and 5,
Table 1, respectively), each row of the probability table is examined individually
to determine whether it satisfies the selection condition. A row is retained in the
answer if it does, otherwise it is thrown out. Thus, such selection operations may
yield ESPOs with incomplete probability tables. As the selection condition relates
only to the content of the probability table of an ESPO, its context, participating
random variables, and conditionals are preserved.

DEFINITION 11. An atomic probabilistic table selection condition is an expres-
sion of the form � � � where � � � and � � ��	���. An atomic probabilistic
selection condition is an expression of one of the two forms: (i) � �� �; (ii) � �� �;
where � � ��� �� and op � ��� ������� �� �.
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DEFINITION 12. Let  � 	��� �� �� ��� �
 be an ESPO, � � ���� � � � � ���, and
let � � � � � be an atomic probabilistic table selection condition.

If � � � , then (assuming � � �� � � � � !) the result of selection from  on
�, ���� is a semistructured probabilistic object  	 � 	��� �� � 	� ��� �	
, where
�	 � ������� and

� 	���� � � � ���� � � � � ��� �

�
� ���� � � � ���� � � � � ��� if �� � ��
undefined if �� �� ��

Consider the ESPO � from Figure 3. The leftmost ESPO of Figure 4 shows the
result of the selection query on probability table: ����	������ (“find the probability
of all voting outcomes where respondents support the park ballot initiative”). The
result of this query is computed as follows: the context, list of conditionals and
participating random variables remain the same, while the probability table now
contains only the rows that satisfy the selection condition and the path changes to
reflect the selection operation. If the same query is applied to the entire relation �,
the result contains two ESPOs constructed from � and �: only these ESPOs have
participating random variable park (and rows for park=yes).

�: ������������
gender: men
party: Donkey
date: October 26
mayor park legaliz- � �

ation
Donkey yes yes 0.44 0.52
Donkey yes no 0.12 0.16
Elephant yes yes 0.05 0.1
Elephant yes no 0.01 0.02
Rhino yes yes 0.02 0.04
Rhino yes no 0.01 0.03
senate: Donkey

�: ���	�������
date: October 23
gender: male
respondents: 238, ��������
respondents: 195, �������	���
��
overlap: 184
senate legaliz- � �

ation
Rhino no 0.1 0.15
Donkey yes 0.22 0.27
Donkey no 0.09 0.16
Elephant no 0.21 0.26
mayor: Donkey�������� ������	���
��

�: ���	�������
date: October 23
gender: male
respondents: 238, ��������
respondents: 195, �������	���
��
overlap: 184
senate legaliz- � �

ation
Rhino yes 0.04 0.11
Rhino no 0.1 0.15
Donkey no 0.09 0.16
Elephant yes 0.05 0.13
mayor: Donkey�������� ������	���
��

Fig. 4. Selection on probability table and probabilities.

DEFINITION 13. Let  � 	��� �� �� ��� �
 be an ESPO, and � � � �� � �� �
� �� �� a probabilistic atomic selection condition. Let 	� � ��	�� �. The result of
selection from  on � is defined as follows: �� op ��� � 

	 � 	��� �� � 	� ��� �	
,
where �	 � ������� and

� 	�	�� �

�
� �	�� if ��	 �� � ���	 �� ���
undefined otherwise.

The center and the rightmost ESPOs on Figure 4 represent the results of selec-
tions on probabilities: ���������� and ���������� respectively. In both cases, the
results of the selection keep the same context, conditionals and participating ran-
dom variables, while the probability table is modified to retain only the rows where
the upper (lower) bound on the probability interval satisfies the selection condition.
The result of ���������� would contain seven ESPOs: every object in � contains
rows where upper bound on probability is greater that 0.14. The result of ����������
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contains two ESPOs constructed from � and �: only these SPOs had rows with
lower probability less than 0.11.

Different selection operations (described in this section and in Section 5.1) com-
mute.

THEOREM 3. Let � and �	 be two selection conditions and let � be a semistruc-
tured probabilistic relation. Then ���������� � �����������

5.2 Projection
Projection in classical relational algebra removes columns from the relation and,

if needed, collapses duplicate tuples. ESPOs consist of four different components
that can be affected by projection operation. We distinguish between three different
types of projection here: on context, on conditionals and on participating random
variables, the latter affecting probability table as well.

There are two issues that need to be addressed when defining projection on
context. First, contexts may contain numerous copies of relational attributes. Hence,
projecting out a particular attribute from the context of an ESPO should result in
all copies if this attribute being projected out. The second issue is the fact that
in extended context, different attributes are associated with different participating
random variables. To address these two issues we define two types of projection
on context. The first operation is similar to standard relational projection, while the
second operation works by removing associations between context attributes and
random variables.

DEFINITION 14. Let " � ���� � � � � ��� be a set of context attributes and  �
	��� �� �� ��� �
 be an ESPO. Projection of  on " , denoted #� �� is an ESPO
 	 � 	���

� �� �� ��� �	
, where ���
� ���� ��
 ����� �� 
 � � ��� � � "� and

�	 � �#� ����.

DEFINITION 15. Let "� � �����
�� � � � � ����
��� be a set of pairs where for
� � � � !, � is a context attribute and 
 � � . Let  � 	��� �� �� ��� �
 be an
ESPO. Projection of  on "�, denoted #�
��, is an ESPO  	 � 	���

� �� �� ��� �	
,
where ���

� ���� ��
 	����� ��
 � � ��� � � � � ���� � � � ��� for some � �
� � !� and � �� 
 	 � 
 �
� and �	 � �#�
����.

Given an ESPO  and a set of pairs "� as described in Definition 15, the pro-
jection operation proceeds as follows. The set of context attributes to keep which
comes from "� specifies for each attribute the list of random variables for which it
is allowed to be kept. The projection operation (i) removes from the input ESPO 
all attributes not in " � and (ii) for each instance ��� ��
 � � �� of attribute � s.t.
���
� � "�, it removes all references in 
 that are not in 
. If 
 �
 � �,
then ��� ��
 � is omitted from the projection. Projection operations on conditionals
can be defined similarly.

DEFINITION 16. Let $ � ���� � � � � ��� � � be a set of random variables and  �
	��� �� �� ��� �
 be an ESPO. Projection of  on $ , denoted #�����, is an ESPO
 	 � 	��� �� �� ���

� �	
, where���
� ������
 �������
 � � ��� and � � $�

and �	 � �#�������.
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DEFINITION 17. Let $� � �����
�� � � � � ����
��� be a set of pairs where for
all � � � � !, � � � and 
 � � . Let  � 	��� �� �� ��� �
 be an ESPO.
Projection of  on $�, denotes #���
��, is an ESPO  	 � 	��� �� �� ���

� �	
,
where ���

� ������
 	�������
 � � ��� � � � � ���� � � � � ���, and � ��

 	 �
 �
�; �	 � �#�������.

Symbol “C” is used in the notation to distinguish the projection operation from
the projection on the set of participating random variables, to be defined below.

Let us now define the most intricate projection operation, projection on the set
of random variables. When defining this operation, we need to keep in mind the fol-
lowing: (i) projection is only allowed if at least one random variable remains in the
resulting set of participating random variables, (ii) projecting out a random variable
� should result in removal of � from the extended context and conditionals, (iii)
projecting out a random variable � should remove this variable from the probability
table, i.e., the underlying probability distribution function changes.

DEFINITION 18. Let  � 	��� �� �� ��� �
 be an ESPO, and let � � � � . Pro-
jection of  on � �, denoted #� ���, is defined as follows:
(1) � � � � � �: #� ��� � �.
(2) � � � � � � 	 �� �: #� ��� �  	 � 	���

� � 	� � 	� ���
� �	
, where

� ���
� ���� ��
 	����� ��
 � � �� and � �� 
 	 � 
 � � ��;

� ���
� ������
 	�������
 � � �� and � �� 
 	 �
 � � ��;

� � 	 � ��	�� 	� � C[0,1]. For all 	�	 � ��	�� 	� and � 	�	� 	�		� � ��	�� �,
� 	� 	�	� � ������	� �

�
� �	�� �	����
���� � ��

	�	� 	�		�� ������	� �
�

� �	�� �	����
���� �

�� 	�	� 	�		���� and
� �	 � �#� �����.

This definition requires a careful explanation. Let  � 	� �� �� �� ��� �
 be an
ESPO, and let � � � � be the set of projection random variables. The computation
of #� ��� proceeds as follows. First, we check if the intersection of � , the set of
participating random variables of , and � � is empty. If it is, we return the empty
set as the answer. If � 	 � � � � � is not empty, we build the projection as follows.
(i) The new set of participating random variables is � 	.
(ii) The new context ���

and conditionals ���
are produced from �� and �� re-

spectively, by eliminating all random variables not from � 	 from the extensions
(associations). Context entries (conditionals) from � � (��) associated only with
variables not from � 	 are eliminated from ���

(���
).

(iii) Finally, the new probability table function is defined as follows. The function
must range over ��	�� 	�. Since � 	 � � , associated with each value 	�	 � ��	�� 	�,
is a set of values � 	�	� 	�		� � ��	�� �, where 	�		 ranges over ��	��  � 	�. Given
a p-interpretation � �� � , for each 	�	 � ��	�� 	� we compute the probability as-
signed to it by � as �� 	�	� �

�
�	���
���� �� �� ��

	�	� 	�		��We know that the probability
of 	�	 has to range between the minimal and maximal value of �� 	�	�, for all � �� � .
This interval, ������	� �� 	�	�������	� �� 	�	��, is the value of the new probability dis-
tribution function � 	 on 	�	.

While the computation of the new set of participating random variables, context,
and conditionals according to Definition 18 is straightforward, computing the new
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probability table requires solving a number of optimization problems (finding ���s
and ���s of

�
�� 	�	� 	�		� for all 	�	), which seems like a fairly tedious task. However,

it turns out that these optimization problems have analytical solutions.

THEOREM 4. Let  � 	��� �� �� ��� �
 be an ESPO and � � � � . Let � �� � ��
� and  	 � 	���

� � 	� � 	� ���
� �	
 � #� ���. Let � 		��	� � �

�
� �	�� �	����
���� � �� �	�� �	����

������
�

� �	�� �	����
���� � �� �	�� �	������ Then � 	 � � �� 		�.

EXAMPLE 3. Figure 5 illustrates the computation of projection #����������� on
participating random variables. The first step is the removal of all other random
variables from the probability table. Next, the duplicate rows of the new probability
table are collapsed and the probability intervals are added. After that, tightening is
performed to find the true intervals. We then exclude respondents:195 from the
context as it is not associated with variable senate and disassociate legalization
with conditionals.

�: ��
date: October 23
gender: male
respondents: 238, ��������
respondents: 195, �������	���
��
overlap: 184
senate legalization � �

Rhino yes 0.04 0.11
Rhino no 0.1 0.15
Donkey yes 0.22 0.27
Donkey no 0.09 0.16
Elephant yes 0.05 0.13
Elephant no 0.21 0.26
mayor: Donkey�������� ������	���
��

	�

�:  ������������
date: October 23
gender: male
respondents: 238, ��������
respondents: 195, �������	���
��
overlap: 184
senate � �

Rhino 0.04 0.11
Rhino 0.1 0.15
Donkey 0.22 0.27
Donkey 0.09 0.16
Elephant 0.05 0.13
Elephant 0.21 0.26
mayor: Donkey�������� ������	���
��

	�

�:  ������������
date: October 23
gender: male
respondents: 238, ��������
overlap: 184
senate � �

Rhino 0.14 0.26
Donkey 0.31 0.43
Elephant 0.26 0.39
mayor: Donkey��������

	�

�:  ������������
date: October 23
gender: male
respondents: 238, ��������
overlap: 184
senate � �

Rhino 0.18 0.26
Donkey 0.35 0.43
Elephant 0.31 0.39
mayor: Donkey��������

Fig. 5. Projection on the participating random variables.

5.3 Conditionalization

Conditionalization was introduced into relational algebra for a probabilistic data
model by Dey and Sarkar13. It is the operation of computing a conditional proba-
bility distribution, given a joint probability distribution. To simplify the definition
below, we employ the following notation. Let � � ���� � � � � ��� be a set of ran-
dom variables and let � � � and � 	 � �  ���. Let � � ��	�� � � ��� ��
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be a p-interpretation. Let � � ���� � � � ��� � ��	��� and 	% � ��	�� 	�. Let
���	%� �

��

	� ��	%� ��.

DEFINITION 19. Let  � 	��� �� �� ��� �
 be an ESPO, �� �  �, � � � and
� � � � ���� � � � � ��� be a conditional selection condition. Then, the result of con-
ditionalization of  on �, denoted &���, is the ESPO  	 � 	��� � 	� � 	� ���

� �	
,
where

� � 	 � �  ���. Without loss of generality, we assume further that � �
���� � � � � ���, � � �� and therefore � 	 � ���� � � � � �����.

� ���
� �� � ������ � 	��, where � � ���� � � � � ���.

� � 	 � ��	�� 	� � C[0,1] is defined as

� 	�	%� �

�
���
��	�

�
���	%��

!��
���� �� ���
	%	�

�
����
��	�

�
���	%��

!��
���� �� ���
	%	�

��
�

� �	 � &����.

Given a p-interpretation � , �	��!�
�


������ �� �	� �!��
is the conditional probability of 	%

given � � �� � � . From the definition above, it follows that in order to compute
the result of conditionalization of an ESPO (in particular, in order to compute the
resulting probability distribution) a number of non-linear optimization problems
have to be solved. As it turns out, the new probability distribution can be computed
directly (i.e., both minimization and maximization problems that need to be solved
have analytical solutions)8,9.

THEOREM 5. Let  � 	��� �� �� ��� �
 be an ESPO, � � � � ���� � � � � ��� be a
conditional selection condition and � � � . Let � 	 � �  ���, � � ���� � � � � ���
and 	% � ��	�� 	�. The result of the conditionalization is denoted  	 � &��� �
	��� � 	� � 	� ���

� �	
. If we define �����! and �����! as follows:

�����! � ���

	

�

	��

���!�	� � �
�

�!� �	�! or 	� ���

�� �!��	��

�
� �

�����! � ���

	

�

�
�!� �	�! or 	� ���

�� �!��	�� �
�
	��

���!�	�

�
� �

then the following expression correctly computes the lower and upper bounds of
the conditional probability distribution for the resulting ESPO object. Note that the
theorem assumes that denominators of the expressions in the formula are non-zero.
This is the case if any of the lower bounds are non-zero.

� 	�	%� �


� �����!

���
�
�

�
	� ��� �� �!��	�� �

�
�!� �	�! � 	�� �� �!��	� � �����!

� �
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�����!

���
��

�!� �	�! � 	�� �� �!��	� � �����! � �
�

	� ��� �� �!��	��

�
�
� �

The proof of this theorem can be found in early paper9. The following example
illustrates how the conditionalization operation works.

EXAMPLE 4. Consider the ESPO � in Figure 3. In this example, we show the
computation of the conditionalization &�������	���
�	�������, as shown in Figure 6.
First we collapse all the rows that do not satisfy the condition ��������	��
 � ���

into one row. Next, we do a tightening operation on the new probability distribution.
Then we normalize, which means that we must find the minimum and maximum
values of the expressions of the form ��������

������
���������
������������������������
for ' �

���
����
����������
	� over all p-interpretations � �� � .
Let us determine the lower bound for � � ��
�. Consider the following func-

tion ( of three variables: (��� %� )� � 	
	�!�"

. (In this paper, we discard the case
when � � % � ) � �.) For positive �, % and ), we could rewrite the function as
(��� %� )� � �

�� 

�
�

. So, in order to minimize ( we need to minimize x and maximize

y+z. In this case, we need to minimize ����
�� ���� and maximize ����
���� �����
��������
	� ����, i.e., ����
�� ���� � ���� and ����
���� ����� ��������
	� ���� �
��
������ ����� � ���� ����� � ���. Then the minimum value of

������
�����
������
���������
������������������������

is ����
��������

� ����.

�: ��
date: October 23
gender: male
respondents: 238, ��������
respondents: 195, �������	���
��
overlap: 184
senate legalization � �

Rhino yes 0.04 0.11
Rhino no 0.1 0.15
Donkey yes 0.22 0.27
Donkey no 0.09 0.16
Elephant yes 0.05 0.13
Elephant no 0.21 0.26
mayor: Donkey�������� ������	���
��

	�

�: #���������������������
date: October 23
gender: male
respondents: 238, ��������
overlap: 184
senate legalization � �

Rhino yes 0.04 0.11
Donkey yes 0.22 0.27
Elephant yes 0.05 0.13
/ no 0.49 0.57
mayor: Donkey�������� ������	���
��

	�

�: #���������������������
date: October 23
gender: male
respondents: 238, ��������
overlap: 184
senate � �

Rhino 0.09 0.36
Donkey 0.48 0.53
Elephant 0.12 0.30
mayor: Donkey��������
legalization: yes��������

	�

�: #���������������������
date: October 23
gender: male
respondents: 238, ��������
overlap: 184
senate � �

Rhino 0.17 0.36
Donkey 0.48 0.53
Elephant 0.12 0.30
mayor: Donkey��������
legalization: yes��������

Fig. 6. Conditionalization operation.
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Similarly, we can determine the upper bound for � � ��
�. We need to maxi-
mize ����
�� ���� and minimize ����
���� ���� � ��������
	� ����, i.e., ����
�� ����
� ���� and ����
���� ���� � ��������
	� ���� � ��������� ����� � ���� �����
� ����. Then the maximum value of

������
�����
������
���������
������������������������

is ����
���������

� ����. We can apply similar opera-
tions for � � ��
��� and � � ������
	. After that, the tightening operation is
performed. Finally, we exclude respondents:195 from the context as it is associ-
ated with legalization variable and add legalization=yes to the conditionals. The
resulting ESPO is shown in the bottom right of Figure 6.

We note, however, that Jaffray16 has shown that conditionalizing interval proba-
bilities is a tricky matter: the set of point probability distributions represented by � 	

contains distributions that do not correspond to any distribution in � . This appears
to be an inescapable feature of conditionalization of interval pdfs in the possible
worlds semantics. However, the result of conditionalization still gives the tightest
possible probability intervals for each instance, and is therefore useful in practice.
Thus, conditionalization is included in ESP-algebra with a caveat to the users to
view its results with caution.

5.4 Cartesian Product and Join
The Cartesian product of two ESPOs can be viewed as the joint probability

distribution of the random variables from both objects. As only point probabilities
were used10, an assumption of independence was made between the random vari-
ables in the SPOs being combined. Probability distribution functions considered
here are interval, so this restriction is removed.

Probabilistic conjunctions are interval functions (operations) that are used to
compute the probability of a conjunction of two events given the probabilities of in-
dividual events. Typically, each probabilistic conjunction operation would have an
underlying assumption about the relationship between the events involved, such as
independence, ignorance, positive or negative correlation. Probabilistic conjunc-
tions (��)a were introduced by Lakshmanan, et al. 19, and used in their Cartesian
product operation. Our definitions are borrowed from Dekhtyar, et al. 11 and Laksh-
manan, et al.19.

Cartesian Product Since different probabilistic conjunction operations compute
the probabilities of conjunction of two events in different ways, there is no unique
Cartesian product operation. Rather, for each probabilistic conjunction �� we de-
fine a Cartesian product operation ��.

DEFINITION 20. Let  � 	��� �� �� ��� �
 and  	 � 	���
� � 	� � 	� ���

� �
 be
two ESPOs. Let � � ���� � � � � ���, � 	 � ��	�� � � � � �

	
��, $ � �� � �������
 � �

���, $ 	 � ��	 � ����	� � 	�
 	� � ���
�.  and  	 are Cartesian product-

compatible iff (i) � � � 	 � �; (ii) $ � � 	 � �, and (iii) � � $ 	 � �.

We require that the sets of participating random variables be disjoint. (The other
case is handled by the join operation.) We also want the set of random variables

a For example, ����� ��� ��� ���� ���� � �����	� �� 
 �� � ��������� ���� for ignorance relationship,
and ����� ������� ���� ���� � ��� � ��� �� � ��� for independence relationship.
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found in the conditionals of one ESPO to be disjoint from the participating vari-
ables of the other. For example, Cartesian product of the probability distribution of
mayor votes for respondents who will vote Donkey for senate with the probability
distribution of senate votes is not allowed.

DEFINITION 21. Let  � 	��� �� �� ��� �
 and  	 � 	���
� � 	� � 	� ���

� �	
 be
two Cartesian-product compatible ESPOs. Let � � ���� � � � � ���, � 	 � ��	�� � � � � �

	
��,

$ � �� � �������
 � � ���, $ 	 � ��	 � ����	� � 	�
 	� � ���
�. Let �� be

some probabilistic conjunction. The Cartesian product of  and  	, denoted ��
	,

is defined as  �� 
	 �  		 � 	����

� � 		� � 		� ����
� �		
, where

� � 		 � � � � 	;
� ����

� ���� ��
 ������ ��
 � � �� and no ��� ��
 	� � ���
� or ���� ��
 �

� ���
and no ��� ��
 	� � ��� or ���� ��
�� � �� and ��� ��
�� � ���

and 

� 
� �
���;

� � 		 � ��	�� 		� � C[0,1] is defined as follows. Let 	� � ��	�� �, 	�	 �
��	�� 	� (hence (	�� 	�	� � ��	�� 		�). Then � 		��	�� 	�	�� � � �	���� �

	� 	�	�;
�����

� ������
 ��������
 � � �� and no �����
 	� � ���
� or ������
 �

� ���
and no �����
 	� � ��� or ������
�� � �

� and �����
�� � �
��

and

 � 
� �
���; and

� �		 � �� �� �
	�.

In Cartesian product the contexts and the conditionals of the two input ESPOs
are united; If a particular context attribute or a conditional appears in both ESPOs,
then their association lists are merged. The new set of participating variables is the
union of the two original sets. Finally, the probability interval for each instance
(row) of the new probability table is computed by applying the probabilistic con-
junction operation to the appropriate rows of the two original tables.

Join Similar to Cartesian product, join in ESP-Algebra computes the joint proba-
bility distribution of the input ESPOs. The difference is that join is applicable to the
ESPOs that have common participating random variables. Let  � 	� �� �� �� ���
�
 and  	 � 	���

� � 	� � 	� ���
� �
, and let �� � � � � 	 �� � and participating ran-

dom variables of  are not conditioned in  	 and vice versa. If these conditions are
satisfied, we call  and  	 join-compatible.

DEFINITION 22. Let  � 	��� �� �� ��� �
 and  	 � 	���
� � 	� � 	� ���

� �	
 be
two ESPOs. Let � � ���� � � � � ���, � 	 � ��	�� � � � � �

	
��, $ � �� � �������
 � �

���, $ 	 � ��	 � ����	� � 	�
 	� � ���
�.  and  	 are join-compatible iff (i)� �

� 	 � �� �� �; (ii) $ � � 	 � �, and (iii) � � $ 	 � �.

Consider three vectors 	� � ��	�� ���, 	% � ��	����, and 	) � ��	�� 	���.
The join of  and  	 is the joint probability distribution � 		�	�� 	%� 	)� of � and � 	,
or, more specifically, of �  ��, �� and � 	 ��. To construct this joint distribution,
we recall from probability theory that under assumption � about the relationship
between the random variables in � and � 	 and independence between variables in
�  �� and in � 	  ��, we have *�	�� 	%� 	)� � *�	�� 	%� �� *�	)�	%� and, symmetri-
cally, *�	�� 	%� 	)� � *�	��	%��� *�	%� 	)�. *�	�� 	%� is stored in � , the probability table of
. *�	)�	%� is the conditional probability that can be found by conditioning *�	%� 	)�
(stored in � 	) on 	%. The second equality can be exploited in the same manner.
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This gives rise to two families of join operations, left join (��) and right join
(��), defined as follows.

DEFINITION 23. Let  � 	��� �� �� ��� �
 and  	 � 	���
� � 	� � 	� ���

� �	
 be
two join-compatible ESPOs. Let �� � � � � 	 �� �. We define the operations of left
join of  and  	, denoted  �� 

	, and right join of  and  	, denoted  �� 
	,

under the assumption � as follows:  �� 
	 �  		 � 	����

� � 		� � 		� ����
� �		
�

 �� 
	 �  			 � 	����

� � 		� � 			� ����
� �			
� where

� � 		 � � � � 	;
� ����

� ���� ��
 ������ ��
 � � �� and no ��� ��
 	�� ���
� or ���� ��
 � �

���
and no ��� ��
 	� � ��� or ���� ��
�� � �� and ��� ��
�� � ���

and 
 �

� �
���;

� � 		� � 			 � ��	�� 		� � C[0,1]. For all 	' � ��	�� 		�; 	' � �	�� 	%� 	)�; 	� �
��	��  ���� 	% � ��	����, 	) � ��	�� 	  ���: let �! � &��	�!�� � 	��� � 

��� ��!� �
�
�! 
 and  	�! � &��	�!�

	� � 	���
� � 	  ��� � 	

�!� �
��

�! 
. �
		� 	'� � ��!�	�� ��

� 	�	%� 	)�� � 			� 	'� � � ��	�� 	%���� �
	
�!�	)��

�����
� ������
 ��������
 � � �� and no �����
 	� � ���

� or ������
 �
� ���

and no �����
 	� � ��� or ������
�� � �� and �����
�� � ���
and


 � 
� �
���; and
� �		 � � �� �

	; �			 � � �� �
	.

EXAMPLE 5. Consider the two ESPOs � and � in Figure 3. They are joint prob-
ability distributions for (senate, legalization) and (park, legalization), respec-
tively. However, in some circumstances we may want to combine these two ESPOs
and obtain the joint probability distribution for all three random variables. We may
apply a join operation to these ESPOs since they are join-compatible according the
definition. We show the left join under the assumption of independence, ���
�,
as follows.

The join operation combines three operations: conditionalization, selection and
Cartesian product. First, we need to calculate the results for conditionalization of
the left operand (i.e. �) on the set of common variables (in this case, legaliza-
tion). Second, we do selections on probability table for all the possible values of
the common variables, namely, ��$%��"�&��	!$'��� and ��$%��"�&��	�����. Third,
Cartesian product operations on corresponding ESPOs b are applied based on the
values of the common variables, namely, &�$%��"�&��	!$'�������$%��"�&��	!$'���
and &�$%��"�&��	���������$%��"�&��	�����. We assume that the random variables
in these two ESPOs are independent when we apply probability conjunctions. Fi-
nally, we union the resulting ESPOs and apply a tightening operation. The final
result is shown in the right side of the figure.

6 RELATED WORK
This work builds on the work of many people in two fields: imprecise probabil-

ities and probabilistic databases. The overlap between these two fields is still small,
so we address them separately. Databases that handle imprecise probabilities are
surveyed in Section 6.2.

b Prior to applying Cartesian product operation, we project legalization = yes and legalization = no out
of the conditionals.
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�: ��
date: October 23
gender: male
senate legalization � �

Rhino yes 0.04 0.11
Rhino no 0.1 0.15
Donkey yes 0.22 0.27
Donkey no 0.09 0.16
Elephant yes 0.05 0.13
Elephant no 0.21 0.26
mayor: Donkey

� ��
locality: Sunny Hill
date: October 26
park legalization � �

yes yes 0.56 0.62
yes no 0.14 0.2
no yes 0.21 0.25
no no 0.03 0.07
major: Donkey

	�

�: �����
locality: Sunny Hill
date: October 26
gender: male
senate park legalization l u
Rhino yes yes 0.09 0.22
Rhino yes no 0.03 0.06
Rhino no yes 0.04 0.09
Rhino no no 0.01 0.02
Donkey yes yes 0.27 0.33
Donkey yes no 0.03 0.07
Donkey no yes 0.11 0.13
Donkey no no 0.01 0.02
Elephant yes yes 0.07 0.19
Elephant yes no 0.06 0.11
Elephant no yes 0.03 0.07
Elephant no no 0.01 0.04
major: Donkey

Fig. 7. Join operation (left join) in ESP-Algebra

6.1 Interval Probabilities

Imprecise probabilities have attracted the attention of researchers for quite a
while now, as documented by the Imprecise Probability Project 22. Walley’s seminal
work21 makes the case for interval probabilities as the means of representing uncer-
tainty. In his book, Walley talks about the computation of conditional probabilities
of events. His semantics is quite different from ours, as Walley constructs his the-
ory of imprecise probabilities based on gambles and betting, expressed as lower and
upper previsions on the sets of events. Conditional probabilities are also specified
via gambles by means of conditional previsions. A similar approach to Walley’s is
found in the work of Biazzo, Gilio, et al. 2,3 where they extend the theory of impre-
cise probabilities to incorporate logical inference and default reasoning.

Walley21 calls consistency and tightness properties “avoiding sure loss”, and
“coherence”, respectively. Biazzo and Gilio2 also use the term “g-coherence” as a
synonym for “avoiding sure loss”. Their work focuses on checking g-coherence and
propagation of lower/upper conditional probabilities without assuming that the con-
ditioning events have positive probability. The terminology that we have adopted
originated in the work of Dekhtyar, Ross and Subrahmanian on a specialized se-
mantics for probability distributions used in their Temporal Probabilistic Database
model11. However, the semantics presented here is a significant generalization of
their semantics. The possible worlds semantics for interval probabilities also oc-
curs in Givan, Leach and Dean’s discussion of Bounded Parameter Markov Deci-
sion Processes14.

de Campos, Huete and Moral8 study probability intervals as a tool to represent
uncertain information. They introduce similar definitions of consistency and tight-
ness, which they call reachability. They develop a calculus for probability intervals,
including combination, marginalization and conditioning. They also explore the re-
lationship of their formalism with other theories of uncertainness, such as lower and
upper probabilities. When they define their conditioning operation, however, they
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switch back and apply lower and upper probabilities to uncertain information in-
stead of probability intervals, and give a definition of a conditioning operation only
for bidimensional probability intervals. Ours follows their definition.

A more direct approach to introducing interval probabilities is found in the work
of Weichselberger23 who extends the Kolmogorov axioms of probability theory to
the case of interval probabilities. Building on Kolmogorov probability theory, the
interval probability semantics is defined for a �-algebra of random events. Weich-
selberger defines two types of interval probability distributions over this �-algebra:
R-Probabilities, similar to our consistent interval pdfs, and F-Probabilities, sim-
ilar to our tight interval pdfs. In his semantics an event is specified as a Boolean
combination of atomic events from some set +. Each event partitions the set of
possible worlds into two sets: those in which the event has occurred and those in
which it has not. A lower bound on the probability that an event has occurred is
immediately an upper bound on the probability that it has not occurred. Thus, for
F-probabilities, Weichselberger’s analogues of our tight p-interpretations, lower
bounds uniquely determine upper bounds.

Weichselberger completes his theory with two definitions of conditional proba-
bility: “intuitive” and “formal”. His “intuitive” definition semantically matches our
Definition 19. On the other hand, the “formal” definition specifies the probability
interval for � ���,� as ������ �()��

���� �)�
� ����� �()��

���� �)�
�, which is somewhat different from

our Theorem 5. There, to determine the lower bound we minimize the numerator
and maximize the denominator. Similarly, for the upper bound, we maximize the
numerator and minimize the denominator.

In our semantics, atomic events have the form “random variable�� takes value
�� and random variable �� takes value �� and . . . and random variable �� takes
value ��.” The negation of such an event is the disjunction of all other atomic events
that complete the joint probability distribution of random variables ��� � � � � ��.
Our interval pdfs specify only the probability intervals for such atomic events, with-
out explicitly propagating them onto the negations. This means that even for tight
interval pdfs, both upper and lower bounds are necessary in all but marginal cases,
as illustrated in Figure 8.

X l u
a 0.3 0.4
b 0.4 0.5
c 0.2 0.3

X l u
a 0.3 0.35
b 0.4 0.45
c 0.2 0.27

Fig. 8. Lower bounds do not uniquely define upper bounds for tight interval pdfs.

Interval probability distributions of discrete random variables generate a set of
linear constraints on the acceptable probability values for individual instances. This
set of linear constraints, however, is quite simple. It consists of constraints specify-
ing that the probabilities of individual instances must fall between the given lower
and upper bounds and a constraint that specifies that the sum of all probabilities
must be equal to 1. It is possible, however, to study more complex collections of
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constraints on possible worlds. Significant work in this area has been done by Cano
and Moral6.

A further and much more comprehensive survey of interpretations can be found
in the Imprecise Probabilities Project18. None of the work surveyed there, how-
ever, discusses database management issues.

6.2 Probabilistic Databases

Cavallo and Pittarelli7 were among the first to address the problem of storing
and querying probabilistic information in a database. Their probabilistic relations
resemble a single ESPO probability table. Their data model requires that the prob-
abilities for all the tuples in a relation add up to exactly 1. As a result, unlike ours,
their model requires a separate relation for each object. Barbara, Garcia-Molina
and Porter1 propose a new approach to managing probabilistic information. In their
model, certain attributes in a relation can be designated as stochastic and (possibly
joint) probability distributions can be associated with these attributes. The analogue
of their non-stochastic attributes in our framework is context, while stochastic at-
tributes are represented as participating random variables. The model of Barbara, et
al., was relational, and so the probability distributions stored in a single probabilistic
relation had to be of the same structure.

Dey, et al.13 introduced a 1NF probabilistic relational model and relational al-
gebra. A tuple in their model is analogous to a single row of a probability table
in ours, and their probabilistic relation can contain multiple probability distribu-
tions. Both Barbara, et al.1 and Dey, et al.13 use point probabilities and assume
that all events/random variables in their models are independent. Lakshmanan, et
al. introduce ProbView19, a probabilistic database management system. In Prob-
View, probability distributions are interval, and the assumption of independence
of events is replaced with the introduction of probabilistic conjunctions (and dis-
junctions), implementing different assumptions about the relationships between the
events. Based on the ProbView model, Dekhtyar, Ross and Subrahmanian develop
Probabilistic Temporal Databases (TP-Databases)11, a special-purpose probabilistic
database model for managing temporal uncertainty. In this work, a semantics of in-
terval probability distributions similar to the one used in ESPO model is introduced,
and the concept of tightness appears for the first time in the database literature.

Dey, et al.13 first introduce the conditionalization operation in a probabilistic
database model. Dekhtyar, Goldsmith and Hawkes also use this operation in their
Semistructured Probabilistic Algebra10. In both works, conditionalization is per-
formed on point probability distributions of discrete random variables; The oper-
ation itself is fairly straightforward for point probability. The conditionalization
operation as a database operation for probability intervals was not included in
data models until recently by Goldsmith, Dekhtyar and Zhao 15. However, Jaffray
16 has shown that interval conditional probability estimates are not perfect, and that
the unfortunate consequence of this is that conditionalizing is not commutative:
� ����,���� �� � ����,���� for many �, ,, and �. Thus, a conditionalization op-
eration is included in ESP-Algebra with the caveat that users must take care in the
use and interpretation of the result.
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Two approaches to semistructured probabilistic data management are closely re-
lated to ours: the ProTDB24 and the PIXml17 frameworks. In ProTDB24, Nierman
and Jagadish extend the XML data model by associating a probability with each
element by modifying regular non-probabilistic DTDs. They provide two ways of
modifying non-probabilistic DTDs, either by introducing to every element a prob-
ability attribute Prob to specify the probability of the particular element existing at
the specific location of the XML document or by attaching a new sub-element called
Dist to each element. One of the drawbacks is that in their model probabilities are
always conditional. All other probabilities are assumed to be independent. Hung, et
al.17 proposed a probabilistic interval XML data model with two types of semantics
for uncertain data. The global interpretation is a distribution over an entire XML
document, while the local interpretation specifies an object probability function for
each non-leaf object. They also propose a path expression-based query language to
access stored information. This approach overcomes some drawbacks presented in
the ProTDB24. The major difference between it and our work is that the PIXml17 is
concerned with representation of uncertainty in the structure of XML documents.
At the same time, the ESPO model provides a semistructured data type for storing
probability distributions found in different applications. Hung, et al., use our con-
ditionalization formulae for their computations of conditional probabilities. This
makes the two approaches comparable: Our ESPO objects can be represented as
their probabilistic XML. We can also represent their probabilistic XML documents
as joint probability distributions, and thus embed them into ESPO model. While
ESPOs are representable in XML, our definitions of the model and ESP-Algebra do
not rely on a specific representation.

7 CONCLUSIONS AND FUTURE WORK
The Extended Semistructured Probabilistic Objects and Extended Semistruc-

tured Probabilistic Algebra introduced here represent a flexible database framework
for storing and managing diverse probabilistic information. While such operations
as probabilistic table selection, projection and conditionalization have been defined
via the underlying semantics (i.e., in terms of satisfying p-interpretations), we have
been able to provide direct ways of computing the results of these operations in
each case, which lead to clear and efficient algorithms.

We have designed and implemented a semistructured probabilistic database
management system (SPDBMS) on top of a RDBMS, and reported a performance
evaluation of SPDBMS for each query algebra operation26. Currently we are work-
ing on implementing a query optimizer for the SPDBMS. Implementation of an ex-
tension to the SPDBMS to handle probability intervals has been underway. We are
also studying data fusion and conflict resolution problems that arise in this frame-
work.
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