

Digital Modulations Using the Universal Software Radio

Peripheral

By

Daniel Keith Artis

Senior Project

ELECTRICAL ENGINEERING DEPARTMENT

California Polytechnic State University

San Luis Obispo

2011

Table of Contents

Acknowledgements .. i

I. Introduction ..1

I. Background ..2

II. Requirements ...4

III. Design ...9

A. Introduction to Software Design ..11

1. BASK .. 12

2. BFSK .. 14

B. USRP ..16

IV. Test Plan ...18

V. Test Results ..20

VI. Conclusion and Recommendations ..24

VII. Bibliography ...26

VIII. Appendices ...28

A. Program Listing..28

B. Parts List ...28

C. BASK_gui.py ...28

D. BFSK_gui.py..29

E. BASK Using USRP ..31

F. BFSK Using USRP ..33

G. Quick Start Installation Guide ..35

H. Signal Transmission Lab ..43

List of Tables

Table I: Modulation Type And Price Differences Of SDRs ..7

Table II: Frequency And Software Differences Of SDRs ...8

List of Figures

Figure 1: System Block Diagram ..10
Figure 2: USRP Block Diagram[7] ..11

Figure 3: BASK Block Diagram ..13
Figure 4: BFSK Block Diagram ..15
Figure 5: USRP Connections ...17
Figure 6: BASK Modulation ...21

Figure 7: BFSK Modulation ..21
Figure 8: BFSK Waveform Before Transmission ...22
Figure 9: BFSK After Reception By the USRP ...23

Figure 10: gcc-g++ Location ...36
Figure 11: The WxPython Window ...39
Figure 12: The Cygwin Window After demo.py File Is Run40

Figure 13: Cygwin After GNU Radio Installation ..42

List of Equations

Equation 1: Message Signal………………………………………………………….14

Equation 2: BASK Carrier Frequency……………………………………………….14

Equation 3: BASK Modulated Signal……………………………………………….14

Equation 4: BFSK First Carrier Frequency………………………………………….15

Equation 5: BFSK Second Carrier Frequency……………………………………….15

Equation 6: BFSK Modulated Signal………………………………………………..15

i

Acknowledgements

I would like to thank Professor Oliver for giving me the opportunity to work

on this project and allowing me to work on something I was truly passionate about.

Also, I would like to thank my parents Alvin and Cynthia Artis for always supporting

my dreams and goals.

Abstract

Software defined radios (SDRs) are versatile systems that integrate hardware

and software to create a reprogrammable wireless system. Due to the versatility and

hardware requirements of a SDR, they are typically expensive and not always

affordable for educational institutions. GNU Radio is a free software package that

allows users to do signal processing on any computer using python and C++. Using

the Universal Software Radio Peripheral (USRP) board in conjunction with a

standard personal computer (PC), a RF daughterboard, and the GNU Radio software,

we can create a software defined radio that can transmit, receive, and process signals.

Because the USRP a personal computer to perform symbol generation, less

specialized hardware is needed for the implementation of a software radio, thus

reducing the overall system cost. The low cost of a USRP-based SDR enables the

implementation of SDRs in laboratory courses, allowing students to learn about

digital signal processing along with wireless communication systems.

The objective of this senior project is to develop a low-cost SDR that can be

used to support student learning of digital wireless communications in a laboratory

setting. To demonstrate the capabilities of the SDR, example modulations using

BFSK and BASK were developed. In addition, supporting documents like a “quick-

start guide” were created to assist in the implementation of SDRs in a digital

communications lab. The RFX400 daughterboard was used as a front end with the

USRP to test if a college level student could use this hardware with GNU Radio to

transmit a modulated signal. The carrier frequencies of these modulated signals were

increased to within the bandwidth of the RFX400, 400 to 500 MHz, then these signals

were transmitted and successfully received but not with the same clarity as the signal

before transmission. Transmitting signals through the air always causes signal

degradation, but the number of samples that the USRP uses during reception also

affects the quality of the received signal. The USRP and GNU Radio are the ideal

hardware and software combination to use by students due to the affordability,

versatility, and ease of use.

1

I. Introduction

Many communications systems are designed to operate at a particular

frequency, transmit gain, receive gain, and transmission range with a specific signal

modulation. The USRP with GNU Radio software allows a user to modulate a signal

using various modulation schemes, adjust the frequency within a certain range, and

process various signals without having to change hardware. The USRP uses multiple

RF front end boards that have various frequency ranges, so a specific front end board

is needed to transmit or receive a signal in a certain range.

This project was done to provide the ground work for future students interested

in learning about communication systems and signal processing though the use of a

software defined radio. To accomplish this, the hardware and software had to be low

cost, allow for programmable modulations, and be well documented so students could

learn the system with little outside assistance. A guide had to be written to show

students how to install any necessary software and connect any hardware.

Additionally, a lab was written to show students how to get started creating their own

modulations.

2

I. Background

A software defined radio (SDR) is a reconfigurable system that utilizes

hardware and software for wireless communications [1]. The reconfiguration is done

through software so that the hardware does not have to be changed with the frequency

or gain. Typically, the hardware is based upon field programmable gate arrays

(FPGAs) and is used to down convert received signals to something the hardware can

process and up convert transmitted signals to the proper frequency and bandwidth.

Digital to analog converters are used to convert digitally processed information into

an analog signal for transmission and analog to digital converters are used to convert

received analog signals to digital information that a computer understands. Because

the modulation scheme of the radio is defined in software, SDRs are ideal when

versatility is needed.

The overall goal of this project is to find a SDR that can be used in an

academic lab to teach students about digital signal processing and wireless

communication systems. An installation guide and lab need to be written to show

future users what needs to be done to start using the hardware and how to transmit

their own modulated signals respectively.

There are a few options to choose from when deciding on a software defined

radio system. Requirements of this project include: a total system cost of less than

$500, have the ability to control the modulation scheme in software, have ample

3

example code, have documentation explaining how to get started with creating

modulations, and it has to still be supported by the design company.

4

II. Requirements

The purpose of the project was to provide the ground work for a possible

future digital communications course. Hardware and software had to be chosen based

on the following:

 Ease of use

 Cost

 Ability to create any modulation through code.

The candidates to use as a software defined radio were the Wireless Open-

Access Research Platform Radio board, the Universal Software Radio Peripheral, the

PulseBlaster direct digital synthesis board, RadioProcessor board, and the PMG-M-

130 direct digital synthesis board. Each board had their advantages for use as a SDR

for an academic project.

 The, Wireless Open-Access Research Platform, WARP Radio board was a

programmable dual band RF transceiver designed at Rice University and distributed

by Mango Communications. It was able to transmit in the 2.4 to 2.5 GHz and 4.9 to

5.875 GHz range with up to a 40 MHz bandwidth. The transceiver chip on the board

could handle multiple inputs and outputs. Standard 50Ω female SMA antenna

connecters were used, which were the same as in Cal Poly’s RF classes so cables and

antennas were readily available. The Radio board required the WARP FPGA Board,

which used the Virtex-4 FPGA made by Xilinx, and the WARP Clock Board to

transmit and receive signals. The Xilinx EDK and ISE were required to program the

5

FPGA. The ISE was used in CPE 169 and 269 at Cal Poly. The EDK was used in

CPE 329 and students who have taken these classes are most likely to use a software

defined radio in the future. Both of these software packages must be purchased from

Xilinx or they can be obtained with a 30 day trial. Ideally, the full capabilities of the

software would be needed, so the cost of the software was added onto the cost of the

system. The EDK allows the hardware to be setup using VHDL and C code

implements that hardware to create a wireless system. There were labs online that

showed how to use the software to create projects along with building simple

transmitters. Examples would be needed when teaching new users, so this was a

desired feature. The academic price of the Radio, FPGA, and clock boards was

$6,500 [2].

The Universal Software Radio Peripheral, or USRP, was a motherboard made

by Ettus Research that handled the up and down conversions of transmitted and

received signals from attached daughterboards. Ettus made a variety to transceiver

daughterboards that allowed a user to transmit, receive, and process signals in

different frequency ranges. Professor Oliver had the RFX400 transceiver board that

transmitted and received signals in the 400-500 MHz range from a previous senior

project, so only the USRP would be needed to start transmitting and receiving signals.

This made the cost of the system decrease. The USRP needed a computer with the

GNU Radio software installed, so the computer could process sent and received

signals using C++ and python. Neither of these languages were taught in Cal Poly

programming classes, but there was a GNU Radio wiki online and a mailing list

6

where users can ask the USRP’s designer and other users questions. GNU Radio is a

free software package that can be installed on any Linux, Windows, or Mac OS X

computer. The versatility and cost of the software was a desired feature of this

system. The USRP1 cost was $700 [3].

 The PulseBlaster DDS board, designed by SpinCore Technologies, was a

radio frequency pulse generator that was able to create digital and analog output

signals to two RF output channels. This board was only able to act as a transmitter,

sending signals in a 5 kHz to 100 MHz range. A transceiver board was most desired

for this project, so additional hardware would be needed to receive signals.

Waveforms are generated using C code and examples of modulations are provided on

the SpinCore website. The software that was used to interface and program the board

was free and provided on the SpinCore website. The example software was easy to

understand and clearly explained; additionally, the software being free was also a

desired feature. The PulseBlaster DDS was $2,495 [4].

 The RadioProcessor board, designed by SpinCore Technologies, was a

transceiver board on a single PCI or USB card. This board being a transceiver was a

desired feature. The board contained a transmit port and receive port that were each

able to handle signals from 0 to 100 MHz. The same software used for the

PulseBlaster was also used for this board. The RadioProcessor board cost $6,995 [5].

 The PMG-M-130 DDS board was designed by BASIL Networks to provide

users with a PCI card that could create user configurable modulations. This board

would have to be used with a desktop, so it was not a portable system. A SDR that

7

used USB was most desired. The frequencies and phases of the transmitted and

received signals could be adjusted using the graphical user interface that came with

the board’s software. Sent and received signals could only be modulated using

specific schemes that the software provided, the user could not implement code to

control the modulation. This feature was not desired because users need to be able to

create their own modulation schemes. These boards were not sold in single quantities

and a minimum order of $100,000 was required [6]

 Comparisons of each SDR can be seen in Tables I and II.

Table I: Modulation Type And Price Differences Of SDRs

Board Manufacturer

Modulation

Type

Out of the

Box demo Availability Price

WARP Radio

Board

Mango

Communications Programmable Online labs available $6,500

USRP1 Ettus Research Programmable

Source code

provided available $700

RadioProcessor

board SpinCore Programmable

C code

demos available $6,995

PulseBlasterDDS SpinCore Programmable

C code

demos available $2,495

PMG-M-130

DDS

BASIL

Networks Configurable

Minimum

order

needed

min

$100,000

order

8

Table II: Frequency And Software Differences Of SDRs

Board Frequency range (MHz) Software Notes

WARP Radio
Board 2400-2500, 4900-5875 Xilinx ISE, EDK

the radio board and FPGA
board are included in the
cost

USRP1
depends on
daughterboard GNU Radio

RadioProcessor
board 0-100

SpinAPI
Package

A complete
communication system on
the board, can program
modulation in C

PulseBlasterDDS 0.005-100
SpinAPI
Package

Just the Tx of the system,
still need Rx

PMG-M-130 DDS 0-130
PMG-M-1300
Software

PCI Interface, don't sell
one board at a time

The USRP was chosen since the developers were easy to get in contact with, it

had cheapest price, and the wiki for the software was well documented. The RFX400

was already available, further reducing the cost. The hardware, USRP and RFX400,

and software, GNU Radio, had to be understood and the process for using them

together had to be documented so that a new student will be able to quickly start

using the software to send their own signals. The list of materials needed for this

project is shown in Appendices section B. A quick start installation guide had to be

written so students could install and use the GNU Radio software on their computers

without any issues. This guide is included in the Appendices section G. Additionally,

a lab report had to be written to show students how to use the software to send signals

with their own modulation schemes, which is in the Appendices section H.

9

III. Design

Various components were used in the USRP to be able to function as a

software defined radio. The USRP1 used the Altera Cyclone EP1C12Q240C8 FPGA,

which used Verilog as its HDL and was synthesized with Altera’s Quartus II web

tool. Python was used as an upper level programming language to interface with the

FPGA. When python programs were run, .rbf files were loaded onto the FPGA from

/usr/local/share/usrp/rev. The default file was std_2rxhb_2tx.rbf and was not

generated each time a python file was run, but the USRP1’s host library loaded the

.rbf file into the FPGA, so the user did not have to. The FPGA was used to do

general high-speed operations like digital up and down conversions, decimation, and

interpolation [7].

A CPU connected to the USRP1 through a USB2 port was used to process

waveforms, so a user’s computer could have been used to test modulations without

the USRP. The reason for using the FPGA was the need for versatile conversions that

were made to incoming signals and to reduce the data rates to something transferable

using USB2.0. Underneath the python code, C++ was used to do all performance

critical signal processing while python was used as a simple interface to put signal

blocks together (Padalino). The signal processing blocks that were implemented in

python were C++ classes that the GNU Radio software used. The GNU Radio

software took the outputs from the received signals that the FPGA down converted

10

and they were processed on the user’s computer using Python and C++ code. The

C++ code was compiled on the CPU of the user’s computer. The higher level Python

code did not directly affect the FPGA or USRP, only what was transmitted or

received [7]. The connections between the computer, USRP, and RFX400 can be

seen in Figure 1.

Figure 1: System Block Diagram

 The USRP’s motherboard had two transmit slots and two receive slots. Each

transmit slot was connected to two high speed digital-to-analog converters and each

receive slot was connected to two high speed analog-to-digital converters. The board

used for this project was the RFX400, a radio frequency transceiver board that had a

frequency range of 400-500 MHz [3]. This board was connected to a transmit port

and a receive port, so signals could be sent and received simultaneously. A block

diagram of the USRP is shown in Figure 2.

11

Figure 2: USRP Block Diagram[7]

 GNU Radio was free software package that allowed signals to be processed on

a computer. It ran on a computer independent of any RF hardware, but was set up to

interface with the USRP.

A. Introduction to Software Design

Signal modulation involves a message and a carrier signal. The message

contains data that a user wants to transmit. This message is embedded within the

carrier, which is what propagates through a channel, such as air [9]. A carrier is

needed for most transmission applications. Antenna lengths are determined by the

wavelength of their received signals. Since higher frequency signals have shorter

wavelengths, antennas designed to receive signals with shorter wavelengths are

12

smaller than those designed to receive longer wavelengths. Smaller antennas are

cheaper to produce and require less space. Due to bandwidth limitations of a channel,

a signal cannot just propagate through any medium so a carrier is needed to put the

message into a channel’s bandwidth [10]. For example, compact discs typically have

a sampling rate of 44.1 kHz, but the RFX400 cannot receive this frequency so CD

audio would have to be modulated with a carrier in the 400-500 MHz range [9].

Typically, the carrier is a higher frequency than the message. Modulation occurs

when the frequency, amplitude, or phase of a carrier is adjusted in proportion to the

message signal.

To generate a modulated signal Python code is used to design a system using

C++ classes provided in the GNU Radio software. A complete file must contain a

source and sink which are directly or indirectly connected to each other. A source

can be a signal source such as a sine or cosine wave [11]. The source must be

sampled at greater than twice the frequency of the transmitted frequency, so that the

source signal can be recovered at the receiver. Sinks are the destination of a source

signal [12]. In the ask_gui.py file, an oscilloscope sink was used to display the source

signal prior to being sent to the USRP.

1. BASK

The first digital modulation scheme implemented was binary amplitude shift

keying, or BASK. It was chosen since it had been taught in lower level Electrical

Engineering courses and could be verified by students. Two float signal sources were

created at the beginning of the file; one was a 100 Hz square wave message signal

Comment [DKA1]: Sink explanation

13

which represented binary 1s and 0s. Signal sources could be integers, floats, shorts,

or complex numbers [13]. Floats offered more precision than integers or shorts and

used fewer resources than complex numbers.

BASK uses two different carrier amplitudes, one for binary 0 and the other for

binary 1. The carrier was a 500 Hz cosine wave. Each signal was sampled at 10,000

samples per second and had amplitudes of 100. The amplitude is unitless. The

hardware has to be calibrated to measure the actual voltage [14]. These signals were

mixed together, to create a BASK signal. By mixing, multiplying, the signals

together, the amplitude of the BASK modulated signal became zero when the carrier

was multiplied by the part of the square wave with a zero amplitude, as shown in

Figure 3.

Figure 3: BASK Block Diagram

14

 The BASK modulated signal is the carrier signal when the message is 1 and

no signal when the massage is 0. This signal is represented by the following equation

[15]:

m(t) = message signal, square wave (1)

ωc = 2π(500) rad/s (2)

YASK(t) = m(t)cos(ωct) (3)

The final BASK modulated signal was sent to a scope sink, which displayed the input

to the sink in an oscilloscope window. The code for this modulation can be found in

the Appendices section C.

2. BFSK

The BASK design was used to create the binary frequency shift keying

design. This modulation was chosen since it could be created using the already

implemented BASK scheme and could be verified by students. Another carrier, a 250

Hz cosine wave sampled at 10,000 samples per second with an amplitude of 100, was

added to the BASK design. This carrier was used for the frequency change required

when the message switched from 0 to 1 or 1 to 0. The message signal inverted and

offset by its amplitude, producing a 180° phase shift. To maintain the phase shift, the

original message was sent through two buffers to account for the delay that the

inversion and offset produced. This created two message signals, the original

message and a 180° phase shifted message. The 500 Hz carrier was mixed with the

original message and the 250 Hz carrier was mixed with the 180° phase shifted

message. When one mixer did not output a signal, the other mixer did. The two

15

outputs of these mixers were input into an adder to create an FSK modulated signal,

as shown in Figure 4.

Figure 4: BFSK Block Diagram

The signal is represented by the following equation [15]:

m(t) = message signal, square wave (1)

ωc1 = 2π(500) rad/s (4) ωc2 = 2π(250) rad/s (5)

YFSK(t) = m(t)cos(ωc1t) + [1-m(t)]cos(ωc2t) (6)

The final BFSK modulated signal was sent to a scope sink, which displayed the input

to the sink in an oscilloscope window. The code for this modulation can be found in

the Appendices section D.

16

B. USRP

To have the modulated signals transmitted from the USRP a few additions had to

be made to the BASK and BFSK modulation code. Instead of the scope sink, a

complex USRP sink was used. To make the source match the sink, a complex source

could have been implemented but to prevent the amount of resources from increasing

the input into the USRP sink was converted from float to complex.

 The instantiated USRP sink was used to prepare the USRP for transmission.

A call to a pick transmission sub-device method was made to return the RFX400’s

specifications to a variable. The code was set up to automatically find any board

connected to any transmit slot, so the code did not have to be changed if the RFX400

was connected to the other transmission slot. A register on the USRP controls the

transmit path of a signal using a mux. The register value had to be determined based

on the previously returned RFX400 specifications using a USRP method. This

returned value was the input to a USRP sink set mux method. After the mux was set,

an object reference to the RFX400 was returned and stored in a variable using a

selected sub-devices method, which used the USRP object and RFX400

specifications. The RFX400’s gain was set to the maximum value so attenuation

would not degrade the signal since the receive and transmit antennas were always

within a foot of each other. A diagram of these connections is shown in Figure 5.

17

Figure 5: USRP Connections

The USRP’s oscillation had to be set using a tune method that selected the

correct digital up converter based on a specified frequency, 400 MHz was used. The

carrier frequency for the BASK modulation was increased to 400 MHz and the

carriers for the BFSK modulation was increased to 400 and 450 MHz. The digital to

analog converter of the USRP samples signals at 128 MSamples/sec, so the output

sampling rate should be 128 MSamples/sec divided by the interpolation of the USRP

(Blum). The interpolations in each file were set to 64, the value used by the

usrp_siggen.py file, giving an output sample rate of 2 MSamples/sec. The outputs of

the mixer in the BASK file and adder in the BFSK file were connected to the USRP

sink instead of the scope sink. A set enable method was called to have these outputs

transmitted through the RFX400. The code that uses the USRP is shown in the

Appendices sections E and F.

18

IV. Test Plan

Initial tests were to verify that the USRP and RFX400 were functioning

properly and that GNU Radio was correctly installed. To verify the installation of

GNU Radio, the software in Appendices section A was installed onto a PC and a

phone tone file provided with the software was run.

To verify that the USRP would function with the computer that had GNU

Radio installed, which I will refer to as the host PC from this point forward, the

USRP was connected to the host PC and the location of the USRP drivers was entered

after the PC recognized the USRP so they would install on the USRP. The

usrp_siggen.py file was used to send a sine wave at 400 MHz, the lowest frequency in

the RFX400’s range, and a spectrum analyzer was used verify that a signal was being

sent at that frequency. A Fluke 6060B Synthesized RF Signal Generator was set to

generate a 400 MHz signal and a spectrum analyzer file, usrp_fft.py, was run to

verify that the RFX400 and USRP were capable of receiving signals. This was done

to prove that the USRP and the RFX400 were functioning properly and capable of

sending and receiving signals.

Binary frequency and amplitude shift keying modulation schemes were

implemented using python to show that the USRP could be used to modulate a signal.

A software oscilloscope, scope sink, was used to verify the modulations were correct.

19

The frequency of the BASK carrier was increased to 400 MHz. The BFSK carrier

frequencies were increased to 400 and 450 MHz. The message frequencies in each

file were increased to 1 MHz and the modulated signals were transmitted through the

RFX400. To maintain fidelity of the signals, the sample rate was increased to 64

MSamples/sec, the rate below the digital to analog converter rate of the USRP. The

maximum sampling rate of 128 MSamples/sec caused the host PC to process the

waveform at a slower rate. The usrp_scope.py file was used to show that the USRP

was able to receive modulated signals.

20

V. Test Results

GNU Radio did not fully install initially. An error during installation

said, "TypeError: 'NoneType' object is not iterable." A patch file,

cygwinccompiler.patch, was needed to fix the issue and after it was run, GNU Radio

was able to fully install (GNU Radio, “Wiki”). The phone tone file was run and

played a phone tone through the speakers of the host PC, proving that signals could

be processed on the computer but it’s functionality with the USRP was not verified.

The USRP was connected to the host PC and the drivers were successfully installed

onto the USRP. The 400 MHz signal generated by the usrp_siggen.py file appeared

on the spectrum analyzer as a 450 MHz signal. To further test this, the

usrp_siggen.py file was run again with a frequency of 350 MHz. Although the

USRP’s bandwidth is 400-500 MHz, the file ran without error. The spectrum

analyzer displayed a 400 MHz signal. This proved that there was a 50 MHz offset for

transmitted signals.

The usrp_fft.py file was run, but the center frequency was not able to set

consistently. Error messages would appear in the spectrum analyzer window that

said, “Failed,” after a center frequency was set. The inability of the board to set the

center frequency was intermittent and a clear explanation was unknown. After

inspecting the board and talking to the student who previously used the RFX400, it

21

was found that two 40 MHz clocks were added to the RFX400. The RFX400 needed

to use the USRP’s clock. After the clocks were removed, the signal generator file

created a signal at the correct frequency and the spectrum analyzer file, usrp_fft.py,

always set to the correct frequency.

The frequency and amplitude shift keying files were run and displayed the correct

waveforms in the scope windows, shown in Figures 6 and 7.

Figure 6: BASK Modulation

Figure 7: BFSK Modulation

22

The signals that the USRP received after the carrier frequencies were increased

did not resemble the ideal modulations. The FSK waveform before transmission is

shown in Figure 8 with the smallest time division that GNU Radio was capable of

producing. The received waveform is shown in Figure 9.

Figure 8: BFSK Waveform Before Transmission

23

Figure 9: BFSK After Reception By the USRP

24

VI. Conclusion and Recommendations

The USRP is an ideal system to use to learn about software defined radios in

an academic setting. The price of the board makes it more affordable than other

systems on the market and GNU Radio software can be used on any computer.

Testing is made easier when the hardware is not needed to view the signal prior to it

being transmitted. Just having GNU Radio software alone, signals can be processed

and tested on a student’s computer. The USRP and its daughterboard allow students

to learn about the effects of transmit power, gain, interpolation, decimation, and

transmission range on a received signal. The USRP and GNU Radio together are a

great platform to aid in understanding wireless systems and digital signal processing.

To help implement this into a larger setting, it is recommended that Linux is

used as the OS of the computers where GNU Radio is installed. This would eliminate

installation issues since many new GNU Radio components were meant to be used on

a Linux based OS. For example, files that need the USRP2 component will not run

on a Windows PC with Cygwin. For this to be used in a lab setting, students should

just use GNU Radio by itself to understand how the code works. After Python is

understood and students can modulate signals, then they should move onto

transmitting and receiving signals through the USRP. With the USRP’s analog to

digital converter only being able to sample 128 MSamples/sec, it is recommended to

get a front end board with decreased minimum and maximum frequencies. The

25

LFTX and LFRX daughterboards are made by Ettus and they have a range of

DC to 30 MHz. With these boards, sample rates will be high enough to no lose signal

information.

Those who wish to continue building on this project should try to transmit and

receive song files using different modulations and sampling rates. This would be

good to demo since attendees should be able to hear the differences in sample rates.

A two-way radio in the RFX400’s bandwidth could be used to transmit a person’s

voice and the USRP could be used to receive, demodulate, and play the signal

through a host PCs speakers.

26

VII. Bibliography

[1] FlexRadio Systems. What are Software Defined Radios? [Online]. Available:

http://www.flex-radio.com/About.aspx?topic=whatissdr

[2] WARP. (2011, April). WARP: Wireless Open Access Research Platform.

Available: http://warp.rice.edu/trac/

[3] M. Ettus. (2011, May 10). Ettus Research LLC [Online]. Available:

http://www.ettus.com

[4] SpinCore Technologies. (2011). PulseBlaster DDS-II-300 USB [Online].

Available: http://spincore.com/products/PulseBlasterDDS-II-

300/PulseBlasterDDS-II-300.shtml

[5] SpinCore Technologies. (2011). RadioProcessor. Available:

http://spincore.com/products/RadioProcessor/RadioProcessor.shtml

[6] BASIL Networks (2009). Multi-Channel DDS PCI Card [Online]. Available:

http://www.basilnetworks.com/article/pmgm130/pmgm130_Software_Overview.

htm

[7] GNU Radio. (2011, May 25). Wiki. Available:

http://gnuradio.org/redmine/wiki/gnuradio

[8] B. Padalino. (2007, June 15). FPGA in USRP [Online]. Available:

http://www.ruby-forum.com/topic/111921

[9] A. Ambardar, “Amplitude Modulations and Demodulations,” in Analog and

Digital Signal Processing, 2
nd

 Edition, California: Brooks/Cole Publishing

Company, 1999, pp. 300-321.

[10] B.P. Lathi and Z. Ding, “Principles of Digital Data Transmission,” in Modern

Digital and Analog Communication Systems, 4
th

 Edition, New York: Oxford

University Press, 2009, pp. 179.

[11] D. Shen. (2005, August 21). Tutorial 9: A Dictionary of the GNU Radio blocks

[Online]. pp. 2-9. Available:

http://omidi.iut.ac.ir/SDR/2007/WebPages/07_GNU/pdf/9.pdf

27

[12] J. Blum. Introductory Tour of the GNU Radio Project [Online]. Available:

http://www.joshknows.com/gnuradio

[13] GNU Radio. (2011, May 22). GNU Radio C++ Signal Processing Blocks

[Online]. Available: http://gnuradio.org/doc/doxygen/group__block.html

[14] M. Braun. (2009, January 16). GRC and unit of signal amplitude in USRP.

Available: http://www.ruby-forum.com/topic/175837

[15] B.P. Lathi and Z. Ding, “Principles of Digital Data Transmission,” in Modern

Digital and Analog Communication Systems, 4
th

 Edition, New York: Oxford

University Press, 2009, pp. 423-425.

28

VIII. Appendices

A. Program Listing

 Cygwin

 GNU Radio

 Python 2.6

B. Parts List

 1 USRP1

 1 PC with Cygwin, GNU Radio, and Python 2.6 installed

 1 RFX400

 1 USB A/B cable

 2 Motorola XTS5000 HT1000 UHF antennas

 1 SMA cable

C. BASK_gui.py

#!/usr/bin/env python

Gnuradio Python Flow Graph

Title: BASK GUI

from gnuradio import gr, gru, usrp, modulation_utils

from gnuradio import audio, blks2, eng_notation

from gnuradio.gr import firdes

from gnuradio.wxgui import stdgui2, fftsink2, slider, form, scopesink2

from gnuradio.eng_option import eng_option

from optparse import OptionParser

from usrpm import usrp_dbid

import sys

import math, random

import random, time, struct, sys, wx

29

class my_top(stdgui2.std_top_block):

 def __init__(self, frame, panel, vbox, argv):

 stdgui2.std_top_block.__init__ (self, frame, panel, vbox, argv)

#Variables

 sampling_freq = 10000

 freq = 500

 ampl = 100

 src0 = gr.sig_source_f (sampling_freq, gr.GR_COS_WAVE, freq, ampl, 0)

 src1 = gr.sig_source_f (sampling_freq, gr.GR_SQR_WAVE, 100, ampl, 0)

 fm_mod = gr.frequency_modulator_fc (2*math.pi*freq)

 throttle = gr.throttle(gr.sizeof_gr_complex, sampling_freq)

 throttle1 = gr.throttle(gr.sizeof_float, sampling_freq)

 mixer = gr.multiply_ff()

 convert = gr.complex_to_float()

 gain = gr.multiply_const_cc(4000)

 scope = scopesink2.scope_sink_f(panel,"Input -> USRP", sampling_freq,

num_inputs=1)

 vbox.Add(scope.win,1,wx.EXPAND) #opens GUI box

 self.connect(src1, (mixer,1))

 self.connect(src0, (mixer,0))

 self.connect(mixer, throttle1, scope)

if __name__ == '__main__':

 app = stdgui2.stdapp(my_top, "Tx", nstatus=1)

 app.MainLoop()

D. BFSK_gui.py

#!/usr/bin/env python

Gnuradio Python Flow Graph

Title: BFSK GUI

from gnuradio import gr, gru, usrp, modulation_utils

from gnuradio import audio, blks2, eng_notation

from gnuradio.gr import firdes

from gnuradio.wxgui import stdgui2, fftsink2, slider, form, scopesink2

30

from gnuradio.eng_option import eng_option

from optparse import OptionParser

from usrpm import usrp_dbid

import sys

import math, random

import random, time, struct, sys, wx

class my_top(stdgui2.std_top_block):

 def __init__(self, frame, panel, vbox, argv):

 stdgui2.std_top_block.__init__ (self, frame, panel, vbox, argv)

 #Variables

 sampling_freq = 10000

 freq = 500

 freq1 = 250

 ampl = 100

 #Sources

 src0 = gr.sig_source_f (sampling_freq, gr.GR_COS_WAVE, freq, ampl, 0)

 src1 = gr.sig_source_f (sampling_freq, gr.GR_SQR_WAVE, 100, ampl, 0)

 src2 = gr.sig_source_f (sampling_freq, gr.GR_COS_WAVE, freq1, ampl, 0)

 throttle = gr.throttle(gr.sizeof_gr_complex, sampling_freq)

 throttle1 = gr.throttle(gr.sizeof_float, sampling_freq)

 throttle2 = gr.throttle(gr.sizeof_float, sampling_freq)

 mixer = gr.multiply_ff()

 mixer1 = gr.multiply_ff()

 adder = gr.add_ff()

 gain = gr.multiply_const_cc(1000)

 delay1 = gr.multiply_const_ff(1)

 change = gr.multiply_const_ff(-1)

 invert = gr.add_const_ff(ampl)

 delay2 = gr.add_const_ff(0)

scope = scopesink2.scope_sink_f(panel,"Input -> USRP", sampling_freq,

num_inputs=1)

 vbox.Add(scope.win,1,wx.EXPAND)

 #delay square wave to maintain phase shift

 self.connect(src1, delay1, delay2)

 #Create a 1800 deg phase shift for square wave

 self.connect(src1, change, invert)

31

 self.connect(delay2, (mixer1,1))

 self.connect(src0, (mixer1,0))

 self.connect(mixer1, (adder, 0))

 self.connect(invert, (mixer, 0))

 self.connect(src2, (mixer,1))

 self.connect(mixer, (adder, 1))

 self.connect(adder, throttle1)

 self.connect(throttle1, scope)

if __name__ == '__main__':

 app = stdgui2.stdapp(my_top, "Tx", nstatus=1)

 app.MainLoop()

E. BASK Using USRP

#!/usr/bin/env python

Gnuradio Python Flow Graph

Title: BASK Using USRP

from gnuradio import gr, gru, usrp, modulation_utils

from gnuradio import audio, blks2, eng_notation

from gnuradio.gr import firdes

from gnuradio.wxgui import stdgui2, fftsink2, slider, form, scopesink2

from gnuradio.eng_option import eng_option

from optparse import OptionParser

from usrpm import usrp_dbid

import sys

import math, random

import random, time, struct, sys, wx

class my_top_block(gr.top_block):

 def __init__ (self):

 gr.top_block.__init__(self)

 #Variables

 sampling_freq = 640000000

32

 freq = 400000000

 ampl = 100

 freq1 = 1000000

 self.interp = 64

 self.u = usrp.sink_c (0, self.interp)

 src0 = gr.sig_source_f (sampling_freq, gr.GR_COS_WAVE, freq, ampl, 0)

 src1 = gr.sig_source_f (sampling_freq, gr.GR_SQR_WAVE, freq1, ampl, 0)

 throttle = gr.throttle(gr.sizeof_gr_complex, sampling_freq)

 self.throttle1 = throttle1 = gr.throttle(gr.sizeof_float, sampling_freq)

 mixer = gr.multiply_ff()

 convert = gr.complex_to_float()

 gain = gr.multiply_const_cc(4000)

 self.connect(src1, (mixer,1))

 self.connect(src0, (mixer,0))

 self.connect(mixer, throttle1)

def set_freq(self, target_freq):

 r = self.u.tune(self.subdev.which(), self.subdev, target_freq)

 if r:

 return True

 return False

def main ():

 tb = my_top_block()

 parser = OptionParser (option_class=eng_option)

 (options, args) = parser.parse_args ()

 options.tx_subdev_spec = usrp.pick_tx_subdevice(tb.u)

 m = usrp.determine_tx_mux_value(tb.u, options.tx_subdev_spec)

 tb.u.set_mux(m)

 tb.subdev = usrp.selected_subdev(tb.u, options.tx_subdev_spec)

 print "Using TX d'board %s" % (tb.subdev.side_and_name(),)

 tb.subdev.set_gain(tb.subdev.gain_range()[1])

 if not tb.set_freq(tb.freq):

 sys.stderr.write('Failed to set RF frequency\n')

 raise SystemExit

33

 convert = gr.float_to_complex()

 tb.connect(tb.throttle1, convert, tb.u)

 tb.subdev.set_enable(True) # enable transmitter

 try:

 tb.run()

 except KeyboardInterrupt:

 pass

if __name__ == '__main__':

 main()

F. BFSK Using USRP

#!/usr/bin/env python

Gnuradio Python Flow Graph

Title: GUI

from gnuradio import gr, gru, usrp, modulation_utils

from gnuradio import audio, blks2, eng_notation

from gnuradio.gr import firdes

from gnuradio.wxgui import stdgui2, fftsink2, slider, form, scopesink2

from gnuradio.eng_option import eng_option

from optparse import OptionParser

from usrpm import usrp_dbid

import sys

import math, random

import random, time, struct, sys, wx

class my_top_block(gr.top_block):

 def __init__ (self):

 gr.top_block.__init__(self)

 #Variables

 self.samp_rate = sampling_freq = 640000000

 self.freq = freq = 400000000

 self.freq1 = freq1 = freq+50000000

 ampl = 100

 #For USRP:

 self.interp = 64

 self.u = usrp.sink_c (0, self.interp)

34

 #Sources

 src0 = gr.sig_source_f (sampling_freq, gr.GR_COS_WAVE, freq, ampl, 0)

 src1 = gr.sig_source_f (sampling_freq, gr.GR_SQR_WAVE, 2000000, ampl, 0)

 src2 = gr.sig_source_f (sampling_freq, gr.GR_COS_WAVE, freq1, ampl, 0)

 throttle = gr.throttle(gr.sizeof_gr_complex, sampling_freq)

 self.throttle1 = throttle1 = gr.throttle(gr.sizeof_float, sampling_freq)

 throttle2 = gr.throttle(gr.sizeof_float, sampling_freq)

 mixer = gr.multiply_ff()

 mixer1 = gr.multiply_ff()

 adder = gr.add_ff()

 gain = gr.multiply_const_cc(1000)

 delay1 = gr.multiply_const_ff(1)

 change = gr.multiply_const_ff(-1)

 invert = gr.add_const_ff(ampl)

 delay2 = gr.add_const_ff(0)

 #Create a 90 deg phase shift for square wave

 #delay square wave to maintain phase shift

 self.connect(src1, delay1, delay2)

 self.connect(src1, change, invert)

 self.connect(delay2, (mixer1,1))

 self.connect(src0, (mixer1,0))

 self.connect(mixer1, (adder, 0))

 self.connect(invert, (mixer, 0))

 self.connect(src2, (mixer,1))

 self.connect(mixer, (adder, 1))

 self.connect(adder, throttle1)

def set_freq(self, target_freq):

 r = self.u.tune(self.subdev.which(), self.subdev, target_freq)

 if r:

 return True

 return False

def main ():

 tb = my_top_block()

 parser = OptionParser (option_class=eng_option)

35

 (options, args) = parser.parse_args ()

 options.tx_subdev_spec = usrp.pick_tx_subdevice(tb.u)

 m = usrp.determine_tx_mux_value(tb.u, options.tx_subdev_spec)

 tb.u.set_mux(m)

 tb.subdev = usrp.selected_subdev(tb.u, options.tx_subdev_spec)

 print "Using TX d'board %s" % (tb.subdev.side_and_name(),)

 tb.subdev.set_gain(tb.subdev.gain_range()[1])

 if not tb.set_freq(tb.freq):

 sys.stderr.write('Failed to set RF frequency\n')

 raise SystemExit

 convert = gr.float_to_complex()

 tb.connect(tb.throttle1, convert, tb.u)

 tb.subdev.set_enable(True) # enable transmitter

 try:

 tb.run()

 except KeyboardInterrupt:

 pass

if __name__ == '__main__':

 main()

G. Quick Start Installation Guide

1. First make sure you do this entire installation with administration account. Go to

http://www.cygwin.com/ and download the current version of Cygwin’s

executable which is Linux-like environment for Windows.

2. Run the setup.exe

a) Click “Next” and select “Install from Internet.”

b) Choose Cygwin’s root directory, like C:/cygwin, and click “Next.”

c) Enter the local package where you would like the packages installed,

C:/cygwin is fine.

d) Choose “Direct Connection” and press “Next.”

3. Go back to http://www.cygwin.com/ and click “Mirror Sites” under “Community”

in the column on the left and find the location closest to you.

4. Return to the setup and pick one of the sites closest to you.

http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/

36

5. Click “Next,” a window like Figure 10 should appear, and select:

cppunit 1.12.0-1 (1.12.1 doesn't work)

gcc-g++ (3.4.4 works, but 4.3.4 does not)

gsl-devel

guile

libfftw3-devel

libtool (version 2.2 or later)

libusb-win32

make

patch

pkg-config

python (get 2.6)

python-numpy

swig

util-linux

Figure 10: gcc-g++ Location

6. Click “Next” until the installations are finished.

7. Go to http://www.wxpython.org/download.php#sources and download wxPython

for Python 2.6 to the /usr/src. Go to

http://www.wxpython.org/download.php#sources
http://www.wxpython.org/download.php#sources
http://www.wxpython.org/download.php#sources
http://www.wxpython.org/download.php#sources
http://www.wxpython.org/download.php#sources
http://www.wxpython.org/download.php#sources
http://www.wxpython.org/download.php#sources
http://www.wxpython.org/download.php#sources
http://www.wxpython.org/download.php#sources
http://www.wxpython.org/download.php#sources
http://www.wxpython.org/download.php#sources
http://www.wxpython.org/download.php#sources
http://www.wxpython.org/download.php#sources
http://www.wxpython.org/download.php#sources
http://sourceforge.net/projects/boost/files/boost/1.45.0/

37

http://sourceforge.net/projects/boost/files/boost/1.45.0/ to download

boost_1_45_0.tar.bz2 to the /usr/src. Go to

http://www.portaudio.com/download.html to download the current v19 stable

release to /usr/src. Go to http://sourceforge.net/projects/sdcc/files/, click sdcc-

win32 and download sdcc-2.9.0-setup.exe to /usr/src.

8. Run Cygwin, click on the desktop icon if installed. If not, click on Cygwin.bat in

Cygwin’s root folder. This will open a Cygwin window. The window opening

verifies that Cygwin was properly installed.

9. Go to the /usr/src folder and run sdcc-2.9.0-setup.exe. In Cygwin enter:

which sdcc

The path to sdcc should be shown, if not type:

PATH= “PATH:/c/Program Files/SDCC/bin”

10. In Cygwin, go to src folder by entering:

cd /usr/src

tar –zxf pa_stable.tgz

Your actual filename may be different, so enter whatever you called that file.

This command extracts the files in the compressed folder. In Cygwin, enter:

cd portaudio

./configure -- disable-static

make

make install

This installs PortAudio on your PC with the static component disabled.

11. Extract wxPython by entering:

tar –jxf wxPython-src-2.8.11.0.tar.bz2

export WXDIR=/usr/src/wxPython-src-2.8.11.0

cd $WXDIR

mkdir build-local

This set of commands extracts the files fromwxPython-src-2.8.11.0, creates a

shortcut to the directory that was extracted, moves you into that directory, and

creates a directory called build-local. Configure the wxWidgets by entering:

cd $WXDIR/build-local

../configure --with-msw

http://sourceforge.net/projects/boost/files/boost/1.45.0/
http://sourceforge.net/projects/boost/files/boost/1.45.0/
http://sourceforge.net/projects/boost/files/boost/1.45.0/
http://sourceforge.net/projects/boost/files/boost/1.45.0/
http://sourceforge.net/projects/boost/files/boost/1.45.0/
http://sourceforge.net/projects/boost/files/boost/1.45.0/
http://sourceforge.net/projects/boost/files/boost/1.45.0/
http://sourceforge.net/projects/boost/files/boost/1.45.0/
http://sourceforge.net/projects/boost/files/boost/1.45.0/
http://sourceforge.net/projects/boost/files/boost/1.45.0/
http://sourceforge.net/projects/boost/files/boost/1.45.0/
http://sourceforge.net/projects/boost/files/boost/1.45.0/
http://sourceforge.net/projects/boost/files/boost/1.45.0/
http://sourceforge.net/projects/boost/files/boost/1.45.0/
http://www.portaudio.com/download.html
http://www.portaudio.com/download.html
http://www.portaudio.com/download.html
http://www.portaudio.com/download.html
http://www.portaudio.com/download.html
http://www.portaudio.com/download.html
http://www.portaudio.com/download.html
http://www.portaudio.com/download.html
http://www.portaudio.com/download.html
http://www.portaudio.com/download.html
http://www.portaudio.com/download.html
http://www.portaudio.com/download.html
http://www.portaudio.com/download.html
http://sourceforge.net/projects/sdcc/files/
http://sourceforge.net/projects/sdcc/files/
http://sourceforge.net/projects/sdcc/files/
http://sourceforge.net/projects/sdcc/files/
http://sourceforge.net/projects/sdcc/files/
http://sourceforge.net/projects/sdcc/files/
http://sourceforge.net/projects/sdcc/files/
http://sourceforge.net/projects/sdcc/files/
http://sourceforge.net/projects/sdcc/files/
http://sourceforge.net/projects/sdcc/files/
http://sourceforge.net/projects/sdcc/files/
http://sourceforge.net/projects/sdcc/files/
http://sourceforge.net/projects/sdcc/files/

38

With wxPython 2.8.11.0, a couple of patches need to be applied. Open the

setup.h file in build-local/lib/wx/include/msw-ansi-release-2.8/wx/. After the

line(line 322):

#define wxUSE_DATEPICKCTRL 1

Add:

#define wxUSE_DATEPICKCTRL_GENERIC 1

12. Go to https://sites.google.com/site/theprogressiveusrp/file-cabinet and download

the cygwinccompiler.patch file, save it to the /usr/lib/python2.6/disutils folder.

13. Go back to the Cygwin window and enter:

cd /usr/lib/python2.6/disutils

patch –i cygwinccompiler.patch

14. Compile the wxWidgets by entering:

cd $WXDIR/build-local

make

make –C contrib/src/stc

If you get and error about conflicts between winsock.h and select.h, enter:

cd /usr/include/sys

mv select.h select.h-x

This renames the select.h file select.h-x. Run the make command at the

beginning of this step again. After it is finished, rename the file to its original

name. To do this enter:

cd /usr/include/sys

mv select.h-x select.h

15. Install the wxWidgets by entering:

cd $WXDIR/build-local

make install

make –C contrib/src/stc install

16. Move the DLLs that were installed in the /usr/local/lib/ to the /usr/local/bin folder.

Enter:

mv /usr/local/lib/cygwx*.dll /usr/local/bin

17. Verify that wxWidgets was installed properly by entering:

cd $WXDIR/build-local/samples/minimal

make

./minimal.exe

https://sites.google.com/site/theprogressiveusrp/file-cabinet
https://sites.google.com/site/theprogressiveusrp/file-cabinet
https://sites.google.com/site/theprogressiveusrp/file-cabinet
https://sites.google.com/site/theprogressiveusrp/file-cabinet
https://sites.google.com/site/theprogressiveusrp/file-cabinet
https://sites.google.com/site/theprogressiveusrp/file-cabinet
https://sites.google.com/site/theprogressiveusrp/file-cabinet
https://sites.google.com/site/theprogressiveusrp/file-cabinet
https://sites.google.com/site/theprogressiveusrp/file-cabinet

39

An empty window should appear.

18. Now to link Python to the wxWidgets enter:

cd $WXDIR /wxPython

python setup.py build_ext ---inplace WXPORT=msw COMPILER=cygwin

BUILD_GLCANVAS=0 BUILD_GIZMOS=0 UNICODE=0

19. Install wxPython, enter:

cd $WXDIR/wxPython

python setup.py install WXPORT=msw COMPILER=cygwin

BUILD_GLCANVAS=0 BUILD_GIZMOS=0 UNICODE=

20. Test this installation by entering:

cd $WXDIR/wxPython/demo

python demo.py

A window with a green snake should pop up, shown in Figure 11. These

components on GNU Radio will be used later, so it’s important that these are

installed properly. Cygwin should now resemble Figure 12.

Figure 11: The WxPython Window

40

Figure 12: The Cygwin Window After demo.py File Is Run

21. Install boost by entering:

cd /usr/src

tar –jxf boost_1_45_0.tar.bz2

cd boost_1_45_0

./bootstrap.sh –with-libraries=thread,date_time,program_options

./bjam install

This installation takes a while.

22. Go to ftp://ftp.gnu.org/gnu/gnuradio/gnuradio-3.3.0.tar.gz to download the GNU

Radio source code to a convenient directory, I chose the /usr/src folder. Unpack

this file by going to Cygwin and navigating to the directory where you

downloaded the tarball and enter:

tar –zxf gnuradio-3.3.0.tar.gz

23. Add the pkg-config folder to your Path list by entering:

export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig

41

24. The actual installation of GNU Radio will be done twice. The first installation

will have most components disabled so that you can GNU Radio, the libraries,

and other utilities were installed properly quickly. To do this, enter:

cd gnuradio-3.3.0

./configure --disable-all-components --enable-gruel --enable-gnuradio-core --

enable-gr-audio-oss

25. To actually install GNU Radio, enter:

make

make check

make install

If you’ve received and errors, not warnings, go to

http://gnuradio.org/redmine/wiki/gnuradio/WindowsTips and see if your problem

is documented.

26. To verify the installation and play an audio file, make sure that your speakers are

turned on and that “wave” sound files aren’t disabled. Next, enter:

export PYTHONPATH=/usr/local/lib/python2.6/site-packages

cd gnuradio-examples/python/audio

python dial_tone.py

This should play a dial tone. For this and every file ran in Cygwin, press Ctrl-

C to stop it. If you receive an error, then something went wrong during the

installation. Verify that you’ve installed all the libraries and utilities that were

previously mentioned.

27. The full version of GNU Radio can now be built. Know that this takes a long

time to do and you may even want to do this overnight. To build a full GNU

Radio system will all components, enter:

cd gnuradio-3.3.0

./configure

make

make check

make install

After this finishes, a full GNU Radio system will be installed on your

computer and Cygwin should resemble Figure 13. Your computer is now ready to

process signals.

http://gnuradio.org/redmine/wiki/gnuradio/WindowsTips
http://gnuradio.org/redmine/wiki/gnuradio/WindowsTips
http://gnuradio.org/redmine/wiki/gnuradio/WindowsTips
http://gnuradio.org/redmine/wiki/gnuradio/WindowsTips
http://gnuradio.org/redmine/wiki/gnuradio/WindowsTips
http://gnuradio.org/redmine/wiki/gnuradio/WindowsTips
http://gnuradio.org/redmine/wiki/gnuradio/WindowsTips
http://gnuradio.org/redmine/wiki/gnuradio/WindowsTips
http://gnuradio.org/redmine/wiki/gnuradio/WindowsTips
http://gnuradio.org/redmine/wiki/gnuradio/WindowsTips
http://gnuradio.org/redmine/wiki/gnuradio/WindowsTips
http://gnuradio.org/redmine/wiki/gnuradio/WindowsTips
http://gnuradio.org/redmine/wiki/gnuradio/WindowsTips

42

Figure 13: Cygwin After GNU Radio Installation
1

1
 gr-utils and wx-gui should not be skipped

43

28. Lastly, you need to verify that your computer recognizes the USRP. Move the

USRP’s driver filebs to GNU Radio’s root folder. In Cygwin, go to the gnuradio-

3.3.0 folder, where ever you installed it and enter:

cd usrp

cp /usr/lib/libusb/libusb0.sys

cp /usr/bin/cygusb0.dll libusb0.dll

Power on the USRP by plugging it into an outlet, then connect it to the host

PC via the USB cable. A “Found New Hardware” balloon should appear. Click

on it and go through the menus by selecting no, not this time (do not connect to

Windows Update), Install from a list of specific location (Advanced), and Search

for the best driver. In the last page with Search for the best driver, uncheck

“Search removable media” and include the path to the gnuradio-3.3.0/usrp folder.

The driver files should be found.

When you need to remove the USRP, always use the safely remove hardware

option. After the host PC says that it is safe to remove the hardware, remove the

USB cable. It is now safe to unplug the USRP.

H. Signal Transmission Lab

Pre-lab:

Go to http://www.joshknows.com/gnuradio and

http://gnuradio.org/doc/doxygen/group__block.html to read the necessary GNU

Radio information.

What line of code is used to connect GNU Radio components?

Self.connect(component1, component2)

What line of code create a signal source, such as a saw wave, and how is the signal

type (float, complex, etc.) controlled? gr.sig_source_signaltype, the signal is f for

float, c for complex, I for integer, or s for short.

What is required for a complete GNU Radio Python file? At least one source and one

sink is required. They must be directly or indirectly connected to one another.

What is a signals minimum sample rate in terms of its frequency? The sample rate

must be at least twice the frequency.

Give example code for a sink that plays the source signal through the computer

44

speakers, connects to a USRP1, and does nothing. Variable_name = audio.sink(freq),

variable_name = usrp.sink_s(0) or usrp.sink_c(0), and variable_name =

gr.null_sink(data stream size)

Create two sawtooth signal sources that get sent through a mixer and the output is

played through your speakers. Ensure that the signal output is in the audible range.

From gnuradio import gr

src0 = gr.sig_source_f (sampling_freq, gr.GR_COS_WAVE, freq0, amplitude, offset)
src1 = gr.sig_source_f (sampling_freq, gr.GR_COS_WAVE, freq1, amplitude, offset)
mixer = gr.multiply_ff()
sink = audio.sink(sampling_freq)
self.connect(src0, (mixer, 0))
self.connect(src1, (mixer,1))
self.connect(mixer, sink)

References:

http://gnuradio.org/redmine/wiki/1/TutorialsWritePythonApplications

Objective:

To get introduced to the GNU Radio software and learn how to transmit through the

USRP.

Introduction:

GNU Radio is a free software package that allows signals to be processed on a

computer and runs independent of any RF hardware, but is set up to interface with the

USRP. In this lab, you will be using this software and the knowledge gained from the

pre-lab to send your own audible signal through the USRP.

Procedure:

1. Open a text or Python code editor, and using the code from the pre-lab, create

the file from the last question and see if any audio is played. Remember, in

python classes are created but classes aren’t run automatically, they need to be

called. For example, to create a class using the GNU Radio top_block class,

enter this:

45

class my_top_block(gr.top_block):

def __init__ (self):
 gr.top_block.__init__(self)

#code..

To call this class create a variable with a reference to this class and then it can be

run.

tb = my_top_block()
tb.run()

2. Now use the references from the pre-lab and create a scope and fft sink to show

and oscilloscope and spectrum analyzer display. Include these in the lab report

along with a quick explanation as to how you know the displays are correct.

3. Remove the scope sinks and create a usrp_c sink. The input to a sink must be the

same type. GNU Radio provedes a few converters under gr components. How do

you convert a float signal to a complex signal?
 converter = gr.float_to_complex()
 self.connect(float_signal, converter)
 self.connect(converter, complex_signal)

4. Use the code in the code appendix to help you communicate with the USRP. You

don’t have to fully understand it now. Just know that it allows the code to talk

with the daughterboard on the USRP. Make sure that the input of the USRP is

within the frequency range of the daughterboard.

5. Use the usrp_fft.py and usrp_scope.py files under the gr-utils directory to get a

waveform and frequency spectrum display and include these in the report. Note any

differences between these displays and the previous displays from step 2.

Code Appendix:

def set_freq(self, target_freq):
 r = self.u.tune(self.subdev.which(), self.subdev, target_freq)
 #self.u.set_frequency(FM_freq)
 #self.src.set_frequency(self.freq)
 if r:

46

 return True

 return False

def main ():
 tb = my_top_block()

 parser = OptionParser (option_class=eng_option)
 (options, args) = parser.parse_args ()
 options.tx_subdev_spec = usrp.pick_tx_subdevice(tb.u)

 m = usrp.determine_tx_mux_value(tb.u, options.tx_subdev_spec)
 tb.u.set_mux(m)
 tb.subdev = usrp.selected_subdev(tb.u, options.tx_subdev_spec)
 print "Using TX d'board %s" % (tb.subdev.side_and_name(),)

 tb.subdev.set_gain(tb.subdev.gain_range()[1])

 if not tb.set_freq(tb.freq):
 sys.stderr.write('Failed to set RF frequency\n')
 raise SystemExit

 convert = gr.float_to_complex()
 tb.connect(tb.throttle1, convert, tb.u)
 tb.subdev.set_enable(True) # enable transmitter

 try:
 tb.run()
 except KeyboardInterrupt:
 pass

if __name__ == '__main__':
 main()

