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 Abstract - The size of a neural network must be pre-
determined before it can be trained for any application. Choosing 
the correct size of a neural network can increase its speed of 
response and thus improve the performance of the overall 
system. In this paper, a genetic algorithm is employed to find the 
optimal number of connections of a neural network controller 
which is used to regulate a class of DC power supplies. 
Satisfactory computer simulation results are obtained. 
 
 Index Terms – Artificial neural networks, genetic algorithm, 
neural network controller. 
 
 

I.  INTRODUCTION 

 Before a neural network can be trained, its size (i.e., 
how many neurons and connections) must be determined 
in advance. Generally, more complex functions require 
larger neural networks (i.e., more neurons and synapses). 
If a neural network is too small for a given application, it 
may never be able to learn the desired function and thus 
produces unacceptably larger errors. On the other hand, 
if a neural network is too large for a particular problem, 
it may learn the training samples too well and not be 
able to generate the appropriate output for the inputs not 
included in the training set (this phenomenon is known 
as over-fitting). Selecting the appropriate neural network 
dimension is more of an art than a science and usually 
turns into a trial-and-error ordeal, which is why the 
genetic algorithm is a perfect tool for solving this 
problem. 
 

Genetic algorithm has its roots in nature; it is based 
on Charles Darwin’s theory of natural selection (i.e., 
“survival of the fittest”). In Darwin’s theory, individuals 
in a population of reproductive organisms inherit traits 
from their parents during each generation. Each 
individual’s genome represents one’s phenotype (i.e., the 
physical characteristics) and may contain many genes. 
Over time, desirable traits become more common than 
the undesirable ones since individuals with the desirable 
traits that “fit” better with the environment are more 
likely to reproduce. 

 

Genetic algorithm follows the natural selection 
theory quite closely. In genetic algorithm, genes are 
encoded as a string of binary numbers to represent 
certain phenotypes related with a specific application. As 
in natural selection, a population of individuals is 
initially created with all of their genotypes randomly 
selected. Then, each individual in the population is 
sorted based on its fitness level; where the definition of 
fitness function is also application specific. During each 
generation, two individuals are selected to reproduce, 
with the more “fitted” individuals more likely to be 
selected. The genotypes of the two parent individuals are 
combined to create a new offspring in a process known 
as crossover.  
 

After two individuals are selected in each generation, 
their genomes are crossed over to produce a new 
individual which may yield a higher fitness index than 
both parents. Two crossover methods are studied in this 
research, i.e., gene-level and bit-level crossover. In gene-
level crossover (also known as multi-point crossover), 
each of the child’s genes is selected from one of the 
parents, with certain probability of each parent’s gene 
being used. In bit-level crossover (also known as 
uniform crossover), the above process is implemented on 
each bit. After crossover, some of the bits in the child’s 
genome may be flipped at random which also occurs in 
nature (called mutation). Mutation allows individuals to 
be generated to have new genotypes that may be 
potentially better than any ones that can be found in the 
current population. Finally, after the child’s genome is 
completely determined, the child’s fitness index can be 
calculated. If the child’s fitness index is better than the 
worst individual currently in the population, then this 
child replaces that individual in the population. The 
population continually improves its overall fitness 
during each generation until finally the top individual is 
optimized to a satisfactory level. 
 

With today’s extremely fast computer processors, 
running genetic algorithms for hundreds of generations 
is possible in a reasonable amount of time. In addition, 
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the relationship between the genotype (parameters of the 
system) and phenotype (system performance) does not 
need to be known for a good solution to be found in 
genetic algorithm. This brings us to use it to optimally 
select the dimension of a neural network controller. 
 
 

II.  THE GENETIC ALGORITHM 

 In this research, the genetic algorithm is employed to 
optimize the size of fully-connected feed-forward neural 
networks. The genetic algorithm contains several 
essential components and procedures. In this section, 
each of those components and procedures will be 
described in detail. 
  
 The genome determines one’s phenotype (i.e., 
characteristics). In this research, the genome is 
composed of twenty four bits which are grouped into 
nine genes. Each of the genes represents a different 
neural network parameter. For example, gene 1 is used 
to represent the number of hidden layers of a neural 
network.  It consists of two bits and could therefore take 
four different combinations (00, 01, 10, and 11); which 
means that the neural network can have up to four 
hidden layers. Note that the option of zero hidden layer 
is removed because most problems are too complex for 
such a small network.  Genes 2 - 5 represent the number 
of neurons to be determined in each hidden layer. For 
example, gene 2 represents the number of hidden 
neurons in the first layer; gene 3 represents the number 
of hidden neurons in the second layer; and so on. Zero 
neuron is not allowed since at least one neuron must 
exist in each hidden layer. Note that a hierarchical 
structure is implied; that is, the values of genes 2 
through 5 are actually dependent on the value of gene 1. 
Some of the genes may be inactive; however, they can 
still undergo crossover and mutation throughout the 
generations. Inactive genes can be activated in new 
individuals later on, due to a change in gene 1. Other 
genes used in this application may include neural 
network learning rate, neuron activation function slope, 
the seed of random number generator, etc.  
 
 An integral part of genetic algorithm is the 
generation of new individuals by combining the 
genomes of two “fit” parents. In order to determine 
which individuals are more “fit” than others, a fitness 
index must be determined. The purpose of this study is 
to minimize the size of a neural network without 
sacrificing its training accuracy. Thus, at the end of 
every generation, all individuals in the population are 
sorted in a reverse order based on their RMS (root-

mean-square) values of training error and their sizes 
(i.e., number of synapses). We define: 
 ssee rrJ ηη ⋅+⋅=         (1) 
where J is the fitness index, er  is the reverse rank of the 

RMS error, eη  is the error scaling factor ( 10 ≤≤ eη ), sr  

is the reverse rank of the neural network size, and sη  is 

the size scaling factor ( 10 ≤≤ sη ). Note that 

 1=+ se ηη         (2) 
 
 Depending on the requirement of a certain 
application, different values of scaling factors can be 
chosen. For example, if minimizing the RMS error is 
more important than minimizing the size of the neural 
network, then the error scaling factor should be greater 
than the size scaling factor. 
 
 Once the fitness index J is obtained, it can be used to 
rank the “degree of fitness” for each individual. For 
example, the individual with a rank of 1 (i.e., with the 
maximum value of the fitness index) represents the most 
“fit” individual. 
 
 To promote the reproduction of “fit” individuals, the 
probability of being selected (to reproduce the next 
generation) is determined by each individual’s degree of 
fitness (or rank). Each individual’s probability of being 
selected (p) can be calculated as: 
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where iR  is the rank (degree of fitness) of the i-th 
individual and N is the total number of the rank of 
degree of fitness in the population. Obviously, the higher 
the degree of fitness of an individual is, the higher the 
probability of being selected for reproduction. 
 
 In gene-level crossover, the genomes of both parents 
are crossed over on a gene by gene basis with a 50% 
chance of each parent’s gene being selected. This means 
that each of the new individual’s genes has a 50% 
chance of coming from either parent. 
 
 

III.  SIMULATION 

 In this section, the genetic algorithm described in the 
section two is simulated and applied to find the optimal 
size of the neural network controller which is used to 
control a phase-shifted full-bridge DC-DC converter. 
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 It is well known that a DC voltage regulator is an 
important part in many electronic devices nowadays, 
since all semi-conductor components are powered by 
DC sources. In this research, we consider a class of DC 
voltage regulators, i.e., DC-DC converter with PWM 
(pulse-width modulation). The controller’s task is to 
maintain a stable output voltage by varying the duty 
cycle in pulse-width modulation when different loads are 
placed on the converters terminals, and/or when the 
supply voltage fluctuates. 
 
 The conventional approaches assume that the 
converter is operated around its equilibrium state; then a 
set of linear equations are derived based on this 
assumption. However, the control law is actually highly 
nonlinear and thus cannot guarantee its performance 
under this simple assumption. To improve the controller 
response to dynamical changes, neural network 
controller has been chosen as an alternative to classic 
methods. The controller has three inputs: load current (in 
amps), input voltage (in volts), and the difference of the 
current and previous output voltages (in volts). The 
output of the controller is the duty cycle that can be used 
in pulse-width modulation. To generate the training data 
set, a Simulink model is developed based on circuit 
analysis, as shown in Fig. 1. 

 
First, a set of neural networks with arbitrary sizes are 

generated as the initial group of individuals used in the 
genetic algorithm. The neural networks are then trained 
for 2000 epochs, with each sample being selected at 
random from the training set to allow for better 
generalization. Back-propagation algorithm is employed. 
The weight of neural network w can be adjusted using: 

mmm www Δ+= −1         (4) 

where m is the training iteration index. 
 

Learning in back-propagation is performed in two 
steps, i.e., the forward path and the backward path.  In 
the latter, the error signal (i.e., the difference between 
the neural network output and the target) is fed back 
from the output to input, layer by layer; and all the 
weights are adjusted in proportion to this error, i.e., 

W
Ewm ∂

∂=Δ η          (5) 

where η  is called the learning/training rate; W is the 
weight matrix of the neural network and E is the 
objective function which is defined as: 
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where M is the number of input/output pairs in the 
training set and K is the number of outputs of the neural 
network; kmy  is the k-th network output for the m-th 

input/output pair in the training set; kmd
 
represents the k-

th desired (target) output for the m-th input/output pair. 
 
 

 
 

Fig. 1. The Simulink model 
 

For sigmoid function, the neuron activation function 
is: 

ue
)u(g −+
=

1
1          (7) 

where g is the output of the nonlinear neuron and 

WXu =           (8) 
with weight matrix (W) and the input vector to neuron 
(X). It can be proved that: 

X)u(u)dz(
W
E −−=

∂
∂ 1        (9) 

For the sake of simplicity, the index of neuron is not 
included in the above formulas. 
 
 After training is completed, each individual’s RMS 
error is calculated and all the neural networks are ranked 
based on the values of their fitness indices. Crossover 
and mutation operations are then performed to obtain the 
next generation of neural networks. 
 
 Fig. 2 shows the simulation results on the 
relationship between the neural network RMS training 
error, number of connections in the neural network, and 
the population size. The error scaling factor is chosen to 
be 0.7. The population size varies between 10 to 100, in 
an increment of 10. The simulation runs for 50 
generations to find the solution. 
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Fig. 2. Relationship between the RMS error, number of 
connections, and the population size 

 
 The data suggests that the RMS error does not have 
a correlation with population size, as it fluctuates 
randomly (Fig. 2). The number of connections shows a 
slight decreasing trend as the population size increases. 
The optimal population size was found to be 40 for this 
application and the optimal number of total connections 
is found to be 26. 
 
 Mutation is an important component in genetic 
algorithm. It allows individuals to be generated to have 
new genotypes that may be potentially better than any 
ones that can be found in the current population. The 
effect of the probability for bit mutation on the controller 
performance is also investigated. In Fig. 3, it is varied 
between 0.01 to 0.1, with an increment of 0.01. It is 
shown that by choosing the optimal value of the 
probability for bit mutation, we can further reduce the 
total number of connections of the neural network 
controller to 21. 

 Furthermore, the effect of the error scaling factor is 
studied. Fig. 4 shows the simulation results on the 
relationship between the RMS error, number of 
connections in the neural network, and the error scaling 
factor (the size scaling factor is not included; however, it 
can be obtained easily from Eq. (2)). The error scaling 
factor varies between 0 to 1, in an increment of 0.1. 
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Fig. 3. Relationship between the RMS error, number of 
connections, and the probability of bit mutation 
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Fig. 4. Relationship between the RMS error, number of 
connections, and the error scaling factor (50 generations) 

  
 The data suggests, as expected, that increasing error 
scaling factor lowers RMS error and also increases the 
number of connections. RMS error declines dramatically 
between the error scaling factors of 0 to 0.1 and remains 
relatively stable as the error scaling factor increased. On 
the other hand, the number of connections increases 
dramatically at the maximum value of error scaling 
factor. The optimal error scaling factor is found to be 0.8 
for this DC-DC converter controller application. At this 
point, the number of connections of the controller is 
about 21. 
 

 
IV. CONCLUSIONS 

 In this paper, a genetic algorithm is studied and 
applied to determine the optimal size of a neural network 
controller for a DC power regulator. The effects of 
various factors/parameters in genetic algorithm on the 
RMS error value and the size of the neural network 
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controller are investigated. Future research plan includes 
applying this approach on hardware to test its 
performance. 
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