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Abstract 

An adaptive control model of a network of signalized intersections is proposed based on a discrete-time, stationary, 
Markov decision process. The model incorporates probabilistic forecasts of individual vehicle actuations at downstream 
inductance loop detectors that are derived from a macroscopic link transfer function. The model is tested both on a typical 
isolated traffic intersection and a simple network comprised of five four-legged signalized intersections, and compared to 
full-actuated control. Analyses of simulation results using this approach show significant improvement over traditional 
full-actuated control, especially for the case of high volume, but not saturated, traffic demand. 
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1. Introduction 

At a signalized intersection, traffic signals typically operate in one of three different control modes: pre-
timed control, semi-actuated control and full-actuated control (Wilshire et al., 1985). In pre-timed control, 
all of the control parameters are fixed and preset off-line. Off-line techniques (e.g., the various versions of 
the TRANSYT (Robertson, 1969) family of software packages) are useful in generating the parameters for 
fixed timing plans for conventional pre-timed urban traffic control systems based on the deterministic traffic 
conditions during different time periods of the day (e.g., peak hours, off-peak hours). In actuated (both semi-
and full-)control, the control signal is adjusted in accordance with a ‘‘closed-loop, on-line’’ control strategy 
based on real-time traffic demand measures obtained from detectors; while the controllers themselves respond 
to the fluctuations of the traffic flows in the network, the base parameters do not. Alternatively, a class of con­
trol algorithms that includes SCOOT (Split, Cycle And Offset Optimization Technique) (Hunt et al., 1982; 
Robertson and Bretherton, 1991) and SCATS (Sydney Coordinated Adaptive Traffic System) (Lowrie, 
1982) are generally considered to be ‘‘on-line’’ algorithms, in which the control strategy is to ‘‘match’’ the cur­
rent traffic conditions obtained from detectors to the ‘‘best’’ pre-calculated off-line timing plan. 



Far fewer well-tested examples exist of real-time adaptive traffic control systems that react to actual traffic 
conditions on-line, the most notable among these being the well-known OPAC algorithm (Gartner, 1983), and 
RHODESTM, a real-time traffic-adaptive signal control system that uses a traffic flow arrivals algorithm (Head, 
1995) based on detector information to predict future traffic volume. 

In general, two issues must be addressed to achieve real-time adaptive traffic control: (1) development of a 
mathematical model for the control of the stochastic, highly nonlinear traffic system, and (2) design of an 
appropriate control law such that the behavior of the system meets certain performance indices (e.g., mini­
mum queue length, minimum delay time, etc.). Mathematical models used for the representation of traffic phe­
nomena on signalized surface street networks can be classified into the following three generalized categories: 
(1) store-and-forward models (Hakimi, 1969; Singh and Tamura, 1974; D’Ans and Gazis, 1976), (2) disper­
sion-and-store models (Cremer and Schoof, 1989; Chang et al., 1994), and (3) kinematic wave models (Ste­
phanedes and Chang, 1993; Lo, 2001). 

There are two fundamental approaches for on-line optimization: binary choice logic and the sequential 
approach. In the binary choice logic approach, time is divided into successive small intervals, and a binary 
decision is made either to extend the current signal phase by one interval, or to terminate it. Examples of this 
approach include Miller’s algorithm, traffic optimization logic (TOL), modernized optimized vehicle actua­
tion strategy (OVA), stepwise adjustment of signal timing (SAST), etc. (Lin, 1989; Lin and Vijayakumar, 
1989). The drawback of this approach is that it only considers a very short future time interval (usually 3– 
6 s) for the decision, and thus cannot guarantee the overall optimization of the signal operation. In the 
sequential approach, the length of a decision-making stage is relatively longer (from 50 to 100 s) to more clo­
sely approach the long-term optimal control. In OPAC, developed explicitly for real-time traffic control, the 
alternative disadvantages of the binary and sequential approaches are mitigated by incorporating a rolling-
horizon approach; however, its application formally is limited to isolated intersections. Artificial neural net­
works (ANN) also have been applied to finding the solution for traffic control problems (Nakatsuji and 
Kaku, 1991) through an assumed mapping between the control variables (e.g., the split) and the objective 
function (e.g., the queue length); the neural network is trained off-line, using the nonlinear mapping ability 
of ANN, to realize this relationship. Then the signal optimization is performed on-line, using the self-orga­
nization property of an ANN. The training algorithm is a stepwise method (combination of a Cauchy 
machine and the ‘‘back-propagation’’ algorithm). However, this approach is valid only when the traffic sys­
tem is in steady state. 

Although most existing adaptive signal control strategies incorporate an implicit recognition that traffic 
conditions are time variant due to random processes, they generally adopt explicitly deterministic control 
models. Additionally, most employ heuristic control strategies without an embedded traffic flow model. Alter­
natively, the random nature of the traffic system lends itself more directly to a stochastic control approach. In 
the work reported here, a stochastic traffic signal control scheme, based on Markovian decision control, is 
introduced. The objective is to develop a real-time adaptive control strategy that explicitly incorporates the 
random nature of the traffic system in the control. A Markov control model is first developed; then the signal 
control problem is formulated as a decision-making problem for the Markov model. This approach is tested 
both on a typical isolated traffic intersection and a simple network comprised of five four-legged signalized 
intersections, and compared to full-actuated control. Analyses of simulation results using this approach show 
significant improvement over traditional full-actuated control, especially for the case of high volume traffic 
demand. 
2. Markov control model 

A stochastic process x(t) is called Markov (Papoulis, 1984) if its future probabilities are determined by its 
most recent values; i.e., if for every n and t1 < t2 � � �  < tn 
P ðxðtnÞ 6 xnjxðtÞ8t 6 tn�1Þ ¼  P ðxðtnÞ 6 xnjxðtn�1ÞÞ: 
The adaptive control algorithm proposed is based on a discrete-time, stationary, Markov control model 
(also known as a Markov decision process or Markov dynamic programming) defined on (X,A,P,R), where 



1. X, a Borel2 space, is the state space and every element in the space x 2 X is called a state; 
2. A, also a Borel space, is defined as the set of all possible controls (or alternatives). Each state x 2 X is asso­

ciated with a non-empty measurable subset A(x) of  A whose elements are the admissible alternatives when 
the system is in state x; 

3. P, a probability measure space in which an element pij
k denotes the transition probability from state i to 

state j under alternative action k; and 
4. R, a measurable function, also called a one-step reward. 

Selection of a particular alternative results in an immediate reward and a transition probability to the next 
state. The total expected discounted reward over an infinite period of time is defined as 
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where r( Æ ) is the one-step transition reward, bt (0 6 bt 
6 1) is the discount factor, and a is the policy. The opti­

mal reward v *, or the supremum (least upper bound) of V, is defined as 
v�ðx; a�Þ ¼ sup½V ðx; aÞ�: ð2Þ 
a2A 
It can be obtained by solving a functional equation (also called the dynamic programming equation, or DPE): 
v� ¼ Tv�; ð3Þ 

where T is a contraction operator3 and 
" # 

N X 
TvðxÞ ¼ max qðx; aÞ þ b vðxÞpa : ð4Þija2A 

j¼1 
The expected one-step transition reward q(x,a), is defined as 
N X 
qðx; aÞ ¼  ra a ð5Þijpij:
 

j¼1
 
The unique solution of the above DPE can be calculated iteratively by the successive approximation method 
(Hernandez-Lerma, 1989)4: 
" # 

N X 
vnðxÞ ¼ max qðx; aÞ þ b vn�1ðxÞpa : ð6Þija2A 

j¼1 
Therefore, for a specific control problem, once the transition matrix and the reward matrix are defined, then 
by maximizing the total expected reward, a policy for choosing an alternative for each state can be obtained. 
This represents the optimal strategy that should be followed. 

3. Traffic dynamics 

Consider the typical four-legged isolated traffic intersection shown in Fig. 1, where the various possible traf­
fic movements are labeled according to NEMA (National Electrical Manufacturers Association) convention. 
e states of a Markov control model are defined on the Borel space—a Borel subset of a complete separable metric space. The Borel 
 metric space is the set in the smallest Borel field containing the open subset of that metric space. See, e.g., Loeve, M. Probability 
 I, fourth ed., Springer-Verlag, 1977, pp. 92. 
unction T from S into itself, where (S,d) is a metric space, is a contraction operator if d(Tu,Tv) 6 bd(u,v) for 0 6 b < 1 and "u 2 S, 

 Appendix A for proof. 
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Fig. 1. A typical traffic intersection. 
The state equation for the continuous traffic flow process associated with any movement j that is sampled 
every Dt seconds, where time is indexed with the integer k, can be expressed by the current queue qj(k): 
qjðkÞ ¼ qjðk � 1Þ þ DqjðkÞ; j ¼ 1; 2; . . . ; 8; ð7Þ 

j j j jwhere DqjðkÞ ¼ qinðkÞ � q ðkÞ is the difference between the input qinðkÞ and the output q ðkÞ during time out out

interval [k � 1,k), and qj(k � 1) is the queue at previous time instant (k � 1). For a typical four-legged traffic 
intersection with eight movements, the current queue q(k) can be further defined by the vector 
qðkÞ ¼ ½qjðkÞ�0 ¼ ½q1ðkÞ; q2ðkÞ; . . . ; q8ðkÞ�0 ; ð8Þ 
where prime ( 0 ) is used to denote transpose. The input qin(k) and output qout(k) of the intersection (i.e., num­
ber of vehicles entering/leaving the intersection) can also be similarly defined as vectors of like dimension: 
j 0 j 0 qinðkÞ ¼ ½q ðkÞ� ; q ðkÞ ¼ ½q ðkÞ� : ð9Þin out out
The output qout(k) can further be expressed as a function of the current control of the intersection, u(k), and 
the current queue, q(k): 
qout ðkÞ ¼ foutðuðkÞ; qðkÞÞ; ð10Þ 
where fout(k) is also a vector of the same dimension, i.e., 
fout ðkÞ ¼ ½f j 
outðkÞ�

0 ð11Þ 
and where the elements f j 
outðkÞ are determined by 
h i 

f j 
outðkÞ ¼  

min 

0;

( 
qjðkÞ; Dt 

hmin 
; ujðkÞ ¼ 0; 

ujðkÞ ¼ 1 
ð12Þ 
in which hmin is the minimum headway, and uj(k) is a dichotomous variable indicating the control signal for 
the jth movement: uj(k) = 0 denotes that the jth movement has the green signal and uj(k) = 1 indicates a red 
signal. 

Under standard eight-phase dual-ring control (Fig. 2), the barrier divides the eight NEMA phases into two 
interlocked groups (rings): east/west and north/south; in each ring, four movements (two through movements 
and their corresponding left-turn movements) must be served if there is demand. Although there are 2 Æ 4! = 48  
different phase sequences available, depending on the traffic demand, the ring and barrier rules restrict the 
maximum number of phase transitions in a single cycle to six—a maximum of three distinct phase combina­
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Fig. 2. Eight-phase dual-ring signal control. 
tions on each side of the barrier. Using this information, the phase sequencing constraints on choice of the 
current control depends, at most, on three previous control signals: 
5 Th
uðkÞ ¼ fuðqðkÞ; s; uðk � s1Þ; uðk � s2Þ; uðk � s3ÞÞ; ð13Þ 
where s1 is the time duration of the most recent previous phase, s2 is the time duration of the next-to-last 
phase, and so on. In addition to the sequencing constraints, the duration of the current signal, s, must be 
bounded between some minimum (e.g., minimum green, minimum green extension) and maximum (e.g., max­
imum green) time period: 
smin 6 s 6 smax : ð14Þ 
This schema easily can be generalized to traffic networks with multiple intersections. In a traffic network 
with n intersections, the order of the dynamic equations is increased to n · 8 (assuming that there are eight 
traffic movements in each intersection). However, any complicated traffic network can be decomposed into 
a group of small ‘‘elementary networks’’, as shown in Fig. 3, consisting of five intersections. In this manner, 
the study of the entire traffic network can be reduced to the analysis of these elementary networks and the 
inter-connections between them.5 

The complete traffic dynamics model for the network shown in Fig. 3 includes the following equations: 
uðkÞ ¼ ½u1ðkÞ; u2ðkÞ; . . . ; u5ðkÞ�0 ; 
fuðkÞ ¼ ½fu1ðkÞ; fu2ðkÞ; . . . ; fu5ðkÞ�0 ; h i0 
qoutðkÞ ¼  qout1ðkÞ; qout2ðkÞ; . . . ; qout5ðkÞ ; h i0 
qinðkÞ ¼  qin1ðkÞ; qin2ðkÞ; . . . ; qin5ðkÞ ; ð15Þ h i0 
qðkÞ ¼  q1ðkÞ; q2ðkÞ; . . . ; q5ðkÞ ; h i0 
fout ðkÞ ¼  fout 1ðkÞ; fout2ðkÞ; . . . ; fout5ðkÞ ; 

qðkÞ ¼ qðk � 1Þ þ DqðkÞ; 
where 
qj 
outiðkÞ ¼ foutðuj 

i ðkÞ; qj 
i ðkÞÞ; ð16Þ 
is approach also facilitates parallel processing techniques to improve the computational efficiency for real-time control. 
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Fig. 3. A typical elementary traffic network with five intersections. 
8 h i < min qi
jðkÞ; Dt ; ui

jðkÞ ¼ 0 
f j hmin 

out ðkÞ ¼  i ¼ 1; 2; . . . ; 5; j ¼ 1; 2; . . . ; 8: ð17Þ : 
0; ui

jðkÞ ¼ 1 
In Eq. (15), the subscripts to the various vector quantities refer to the particular intersection, and the vector 
quantities themselves are as previously defined. 

Unlike the case of an isolated intersection, the interactions between intersections must be included in the 
traffic model for this case. For example, consider the simple case of the two adjacent intersections shown 
in Fig. 4. 

The eight traffic movements associated with each intersection can be classified into two different types: 

1. External movement. The arrival vehicles come from/go to a ‘‘dummy node’’ outside the network (these vehi­
cles can be considered as the ‘‘input/output’’ of this network); and 
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Fig. 4. A traffic network with two intersections. 



2. Internal movement. The arrival vehicles come from/go to a neighboring node inside the network (these vehi­
cles can be considered as the ‘‘interconnection’’ of this network). 

For example, movements 1 and 6 are internal movements of intersection I, which receive the outputs from 
intersection II, movements 3 and 6. All of the other movements of intersection one are external movements. 
Similarly, all of the movements of intersection II are external movements, with the exception of movements 2 
and 5, which receive the output from the movements 2 and 7 of intersection I. Then, for intersection I, the 
internal movements are defined by 
6 Fo
during
� � � � � � � � �� 
1 b3;1 3 ; b6;1 6q ðkÞ ¼ fin k � T 3 ; q k � T 3 k � T 6 ; q k � T 6 ;inI II;I II;I outII II;I II;I II;I outII II;I � � � � � � � � �� ð18Þ 
6 b3;6 3 ; b6;6 6q ðkÞ ¼ fin k � T 3 ; q k � T 3 k � T 6 ; q k � T 6 ;inI II;I II;I outII II;I II;I II;I outII II;I 
where bj1;j2 is defined as the vehicle turning fraction from intersection i1, movement j1 to intersection i2, move­i1;i2 

6ment j2, and where T j1 represents the travel time for the first vehicle in the platoon of vehicles in movement j1i1;i2 

of intersection i1 to reach intersection i2. 
The time-dependent turning factors can be represented by the turning fraction matrix, b(k), whose elements 

indicate the percentage of vehicles turning from a certain movement at the upstream intersection to a specific 
movement at the down stream intersection. For the case of two intersections shown in Fig. 4, b(k) can be writ­
ten as a 16 · 16 matrix: 
ð19Þ 
where 
2 3 
0 0 0 0 0 0 0 0 6 b2;2 b2;5 70 ðkÞ 0 0 ðkÞ 0 0 06 I;II I;II 7 6 7 6 70 0 0 0 0 0 0 0 6 7 6 7bI;IIðkÞ ¼ 6 � � �  � � �  � � �7; 6 7 6 70 0 0 0 0 0 0 0 6 7 6 7

b7;2 b7;5 4 0 ðkÞ 0 0 ðkÞ 0 0 0  5I;II I;II

0 0 0 0 0 0 0 0 2 3
0 0 0 0 0 0 0 0 6 70 0 0 0 0 0 0 0 6 7 6 7 

b3;1 b3;6 6 ðkÞ 0 0 0 0  ðkÞ 0 0  7II;I II;I6 7 6 70 0 0 0 0 0 0 0 6 7bII;IðkÞ ¼ 6 7 : 6 0 0 0 0 0 0 0 07 6 7 6 b6;1 b6;6 7ðkÞ 0 0 0 0  ðkÞ 0 0  6 II;I II;I 7 6 7 
0 0 0 0 0 0 0 05 
0 0 0 0 0 0 0 0 

4 
Using this general expression for b(k) 
� � 
j br;j rqin iðkÞ ¼ fin m;iðk � T m

r 
;iÞ; q ðk � T m

r 
;iÞ 8r 2 Mi ; m 2 I i ; ð20Þout m m
r example, b3;1 ðkÞ represents the percentage of vehicles from movement 3 of intersection II turning to movement 1 of intersection I II;I

 time interval k. 



where Ii is the set of all neighboring intersections with direct approaches to intersection i, and Mi is the set of m 

all movements of intersection m that contribute to the internal movements of intersection i. 
Practical application of Eq. (20) relies on the ability to predict both the time-dependent turning fractions, 

b(k), and the platoon travel times from neighboring intersections to the target intersection, T j1 . The estima­i1;i2 

tion of turning fractions from count data has been the subject of numerous investigations; see, e.g., the review 
provided by Maher (1984) for a summary of models that require counts for only one cycle but need prior turn­
ing proportion estimation. However, the accuracy of such methods is highly dependent on how representative 
the a priori estimates are of the current events. Alternatively, estimations based on simple time-series analyses 
do not need such prior estimates but require a long time frame which impedes their responsiveness, and are 
unreliable during times of sudden and highly irregular turning movement changes caused by such unforeseen 
events as traffic accidents. Davis and Lan (1995) have proposed a method that estimates intersection turning 
movement proportions from less-than-complete sets of traffic counts, even under conditions in which the num­
ber or placement of detectors does not support complete counting. Chang and Tao (1997) propose a time-
dependent turning estimation that incorporates signal timing parameters on the distribution of intersection 
flows. More recently, Mirchandani et al. (2001) propose four closed-form estimation methods: (1) maximum 
entropy (ME), (2) generalized least-squared (GLS), (3) least-squared error (LS), and (4) least-squared error/ 
generalized least-squared error (LS/GLS). Although not specifically addressing the estimation of turning frac­
tions for purposes of signal timing, Chen et al. (2005) and Nie et al. (2005) have examined a generalized path 
flow estimator (PFE) as a one-stage network observer to estimate path flows and path travel times from traffic 
counts in a transportation network, and have shown it to be a reasonably accurate method for estimating 
dynamic path flows based on limited real-time detector data. The estimated path flows can further be aggre­
gated to obtain dynamic origin–destination (O–D) flows, a by-product of which are the turning fractions at the 
various nodes in the network. In the results presented here, we presume that the b(k) can be determined from 
one or another of these existing estimation procedures. 

In order to determine the platoon travel times from neighboring intersections to the target intersection, 
T j1 , we employ the well-known empirical model developed by Robertson (1969) for platoon dispersion to i1;i2
describe the flow dynamics from upstream intersections to downstream movements. Robertson’s dispersion 
model has been used and tested extensively in field applications involving both TRANSYT and SCOOT, 
and found to be a very effective representation of platoon dynamics. In its basic form, the model has the 
representation: 
7 Bo
Q1ðt0 þ T Þ ¼ F � Q2ðt0Þ þ ð1� F Þ � Q1ðt0 þ T � 1Þ; ð21Þ 

where 
1
F ¼
 

1þ abT avg
 
and where Q1, Q2 are the traffic volumes at the downstream and upstream intersections (measured in vehicles/ 
h), respectively; a and b are called platoon dispersion parameters; t0 is the initial time when the platoon leaves 
the upstream intersection; Tavg is the average travel time, and T is the minimum travel time between the two 
intersections, i.e., the time for the lead vehicle in the platoon to reach the downstream intersection.7 T is re­
lated to Tavg through the parameter b, i.e., 
T ¼ bT avg : ð22Þ 

Substituting Robertson’s platoon dispersion formula into Eq. (20) leads to 
X 

j F � br;j r jqin iðkÞ ¼  m;iðk � T rm;iÞ � qout mðk � T rm;iÞ þ ð1� F Þ � qin iðk � 1Þ ð23Þ 
8r2Mi 

m
 
m2I i
 
with the current control vector defined by 
uiðkÞ ¼ fuðqiðkÞ; si; uiðk � s1Þ; uiðk � s2Þ; uiðk � s3ÞÞ; ð24Þ 
th T and Tavg must be rounded to integer values. 



where smini 6 si 6 smaxi, bm
r;j 
;ið�Þ can be derived from counts from upstream stopline detectors according to 

existing procedures discussed previously, and where the T r 
m;i are determined by Eq. (22) from parameter spec­

ification and average travel speed. 

4. Markov adaptive control model for traffic signal control 

The state variable in the traffic dynamics equation developed above is queue length. Although the state of 
the Markov control model can be defined as the number of vehicles in the intersection, this approach results in 
an excessively large number of states, even for a single intersection.8 To address this problem, the state of the 
Markov control model is instead defined by introduction of a binary threshold value (number of vehicles) indi­
cating whether or not the current queue for a particular movement is sufficiently large to be ‘‘congested’’, i.e., 
if the queue length of a specific movement is greater than its threshold value, then the movement is in the ‘‘con­
gested mode’’; otherwise it is in the ‘‘non-congested mode’’. These binary modes (congestion/non-congestion) 
are defined as the two states in the state space X.9 

Since the state space is discrete, the probability measure P is a discrete transition law, and the probability 
matrix P is time-varying due to the time-varying traffic flow. At time step k, P is a function of q(k), Dq̂ðk þ 1Þ, 
and u(k): 
8 Fo
the tot

9 Fo
factor 
PðkÞ ¼  f p ½qðkÞ; qinðk þ 1Þ; uðkÞ�; ð25Þ 
where q(k) is the current queue, Dq̂ðk þ 1Þ is the estimated number of arrivals in the next time interval, and 
u(k) is the control signal. Assuming that at time step k, the current queue length of a specific movement i 
is denoted by q0; and qg vehicles can pass through the intersection if the traffic signal for this movement is 
green; then the transition probability from any current state (either congested or non-congested) to the 
non-congested state under control signal u can be written as 
� � 

ui i i i ip ¼ p q̂ þ q � dðuiÞ �  q 6 q ð26ÞSi!Ni in 0 g threshold 
and, to the congested state, as 

ui uip ¼ 1� p ; ð27ÞSi!Ci Si!Ni 
where 
� 
1; when ui ¼ Gi;

dðuiÞ ¼  ð28Þ 
0; otherwise: 
In the above, qi is the threshold which defines the congested/non-congested state; Si is the current state threshold 

(Ni for non-congested state and Ci for congested state); ui is the control signal (Gi for green signal and Ri for 
red signal). Two special cases are noted in that: 
Ri Rip � 1; and p � 0: ð29ÞCi !Ci Ci!Ni 
As mentioned previously, for a typical traffic intersection with eight independent movements, the total number 
of states is 28 = 256. The transition probability for each movement is also independent; therefore, the overall 
transition probability for an intersection is 
8 Y 
pu ¼ pui ; ð30ÞStatej!Stater Si !Si
 

i¼1
 
where j, r = 1,2, . . . , 256; and u(k) = [u1,u2, . . . ,u8] 0 . 
r example, if the number of vehicles under consideration is 20 per movement, then for an isolated intersection with eight movements, 
al number of states is 218 � 3.78 .· 1010 

r an isolated intersection with eight movements and ten vehicles per movement, the number of states is dramatically reduced by a 
of 108 to 28 = 256. 



The reward matrix R has the same dimension and a definition similar to that of the probability matrix. The 
control objective is to maintain the non-congested condition or, if already congested, to transit to a non-con­
gested state. The latter yields a greater reward than the former and the transition from a non-congested state 
to congested carries a greater penalty than remaining in a congested state. Since the congested/non-congested 
state is defined in terms of queue length, the reward matrix is a function of the current queue, the threshold, 
and the control signal: 
10 If t
RðkÞ ¼  fr½q0ðkÞ; qthreshold ðkÞ; uðkÞ�: ð31Þ 
For example, if the objective is to minimize the queue length, then the reward for each possible case can be 
chosen as the following: 
rGi ¼ qi þM1;Ni!Ni 0 

rRi ¼ qi þM2;Ni!Ni 0 

rGi ¼ qi þM3;Ni!Ci 0 

rRi ¼ M4;Ni!Ci 

rGi ¼ qi þM5;Ci!Ni 0 

rRi ¼ N :A:;Ci!Ni 

rGi ¼ qi þM6;Ci!Ci 0 

rRi ¼ M7;Ni!Ni 
where Mi, i = 1,2, . . . , 7, are constants which can be specified for a specific traffic control problem.10 

Similar to the probability matrix, the overall reward for an intersection with eight independent movements 
is 
8 Y 
ru ¼ rui ; ð32ÞStatej!Stater Si!Si
 

i¼1
 
where j, r = 1,2, . . . , 256. 
The signal phases are the different alternatives for each state; for a typical isolated traffic intersection with 

eight independent movements under eight-phase dual-ring signal, the signal control problem takes the form of 
a 256-state Markov process with eight alternatives for each state. The optimal policy is then obtained by 
selecting the alternative for each state that maximizes the total expected reward. As has been demonstrated 
above, this optimal solution is unique and can be calculated iteratively by the successive approximation 
method. 

The proposed Markov control model can be illustrated by the simplified example of the two-phase isolated 
intersection shown in Fig. 5, in which traffic flows along two directions, i.e., north/south (denoted by 1) and 
east/west (denoted by 2). Thus, there are four possible states, i.e., N1N2, N1C2, C1N2, and C1C2. Fig. 6 shows 
the schematics of this Markov chain. To simplify the example, amber displays and all red signals (R1R2) are 
ignored; G1G2 is prohibited for obvious reasons. Under these conditions, there are two alternatives (signal 
phases) in each state, i.e., G1R2 and R1G2. With the usual assumption of Poisson arrivals, the various transi­
tion probabilities can be calculated directly. For example, the transition probabilities from the non-congested 
state are 
qthreshold �qþqg �kDt qthreshold �q X X �kDt 
G ðkDtÞn e R ðkDtÞn e

p ¼ ; p ¼ ; ð33aÞN !N N!Nn! n! 
n¼1 n¼1
 

G G R R
pN !C ¼ 1� pN !N ; pN!C ¼ 1� pN!N ; ð33bÞ 
where n is a positive integer (n = 1,2, . . .); k is the average vehicle arrival rate (vehicles/h) and Dt is the time 
interval (i.e., duration of each counting period). 
he objective is to minimize the delay time, the specific rewards can also be chosen as functions of the vehicle delay. 



Fig. 5. An isolated intersection with through movements only. 
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Fig. 6. The Markov chain for the example. 
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The corresponding state probabilities are 
11 Th
... 

G1R2 G1 R2p ¼ p � p ;N1N 2!N1N 2 N 1!N 1 N2!N 2


G1R2 G1 R2
p ¼ p � p ;N1N 2!N1C2 N 1!N 1 N2!C2 ð34Þ 
Since, for this example, there are four states with two alternatives for each state, the elements above form 
an 8 · 4 transition probability matrix, as shown in Table 1. Elements of the reward matrix can be calculated in 
similar fashion. 

A general block diagram of traffic control using this scheme at an isolated signalized intersection is illus­
trated in Fig. 7, and a corresponding computational flow chart shown in Fig. 8. Based on the current and 
the estimated traffic flow, the controller generates a traffic control signal to control the traffic system for 
the next time interval. 

In the application of this procedure to real-time adaptive control for a traffic system, the time-varying prob­
ability matrix P and the reward matrix R are calculated and updated every Dt seconds11; a decision is then 
e minimum time interval is chosen as Dt = smini (i.e., minimum green extension time). 



Table 1 
The state probability matrix for the example 

State N1N2 N1C2 C1N2 C1C2 

N1N2 G1R2 pG1R2 
N1N2!N1N2 

pG1R2 
N1N2!N1C2 

� � �  pG1R2 
N1N2!C1C2 

R1G2 pR1G2 
N1N2!N1N2 

N1C2 G1R2 

R1G2 

. . 
. 

. . 
. 

C1N2 G1R2 

R1G2 

. . 
. 

. . 
. 

C1C2 G1R2 pG1R2 
C1C2!C1C2 

R1G2 pR1G2 
C1C2!C1C2 
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Fig. 7. Traffic control at signalized intersection. 
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Fig. 8. Computational flow chart. 
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Fig. 9. Traffic control for two intersections. 
made regarding the choice of the control signal for the next time interval based on the current measurement 
from the detector, as well as the estimation. Once the optimal policy is found, it is implemented for one time 
step (i.e., Dt seconds). At the next time interval, both the probability matrix and reward matrix are updated 
and the whole decision-making process is repeated. 

To enforce the phase constraints, a step-by-step decision-making procedure (also termed a ‘‘decision tree’’) 
is employed. For example, a decision is made first to determine which ring will be served by the Markovian 
decision algorithm. After this is determined, the second decision is to choose one of the four alternatives from 
the first decision, again using the Markovian decision algorithm. The next phase is either fixed or can be cho­
sen from the two phases left, depending upon the second decision. At the last decision step for this ring, there 
is either no phase or just one fixed phase left. This procedure not only guarantees the phase constraints but 
also dramatically reduces computation time. 

Application of the decision control to the signal control of a network of multiple intersections proceeds 
along a similar manner; a block diagram for the control system of two traffic intersections is shown in 
Fig. 9. In such cases, the control signal of the two neighboring intersections do not interact until some min­
imum travel time, at which time the control is modeled through the probability estimation of internal move­
ment arrivals at the downstream intersections. That is, assuming that the minimum travel time between two 
intersections is longer than the minimum green extension time, the control signals of the two intersections do 
not interact due to the random travel time delay between them. After the minimum travel time, the control at 
one intersection does affect intersections downstream; this effect is modeled in the probability estimation at the 
downstream intersections. As a result, adjacent intersections can be ‘‘isolated’’ and the respective control 
actions can be calculated separately. 

5. Results on application of Markov adaptive signal control model 

In this section, the control model is tested by simulation on both an isolated traffic intersection and a typical 
traffic network with five interconnected intersections to evaluate its performance with respect to conventional 
full-actuated control. Specifically, a series of computer simulations are performed, under various different 
vehicle arrival rates, and the means and variances of the respective performance measures of the conventional 
and proposed adaptive control algorithm are analyzed. The simulations assume that queues on all approaches 
are empty as an initial condition and that vehicle arrivals on external approaches follow a Poisson distribu­
tion; for demonstration purposes, a value of qthreshold = 1 (i.e., the presence of any queue) was assumed. 
The reward matrix was based on the objective being to minimize the queue length, and the reward calculated 
according to Eq. (32). In the case of the network simulation, the distance between any two adjacent intersec­
tions is chosen to be 1000 feet. The parameters used in the simulation (for all the movements) are summarized 
as follows: 



Parameter Value 

Minimum green time (s) 3 
Maximum green time (s) 30 
Extension (gap) time (s) 3 
Yellow time (s) 3 
All red time (s) 0 
Loss time (s) 0 
Minimum departure headway (s) 2 
Minimum arrival headway (s) 2 
Using the same set of input (arrival) data, the Markovian control algorithm and the conventional full-actu­
ated control were applied to a four-legged isolated traffic intersection, such as that shown in Fig. 1, with eight 
movements (four through movements and their corresponding left-turn movements) to evaluate their perfor­
mances. The algorithm used to simulate full-actuated control was designed to mimic the logic of a common 
Type 170 dual ring controller with parameters as specified in the previous table—eight-phase operation was 
assumed. To minimize initial condition effects, the two algorithms are applied for a simulated time of 
65 min, and the average delay (per vehicle) during the last five minutes of the simulation is used for compar­
ison.12 Two different general cases were considered: (1) uniform (balanced) demand among all conflicting 
movements, and (2) the through traffic demand dominates the left-turn demand by a ratio of 2:1. The two 
algorithms were applied for different arrival rates, representing a range of both unsaturated and saturated con­
ditions. (Under the assumption of 2-second minimum headways, the intersection has a total capacity of 3600 
vehicles per hour of green.) In order to provide statistical significance for the simulation results, the two algo­
rithms were tested on different sets of random data for each arrival rate (a total of forty in the cases in which 
left-turning traffic was assumed equal to through traffic, and fifteen in the cases in which left-turning traffic 
was equal to half of the through traffic). 

The means of the average delay per vehicle for the final five-minute period of each set of forty simulations 
corresponding to the two cases of left-turn to through traffic ratios of 1.0 (LT/T = 1.0) and 0.5 (LT/T = 0.5) 
are plotted in Fig. 10, where ‘‘MAC’’ stands for the Markov adaptive control algorithm, and ‘‘FAC’’ stands 
for the full-actuated control. As a further ‘‘benchmark’’ comparison, delay calculations based on Webster’s 
delay equation for Poisson arrivals under fixed-time (pre-timed) control are also provided (labeled Pre 
(C = 60 s)  and Pre (C = 45 s) for cycle lengths of 60 and 45 s, respectively). 

Significance tests based on t-statistics resulting from hypothesis tests on the difference of sample means indi­
cate that the difference in means of the simulation results is significantly different (at 0.05 level or above) for all 
cases except for the LT/T = 1.0 case in which the total intersection volume is 1500 vph. The hypothesis tests on 
the difference of means assume that the two populations are independent and have a normal distribution. Alter­
natively, order statistics (distribution-free statistics) estimate the limits within which a certain percentage of the 
probability of the random variable lies with a certain degree of confidence without having prior knowledge of 
the probability distribution. For the case involving 40 samples taken from a population, the upper/lower bound 
within which 90% of the probability of the random variable lies can be obtained with 92% confidence. Fig. 11 
displays these bounds on the steady state delay resulting both from full-actuated and from Markovian control 
algorithms. 

From the above figures, except for the case in which the left-turn traffic volume is equal to the through vol­
ume (LT/T = 1.0) and the traffic volume is relatively light (e.g., arrival rate is 200 vehicles/hour/movement), 
the performance of the Markov algorithm is significantly better than the fully actuated controller (as well as 
the pre-timed controller). For example, for LT/T = 1.0, when k = 300, the Markov algorithm shows about a 
25% improvement on the average steady state delay; for k = 400 and k = 500, the average steady state delay of 
the Markov controller is only about one half of that of the full-actuated controller. As expected, under sat­
urated conditions both algorithms exhibit increasingly worse delays, although the Markov control (on aver­
12 In most cases, the steady state is reached within an hour of simulation. 
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Fig. 10. Algorithm performance comparison for isolated intersection. 
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age) still outperforms full-actuated control. The simulation results indicate that by applying the Markov adap­
tive control algorithm, the average delay at an isolated intersection may be reduced dramatically (22–51%). 

The Markov adaptive control algorithm was also tested on a typical traffic network of five intersections, 
such as that depicted in Fig. 3. For this case, Poisson arrivals were assumed at the external inputs; the arrivals 
at all internal approaches are an outcome of the control strategy employed at associated upstream intersec­
tions. The tests were conducted for LT/T = 1.0 using five different arrival rates: k = 200, 300, 400, 500 and 
600 vehicles per hour per movement. The internal approaches linking the five intersections were assumed to 
be 1000 ft in length, and the average travel speed assumed to be 30 mph (resulting in a value of Tavg = 23 s). 
The parameters in Robertson’s platoon dispersion model were assumed to be a = 0.35, b = 0.8—the common 
default values for US studies. The mean values (of the 40 sets of data) of the steady state delay are plotted in 
Fig. 12. The dotted lines in Fig. 12 display the upper/lower bounds within which 90% of the probability of the 
steady state delay resulting both from full-actuated and from Markovian control algorithms lay. 

The results indicate that the Markov algorithm substantially outperforms traditional full-actuated control, 
particularly when the intersection is at, or near saturation. For example, when k 6 500 (total intersection vol­
ume of 4000 vph), the average steady state delay of the Markov controller is only about one half of that of the 
fully actuated controller. Under heavy over-saturated conditions (k = 600), delay with both algorithms tend to 
converge at a relatively high value. 

We note that, under simple five-node network conditions with identical arrival rates, the performance of the 
Markov control algorithm closely mirrors that obtained in the case of the isolated intersection example 
(Fig. 13). Although preliminary, the results suggest that application of the algorithm in a network setting tends 
to decrease variability in performance; this is expected, since the variability expressed in the Poisson arrival 
patterns at the external nodes becomes an increasingly minor factor as the number of internal approaches 
increases. This latter factor may help to explain the large variance seen in the isolated intersection case under 
heavy oversaturation. 

As stated previously, the specific objective used in these examples of application of the Markov Adaptive 
Control algorithm was not specifically to minimize delay, but rather to minimize the queues on the intersection 
approaches; the delay performance characteristics presented above were an ancillary outcome of the specific 
objective. Relative to performance related to that specific objective, Fig. 14 presents representative values of 
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Fig. 11. Upper and lower bounds on simulation results. 
the maximum queues for each movement obtained for the network case in which the total intersection volume 
is 3200 vph, or about 90% of intersection capacity. 

The results indicate that the Markov Adaptive Control algorithm significantly outperforms full-actuated 
control in this aspect, although it must be noted that full-actuated control is not explicitly designed to mini­
mize queue length, but rather implicitly works toward this end via its extension settings. 

6. Summary and conclusions 

Traffic signal control is a major ATMS component and its enhancement arguably is the most efficient way 
to reduce surface street congestion. The objective of the research presented here has been to present a more 
effective systematic approach to achieve real-time adaptive signal control for traffic networks. 
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Fig. 12. Algorithm performance comparison for simple network case. 
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Fig. 13. MAC performance comparison between network and isolated intersection examples. 
In this research, the problem of finding optimal traffic signal timing plans has been solved as a decision-
making problem for a controlled Markov process. Controlled Markov processes have been used extensively 
to analyze and control complicated stochastic dynamical systems; its probabilistic, decision-making features 
match almost perfectly with the design features of a traffic signal control system. The Markovian model devel­
oped herein as the system model for signal control incorporates Robertson’s platoon dispersion traffic model 
between intersections and employs the value iteration algorithm to find the optimal decision for the controlled 
Markov process. Analysis of computer simulation results indicates that this systematic approach is more effi­
cient than the traditional full-actuated control, especially under the conditions of high traffic demand. 
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There are, of course, significant limitations to the present approach. Most notable is that as the size of the 
traffic network increases, i.e., the number of nodes/intersections and/or links increases, the dimension of the 
Markovian control model increases dramatically, requiring more memory space and computation time. This 
dimensionality issue is very important to real-time implementation, where processing speed is crucial. In the 
current formulation, one potential solution to this problem is alluded to by decomposing the network into sets 
of inter-linked network kernels of five intersections that could be handled by distributed/parallel processing 
protocols; however, no attempt has been made to thoroughly investigate the issues of such decomposition 
algorithms. Further, before any attempt to implement the results, a comprehensive sensitivity analysis needs 
to be conducted to study the effect of the various parameters employed in the simulation testing on both the 
performance of the model as well as on the objective function. Finally, for field testing, the original C language 
code must first be rewritten into assembly language; then the firmware can be loaded, or ’’burned in’’ to the 
PROM (Programmable Read-Only Memory) chip of the controller. 
Appendix A. Successive approximation method—value iteration algorithm 

The successive approximation algorithm given by Eq. (6) can be proved by Banach’s fixed point theorem. 
Banach’s fixed point theorem states that if T is a contraction operator mapping a complete metric space 

(S,d) into itself, then T has a unique fixed point v * such that for any v 2 S and n P 0: 
dðT nv; v�Þ 6 bndðv; v�Þ; ðA:1Þ 
*where v * 2 S satisfies Tv* = v , d is the metric and 0 6 b < 1.  
To prove the operator T defined in Eq. (4) for the Markov process is a contraction operator, let B(X) be the 

Banach space (a complete normed linear space) of real-valued bounded measurable functions on a Borel space 
X with supremum norm: 
kvk ¼ sup jvj: ðA:2Þ 
x 



For any u 2 B(X) and v 2 B(X), we have 
� " # " # � 
� � � � 

� N N � X X � a a �jTvðxÞ � TuðxÞj ¼ � max qðx; aÞ þ b vðxÞp �max qðx; aÞ þ b uðxÞp �ij ij � a2A a2A �
j¼1 j¼1 � N � X 

6 b max � ½vðxÞ � uðxÞ�pa
ij� 6 bkvðxÞ � uðxÞk: 

a2A � � 
j¼1 
Taking the supremum over all x 2 X: 
kTv � Tuk 6 bkv � uk; ðA:3Þ 

where k Æ k is the supremum norm. Thus by the definition, T is a contraction operator. 

Rewrite Eq. (6) as 
vn ¼ Tvn�1 ¼ T nv0 
with arbitrary initial condition v0 2 V, then by the Banach’s fixed point theorem, 
kvn � v�k ¼ kT nv0 � v�k 6 bnkv0 � v�k: ðA:4Þ 

Since 0 6 b 6 1 and  v is bounded, 
limit vn ! v� ðA:5Þ 
n!1 
i.e., the optimal reward, or the solution of Eq. (4), exists and can be approximated by the value-iteration algo­
rithm. The uniqueness of this solution is also guaranteed by the Banach’s fixed point theorem. 
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