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Verde is an environmentally responsible commercial transport seating 150 dual-class 
passengers, designed in response to the 2008-2009 Request for Proposal from the American 
Institute of Aeronautics and Astronautics Undergraduate Team Aircraft Design 
Competition. While the airline industry faces increasing pressures from the cost of fuel and 
the responsibility of environmental impact, the next generation of this aircraft class must 
operate more efficiently and address those environmental needs. Therefore, all design 
decisions for Verde focused first on reducing fuel burn, second on reducing emissions, then 
noise, and finally on maintaining flyaway cost, airport integration, and passenger comfort. 
The final design utilizes several green technologies such as an unducted fan engine cycle, 
biofuel, and use of advanced yet reusable materials to achieve these goals. Much of the 
design process focused on trying to increase the main wing aspect ratio which required the 
need to balance structural weight, aerodynamic performance benefits, and airport 
integration. This fuel-burn-centered philosophy yielded significant improvements, including 
a fuel block burn for the typical 500 nmi mission of 38.1 lb/seat and an 10% improvement in 
operating cost compared to current operations. 

Nomenclature 
AR aspect ratio 
b span 
BSFC brake specific fuel consumption 
BWB blended wing body 
CD coefficient of drag 
CL coefficient of lift 
CG center of gravity 
Ka technology factor 
L/D lift-to-drag ratio 
MDD drag divergence Mach number 
Mcrit critical Mach number 
S surface area 
t/c thickness-to-chord ratio 
TOGW takeoff gross weight 
TSFC thrust specific fuel consumption 
Λ sweep angle 

1. Introduction 

Kermit Design of California Polytechnic State University, San Luis Obispo is proud to present Verde, an 
environmentally responsible commercial transport that seats 150 dual-class passengers, in response to the 2008-2009 
Request for Proposal (RFP)1 from the American Institute of Aeronautics and Astronautics (AIAA) Undergraduate 
Team Aircraft Design Competition. Kermit Design’s objective for this aircraft is to design an efficient airliner, in 
service by 2018, which will be versatile and reliable while using “green” technology to reduce fuel burn and 
emissions. 
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While the airline industry faces increasing pressures from the cost of fuel and environmental impact, the next 
generation of this aircraft class must operate more efficiently and address those environmental needs. These 
demands and requirements illustrated by the RFP are echoed by NASA’s Environmentally Responsible Aviation 
Project2 which is focusing resources toward the research of “enabling technologies that would have little, if any, 
negative effect on the environment and global climate”. The designers feel that concerns regarding the environment 
and natural resources will drive the aerospace industry to address improved fuel burn at the cost of some reductions 
in other areas such as noise. Therefore, all design decisions for Verde focused first on reducing fuel burn, second on 
reducing emissions, then noise, and finally on maintaining flyaway cost, airport integration, and passenger comfort. 

2. Initial Design Overview 

Initial steps in the design included a mission analysis and constraint diagram. The mission analysis was 
completed using a regression based historical weight model and fuel fractions for each mission segment, this code 
was later validated alongside a drag polar validation. 
The most constraining requirements of the design space 
were the 140 knot approach velocity, balanced field 
length of 7,000 ft, and top of climb cruise at 300 ft/min, 
resulting in a thrust-to-weight of 0.33 and a wing 
loading of 130 lb/ft2, shown in Figure 1. 

At the onset of this design, the Breguet range 
equation provided a natural breakdown of the major 
factors to improve the aircraft efficiency. The three 
major components, thrust specific fuel consumption 
(TSFC), lift-to-drag ratio (L/D), and weight fraction 
were used accordingly to maximize the improvements 
of the aircraft based on how much each component 
affected the overall savings. 

Basic fuselage type and size was the first 
characteristic of Verde to be defined. A broad fuselage 
study involved a blended wing body (BWB) and many 
cylindrical fuselage configurations. Traditionally, the 
blended wing body configuration has been undesirable 
for this class of aircraft based to the geometry 
demands.3 Kermit Design investigated the BWB 
geometry needed for this design and found that with a standard BWB seating format the minimal cabin height and 
most reasonable chord length (30ft) results in a 17% thick root chord. Therefore, Kermit Design focused on a 
cylindrical fuselage layout. The team considered an array of narrow and wide body configurations and a weight and 
drag estimate was calculated for each. Initially, the wide body configurations seemed to be the favorable choice, but 
with a closer look it was found that the drag buildups did no account for base drag. Therefore, 3D CFD was 
completed on the best seating for each class, narrow and wide, for a better drag comparison, shown in . From this, a 
narrow body, 3-3 seating configuration was chosen. 

3. Design Iteration Overview 

From the analysis summarized in the remainder of this paper, three major iterations resulted. Iteration 1 was a 
high strut-braced wing with aft-mounted unducted fans shielded by an H-tail. Originally used as a validation for the 
benefits of the strut, Iteration 2 utilized the same empennage with a low wing. Iteration 2 became the primary design 
because the small improvement in fuel burn with the strut did not buy this unconventional technology onto the 
aircraft. Finally, Iteration 3, Verde, reconfigured the empennage placing the engines at the side of the fuselage with a 

Table I: Drag and weight results of fuselage study. 

Seating 3 3 3 4 3 

Component Buildup CD (-) 0.0071 0.0078 

CFD CD (-) 0.0074 0.0087 

Fuselage Weight (lb) 17,921 14,243 

Figure 1: Constraint Diagram showing contours of 
specific range and the design point 



T-tail. This decision addressed many concerns about the H-tail, including possible engine fratricide issues, 
integration, and the aerodynamic, structural, and controllability issues generated by having the two engines so close 
to one another.  All three iterations are pictured in Figure 2. 

 

Figure 2: Design Concepts for Iteration 1, Iteration 2, and Verde (from left to right) 
 

4. Propulsion 

As the philosophy and the Bruguet range equation outlined fuel burn or TSFC was the most important area of 
saving, therefore engine selection was a vital element of the design. Three major engine concepts were considered, 
including the open rotor concepts from General Electric and CFM International, the geared turbofan from Pratt and 
Whitney, and the advanced direct-drive turbofan from CFM International. While all three concepts promise 
improvements over the current engines, the open rotor or unducted fan engine cycle was chosen due to its significant 
advantages for reduced fuel burn, despite the uncertainty regarding its noise levels.  

The propfan takes advantage of the efficiency of a 
propeller while maintaining the ability to cruise at similar 
speeds as a turbofan. The counter-rotating propellers 
allow the second blade row to counteract the swirl effects 
from the first row, thus straightening the thrust and 
increasing the efficiency compared to a single rotating 
propeller.4 This coupling of ultra high bypass ratio and 
aerodynamically advanced fan blade design allow the 
propfan to achieve an advantage in fuel consumption. By 
nature of this combination, the propfan does have more 
thrust lapse than the standard high bypass ratio turbofan. 
Figure 3 shows a carport plot of these parameters.  

Engine performance was initially analyzed using a 
rubberized engine deck based on the GE 36, which was 
generated from General Electric test data provided by 

 
Professor Mark Waters. The GE 36 was designed and 

Figure 3: Carpet Plot of Engine Parameters: Thrust tested in the 1980s, at which time a F404 turbojet was 
Specific Fuel Consumption and Thrust Lapse for used as the core.5 This core is from a particularly aged 

the GE 36.engine and would not reflect a modern design.  
To develop a more sophisticated engine deck, fan sizing from propeller maps and a turboshaft cycle analysis 

program written by Professor Mark Waters were used to model a counter-rotating unducted fan cycle. The engine 
was sized at top of climb and restricted to a tip speed of 800 ft/sec. Propeller maps were created using trends from 
three reports6,7,8, of which two were for single props while the third addressed counter-rotating trends. Once the 
required power was known, a turbostaft engine cycle analysis was completed. This program accounted for losses at 
each component of the engine, including bleed air for the environmental control system (ECS) and reports back 
brake specific fuel consumption (BSFC) and fuel flow rate. The cycle was then calibrated using the GE 36 data 
provided by Mark Waters. To reflect a more advanced core some moderate cycle analysis improvements were 
applied, such as turbine inlet temperature and pressure ratios.9 No improvements were made to account for any 
improvements with fan blade efficiencies. Blade design will be greatly affected by the acoustic requirements of this 
engine; therefore, some engine efficiency may be sacrificed for more optimum noise levels.  

Although the engine choice is most desirable for the fuel burn ability, the integration of the engine with the 
fuselage has been considered such that an airline may chose to install a propfan or a turbofan. This adds to the 
versatility of the aircraft without much effect on the design. In either case, pylons are mounted aft of the pressure 
bulk head and are placed vertically to as ensure tail strike occurs prior to engine blade strike. 
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5. Structures and Materials 

Materials selection was primary focused on reducing the structural weight of the aircraft. The use of composites 
and titanium are increasingly more common on new aircraft. The net structural weight savings accomplished for 
Verde was 10%. Furthermore, these materials will have the ability to be recycled at the aircraft end of life. Improved 
passenger comfort is also achieved with the usage of composites in the fuselage, by increased window size and 
decreased cabin pressure altitude. With the usage of composites, the fuselage thickness is now limited to minimum 
gage and not by stresses, therefore these improvements are included without any penalty to the design. 

The fuselage stringer and ribs spacing was determined using Roskam10 design texts in the semi-monocoque 
fashion. This resulted in a rib spacing of 19 inches and stringer spacing of 22 inches. The front spar of the wings is 
located at 23% of the chord, with the rear spar at 65% of the chord. 

6. Weights 

The empty weight buildup began with a comparison of two methods to determine wing weight, a historical 
wing-weight buildup regression from NASA11 and a quasi-analytical method from SAWE12, used for the aspect ratio 
study, which will be discussed in the next section. Validation was completed 
with a 737-200 and a MD-80 weights, the NASA method provided more 
accurate weight estimates and with a 5.5% calibration. A 10% structural weight 
savings was applied to account for use of advanced materials. Torenbeek’s13 

method from Roskam10 was used to determine the weight of the empennage and 
fuselage. The rest of the fixed weight components were taken to be the same as 
the 737. From the sum of these components, the total structural weight for 
Verde is approximately 43,000 lb as seen in Table II. Combining the fixed 
equipment weight with the structural weight yielded an empty weight value of 
79,300 lb, and a TOGW of 139,500 lb. 

To determine the longitudinal and vertical center of gravity (CG) locations 
of Verde, each major component on the aircraft was referenced from a fuselage 
station (FS) located 5ft ahead of the fuselage nose, and a water line (WL) 
located 6 ft below the underside of the fuselage. The CG was found to be at an 
FS of 72.6 ft and a WL of 14.9 ft. 

7. Aerodynamics 

A. Validation 

Validation of the mission analysis and drag polars for 
Verde was completed with DC-10 40 data14 . Although this 
aircraft does not represent the same class size of aircraft, 
extensive data including many drag polars at different Mach 
numbers and a detailed payload range diagram were available. 
Two methods were used to validate the drag polar: a drag 
buildup method from Roskam15 was used as well as NASA 
aerodynamics code called Empirical Drag Estimation Tool 
(EDET) that comes from their packaged Flight Optimization 
System (FLOPS)16 . shows all three drag polars. The 
component buildup method from Roskam did a good job at 
predicting the drag on the aircraft. While the NASA 
aerodynamic code EDET overpredicted the addition of 
viscous drag due to lift and induced drag causing the increase 
in drag at higher coefficients of lift (CL). For this reason, the 
component method was used to predict drag for the project. 
For the mission validation, a 5,000 nmi mission was selected, 
because this point was clearly marked on the payload range 
diagram. The mission analysis overpredicted fuel burn by 
3.5%. A correction factor was applied to the mission analysis 
resulting in predictions of fuel burn within ±1%. 

Table II: Structural weight 
breakdown 

(lb) Verde 

Wing 15,900 

Horizontal Tail 1,650 

Vertical Tail 1,390 

Fuselage 16,400 

Nacelle Group 2,170 

Main LG 4,930 

Nose LG 560 

Total Structural 43,000 

Figure 4: Drag polar validation for the DC-10 40 
under cruise conditions of Mach number 0.78 at 

38,000 ft 
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B. Aspect Ratio Study 

In order to justify the wing aspect ratio (AR) chosen 
for Verde, an AR trade study was performed and 
compared versus fuel burn. The methodology used to 
complete the study was a ten-step process, which starts 
by picking a design point from the constraint diagram. 
Then a historical empty weight regression is used to find 
an initial guess for the empty weight and TOGW of this 
aircraft. The user determines a range of ARs to analyze 
from which a wing planform, including optimized sweep, 
taper, and twist, is determined. The tail is then sized 
accordingly to match the wing planform. The empty 
weight buildup calculates the weight of the wing, tail, 
and fuselage. The design mission is analyzed to find a 
new TOGW corresponding to the empty weight of the 
aircraft. This TOGW is fed back into the wing planform 
to converge on an empty weight for the given AR. Once 
converged on an empty weight the fuel burn is calculated 
for the optimization mission. Since 50% of the projected 
missions are 500 nmi, Kermit Design chose that mission 
to evaluate the fuel burn. The comparison between a 
standard low wing and a high strut-braced wing is shown 
in Figure 5. 

C. Wing Planform 

The wing planform design focused on selecting an aspect ratio which would accomplish three main goals: 
maximize the L/Dcruise, minimize structural penalties, and maintain a wingspan within the Class III requirement. 
Next the Korn17 equation was used to determine the quarter chord sweep, which Equation 2 shows. 

Λ 
− 

Λ 
− 

Λ 
= 

32 cos 10 cos cos 
La 

DD 

CctK 
M (2) 

MDD is the drag divergence Mach number and was selected such that at cruise it would be a minimum. Λ is quarter 
chord sweep and Ka represents an airfoil technology factor. For supercritical airfoils, the technology factor is 0.95, 
and for NACA 6-series airfoils, the technology factor is 0.87. Geometric twist and taper ratio were coupled and used 
to try to obtain an elliptical lift distribution on the wing. Athena Vortex Lattice (AVL) was used to predict the 
relative efficiency between wings and converge on the best. 

D. Drag 

Four different methods were used to obtain a drag polar for this aircraft. The skin friction drag was modeled 
using flat plate approximations. The wave drag was modeled using a simple wave drag approximation equation. 
The induced drag was modeled using Athena Vortex Lattice18 (AVL) code written by Mark Drela. And lastly the 
viscous drag due to lift was calculated using a 2D CFD study. 

Flat plate skin friction approximations were used to analyze skin friction drag19. The flat plate friction 
coefficient was calculated using the fully turbulent mean skin friction coefficient. Next, the wing parasite drag was 
calculated using Equation 3. 

ref 
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⎣
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⎠

⎞
⎜
⎝

⎛ 
++= 

4 

,, 2.11 (3) 

Similarly, the horizontal and vertical tail surfaces zero-lift drag coefficients (CDo) were calculated as well as the 
fuselage zero-lift drag coefficient. 

The shock-induced drag for this aircraft was approximated using a simple wave drag equation. First, the critical 
Mach number (Mcrit) was calculated using Equation 4 from the chosen MDD. 

Figure 5: Fuel Burn as a Function of Wing Aspect 
Ratio for Both a Low Wing and High Strut-Braced 

Wing for a 500 nmi Mission 
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2 
1 

80 

1.0
⎟
⎠

⎞
⎜
⎝

⎛
−= DD crit MM (4) 

Once the Mcrit was known, the shock-induced drag was calculated using Equation 5 for Mach numbers greater than 
the Mcrit. 

( ) 
ref 

strip 

crit wave D 
S 

S 
MMC 

4 

, 20 −= (5) 

where Sstrip is the reference area of a section of the wing, which lets the wave drag be summed over many strips 
rather one big block. This method was then compared to a CFD study where each Mach number between 0.65 and 

0.91 at 0.02 intervals was evaluated. This resulted in 
the 2-D Mach drag divergence graph shown in Figure 
6. The CFD was compared to the wave drag formula 
mentioned above. The graph shows that the wave drag 
equation under predicts the MDD number. The CFD 
was then curve fitted and used as the wave drag for this 
aircraft because it gave more conservative results. 
This affected the cruise drag buildup in that there was 
very little shock-induced drag. Although MDD was 
selected to minimize cruise drag, there is historically 
more shock-induced drag at the cruise point. 

The induced drag was calculated using AVL, 
which uses single layer vortex sheets that are curved 
along the camber line. Its limitations include that it 
works best at low angles of attack and sub-transonic 
Mach numbers. It uses the Prandtl-Glauert correction 
factor in the transonic regime, but a certain amount of 
unknown error is associated with Mach numbers above 
0.7. 

The viscous drag due to lift is calculated using 2D 
CFD analysis on the airfoil. Since the root and tip have different thickness to chord ratios, the two airfoils were 
interpolated to give a modified airfoil. The airfoil in the study used an 12% thickness to chord for NASA’s SC-206 
series airfoil. Since this is 2D analysis, the Reynolds number needs to reflect the local velocity that the 30 degree 
swept wing planform sees. The analysis was performed for cruise approximations at Mach number 0.68 at 38,000 
feet and for takeoff at Mach number 0.20 at sea level conditions 

The L/Dmax for Verde is 18.1 which matches very closely to the L/Dcruise of 17.8. The two match closely 
because during the mission analysis the altitude for 
cruise was picked based on the least amount of fuel 
burned. This allows Verde to match its cruise 
altitude to its AR and cruise at its most efficient point 
altitude. The reason that these are not matching 
perfectly is because it was limited to cruise at 1,000 ft 
intervals. The cruise altitude for Verde on the 500 
nmi mission is 38,000 feet. 

E. Takeoff and Landing 

To get the takeoff and landing performance of 
this aircraft an approximation of the aerodynamics of 
the flap system needs to be made. This maximum CL 

was 2.75 for landing. This was low enough that a 
double slotted Flowler flaps would be able to achieve 
the necessary lift for the aircraft. The lift curves were 
made using a combination of a few methods and the 
resulting curves can be seen in Figure 7. First, 2D 
CFD was performed on the SC-20613 at a range of 
different angles of attack to get the 2D lift curve for 

Figure 7: Lift Curve Slope for Different Flap 
Deflections. 

Figure 6: Mach Drag Divergence Graph Comparing 
CFD to Virginia Tech's Wave Drag Equation 
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that airfoil represented by the pink circles. A curve was fit to those results and then a 3D correction was made using 
a method from Raymer20 . Lastly, a double slotted Fowler flap approximation was made using Roskam15 for both 30 
and 45 degree flap deflections. And from these the resulting drag polars for takeoff and landing can be determined. 

F. Airfoil Study 

To show a comparison of natural laminar flow airfoils to supercritical airfoils some values are listed in Table 
III. The airfoil study included all airfoils to be run under fully turbulent conditions which would be the worst case 
scenario for those airfoils. The Mach numbers are different because the natural laminar flow airfoils are run for a 20 
degree swept wing where the local velocity of the airfoil would be 0.73. All drag predictions were run using CFD. 

As shown in Table III, the natural laminar flow airfoils perform quite poorly under fully turbulent conditions. 
Two supercritical airfoils are use, a t/c of 12% at the tip and 14% at the chord. Kermit Design wanted to analyze the 
airfoil so they performed basic 2D CFD analysis. Three cases were run for each Mach number at an altitude of 
38,000 feet. 

8. Performance 

A cruise altitude study was completed to find the altitude where the lowest block fuel burn is achieved for a 500 
nmi mission. From this, 38,000 ft was used as the cruise altitude, which gives a block fuel burn of 38.1 lb/seat for a 
500 nmi mission. 

9. Emissions 

Due to the lower fuel burn, Verde accomplishes the carbon dioxide and nitrogen oxide emission reductions 
required by the RFP. But this does not fully satisfy the goals of Kermit Design, nor the future needs of the airline 
industry. As the demand for fuel increases worldwide with developing countries, the airline industry will soon be 
forced to consider introducing biofuel into a standard jet fuel mixture. This will assist not only the overall reliance of 
fossil fuels but also take another step forward in environmental responsibility. 

10. Noise 

The RFP proposes a significant reduction in the community noise of the aircraft. For an aircraft with a MTOW 
of 139,000 lb the cumulative noise requirement is 251 dB. The open rotor engine selection is louder than its 
competition turbofan engines, but still has the potential to employ many technologies. Noise reduction will look 
primarily to the engine, because it is the largest source of noise on the aircraft plays the most significant role in 
reducing overall noise. 

For an open rotor engine, the propeller produces the most significant amount of noise from the engine. A 
propfan noise estimation from Hamilton Sundstrand6 resulted in an engine noise level of 93 dB. General Electric 
predicts the next generation unducted fan to be about 10 dB below Stage 4. These improvements would come from 
advancements in blade design as well as the number coupling of the front and back rows of counter-rotating blades, 
odd number coupling and using different numbers of blades between the front and back rows help attenuate 
frequencies produced by the blades. Therefore, a 10 dB reduction was taken from the baseline noise estimation at 
each measurement location. 

NASA’s Aircraft Noise Prediction Program21 (ANOPP) was used to quantify airframe noise. The unducted fan 
could not be modeled in ANOPP, therefore the Verde configuration was modeled along with a 737-800 for 

Table III: Airfoil Comparison for Supercritical and Natural Laminar Flow Airfoils. 

Airfoil CL design 
Mach 

Number 
AoA (deg) CL cruise Cd cruise t/c 

SC-20612 0.6 0.68 0.3 0.58 0.0099 12% 

SC-20614 0.6 0.68 -0.11 0.60 0.0151 14% 

HSNLF-213 0.2 0.73 3.6 0.62 0.0234 13% 

NL(S)-0715 0.7 0.73 -0.4 0.60 0.0202 15% 
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comparison and validation. The ANOPP model appeared to under predict flyover noise and over predict approach, 
but cumulatively was within 0.5% of the actual noise levels of the 737-800. 

Compared to the engines, airframe noise is less impacting to the overall noise level. On approach, the airframe 
noise reductions from clean double slotted flower flaps and clean landing gear do benefit the overall noise level. 
The logarithmic summation of the engine and airframe noise results in a cumulative noise level for Verde of 250.8 
dB, which is 20.1dB below Stage 4. 

11. Controls and Stability 

The initial size of the horizontal tail was determined using a Roskam22 volume coefficient method and was 
constrained by takeoff rotation, as shown in Figure 8. Using a tail volume coefficient of 1.25, the area of the 
horizontal tail was determined from Equation 7 to be 215 sq ft. 

H 

H 
H 

X 

ScV 
S 

⋅⋅ 
= (7) 

However, after performing a dynamic stability 
analysis, it was found the damping ratio, ζ, for 
the short period mode was 0.23. This falls into a 
Level 2 handling quality23 , an unacceptable 
value for a commercial transport. In order to 
meet the minimum damping ratio requirement 
for Level 1 handling of 0.30, the horizontal tail 
size was increased to 295 sq ft. This yielded a 
tail volume coefficient of 1.71, which is higher 
than comparable aircraft in this class. This is 
most likely due to the high aspect ratio wing, 
which in turn creates a smaller mean 
aerodynamic chord, yielding a higher value of 
VH for a comparably sized tail area. 

The elevator was sized to provide the 
horizontal tail with a lift coefficient of -1.0 at 
takeoff. This was done using the plain flap 
method from Raymer20 , taking into account 
ground effect, downwash and 3D effects. The 
elevator chord was chosen to be 0.3 of the chord 
of the horizontal tail, which required an elevator deflection of about 13 degrees at takeoff. The horizontal tail span 
and taper were set to match the tip chord of the vertical tail, which yielded a span, taper ratio and aspect ratio of 40 
ft, 0.38, and 5.4, respectively. The sweep of the horizontal tail was chosen to be just slightly higher than that of the 
wing, to prevent shock waves from forming on the control surfaces. 

The size of the vertical tail was also determined by volume coefficients constrained the one-engine-inoperative 
(OEI) condition. Using an approximation for windmill drag from Torenbeek13, the required directional stability 
coefficient (Cn,req ) of 0.052 rad-1, the rudder size and corresponding vertical tail size were chosen at a balanced 
point to attempt to minimize both the rudder size and vertical tail size. The vertical tail volume coefficient and 

rudder size were 0.073 and 0.25 v c . 

As determined by Equation 8, the Verde required a vertical tail area 200 sq ft. The span of the vertical tail was 
chosen to be 15 ft., near that of the MD-80, as to allow adequate clearance of the engine fan blades, and allow for 
airport compatibility. The sweep of the vertical tail is 38°, as this provides enough sweep to prevent shocks from 
forming on the control surface. 

V 

V 
V 

X 

SbV 
S 

⋅⋅ 
= (8) 

The outboard ailerons span from 80% to 95% of the half-span, at 20% of the local chord, which yielded an aileron 
area of 54 ft2 per aileron. Inboard ailerons to use during high speed maneuvers to prevent aileron reversal and 
extreme stress and torsion on the wing during flight have not been designed at this point, but Kermit Design will 
incorporate these. 

Figure 8: Horizontal tail sizing constraints. 



   
       

                   
                 
                

                 
  

  

                 
                   

                 
                   

                
                     

                  
                    

                 
          

 
                 

                  
                  

                   
        
                

                
                
                    
                    

                    
                    

                 
                    

                  
                   

                    
                     

                     
                   

      
   

  

   

   

   

   

  

 
 

 

 

 
 

 
 

 
      

  

Using Roskam22 , a trim triangle was created for the Verde at cruise condition. The Verde is stable and 
trimmable at all CG locations during cruise, requiring an elevator deflection between -5° and 7°. The stability 
derivatives for Verde were found using methods from Nelson23 and Roskam22, which were input into Archangel, 
where the dynamic stability characteristics were obtained. All of the dynamic response modes give a Level 1 
handling quality. 

12. Cost 

The acquisition cost of Verde was determined using ALCCA24. Before the actual cost was determined, it was 
desired to study the effects of using advanced materials on Verde, and to see what factors would most heavily 
influence the total acquisition cost. An automation of ALCCA was created, to vary the percentage of titanium, 
aluminum, and composite materials used in the aircraft. Figure 9 shows a carpet plot of how the acquisition cost 
changes with increasing titanium and composite materials, relative to a decrease usage in aluminum material. From 
this plot, the sensitivity derivatives, or the slope of the contours in Table IV, were found for varying material usage 
in the fuselage and wing, as these two structural components constitute nearly 80% of the aircraft structural cost. 
From this sensitivity study, it was concluded that the acquisition cost of the aircraft was much more sensitive to an 
increase in usage of composite materials. However, as will be discussed later, the long-term operating benefits of 
composites will more than buy their way onto Verde’s design. 

Table IV: Acquisition Cost Sensitivity to 
Advanced Material Usage 
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Figure 9: Acquisition Cost Variation with 
Material Usage 

As a baseline for predicting the acquisition cost, values of 50% composites, 20% titanium and 30% 
aluminum on the fuselage, and 40% composites, 30% titanium, and 30% aluminum on the wing were used. This 
yielded an acquisition cost of approximately $88.5 million for 500 units produced, and $63.6 million for 1,500 units 
produced. This is well below the actual cost of a Boeing 737-800, but just slightly below the Boeing 737-800 
estimated cost, which was also estimated using ALCCA. 

While the airline industry faces such unpredictable economic times, decreasing the operating cost is of the 
utmost importance. It was also Kermit Design’s philosophy that the most feasible way to drastically reduce 
operating from a conceptual design view, was to dramatically reduce fuel burn. This was accomplished through 
selection of the unducted fan engine cycle and the used of advanced materials to reduce the weight of Verde. Using 
ALCCA to predict the operating cost of Verde, the total direct operating cost averaged to $2,100 per block hour (in 
2018 dollars). In order to determine how much of an impact fuel cost had on operating cost, several parameters were 
found for three different years, including the present year (2009), and the RFP entry to service date of 2018. These 
parameters included inflation, fuel prices, and direct operating cost. Table V shows a summary and comparison of 
these parameters. From the year 2000 to 2018, inflation is projected in increase by about 54%, while fuel prices are 
predicted to increase by at least 257%. Assuming that maintenance costs and other operating cost (less fuel), are 
only affected directly by inflation, the fuel cost will vastly outpace inflation, implying that fuel will become a more 
and more dominate factor in direct operating cost. It is projected that Verde will reduce operating cost by 8.4% in 
2009, but by the entry service date, will increase that to a 10.6% cost savings over a Boeing 737-800. This savings 
nets an average of nearly $1.7 million per year per aircraft, assuming 5,000 block hours per year. A benefit is also 
seen, although not as great, with Verde’s Leap 56 option. This option will result in approximately 4.7% savings in 
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operating cost over the 737-800 in 2018. While this is a far cry the RFP objective of 8%, it is still shows an 
improvement over current aircraft. The next generation aircraft has no other choice, but to go with the unducted fan 
cycle in order to keep up with rising fuel prices, and give airlines a chance to make a profit in an uncertain economic 
future. 

Table V. Operating Cost Analysis 

Parameter 2000 2009 2018 

Inflation --­ 24% ~54% 

Fuel Prices18 ($/gal) 0.70 1.39 2.50 

Relative Fuel Price Increase --­ 99% 257% 

DOC Savings over B737-800 6.1% 8.4% 10.6% 

DOC Savings over B737-800 (CFM option) 2.7% 3.8% 4.7% 

13. Conclusion 

Designed primarily to reduce fuel burn and emissions, Verde utilizes the balance of several green technologies 
such as an unducted fan engine cycle, biofuel, and use of advanced yet reusable materials. The fuel-burn-centered 
philosophy yielded significant improvements, including a fuel block burn for the typical 500 nmi mission of 38.1 
lb/seat and an 10% improvement in operating cost compared to current standards. The use of advanced materials 
allows an increase in aspect ratio balanced with structural weight, aerodynamic performance benefits, and airport 
integration. All design decisions for Verde focused first on reducing fuel burn, second on reducing emissions, then 
noise, and finally on maintaining flyaway cost, airport integration, and passenger comfort. Further detail of this 
design process and the analysis can be found in an extended report online at: 
http://www.flightlab.calpoly.edu/html/design_reports/. Kermit Design is confident Verde is the solution to 
successfully carry the 150-passenger commercial class of aircraft through the industry demands for reduced fuel 
burn and environmental responsibility. 
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