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�
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Aerospace Engineering, California Polytechnic State University, San Luis Obispo, CA, 93407 

In response to the 2008-2009 AIAA Undergraduate Team Design Competition's 
Request for Proposals for an advanced, environmentally compatible, 150 seat commercial 
transport; Jackson West has designed the Sparrow JS-3. The Sparrow represents the next 
step in the evolution of commercial aviation. Scheduled to enter service in 2018, The Sparrow 
will compete directly with the Boeing 737 and Airbus A320. Its improvements in fuel 
consumption and operating cost, as well as its reduced environmental impact, make The 
Sparrow the ideal solution to this RFP. 

I. Introduction 
When studying the RFP it became clear that emphasis is placed on certain aspects of the design.  This warranted a 

quantified prioritization of the metrics against which design decisions were evaluated. Table 1 contains the result of this 
process. Because fuel burn is the most heavily weighted criterion, the Breguet range equation, as seen in Figure 1, was 
often used as a calibration to see how design decisions affect fuel burn. 

Table 1: Design Requirement Prioritization 

Figure of Merit Relative Importance 

Reduced Fuel Burn 60% 

Reduced Community Noise 16% 

Increased Fleet Productivity 14% 

Decreased Maintenance Cost 8% 

Improved Passenger Comfort 2% Figure 1: Breguet Range Equation 

II. Initial Sizing 

One of the first issues that needed to be addressed was the cabin layout. This sizes the fuselage which the rest of 
the aircraft is designed around. In order to determine the most optimal passenger configuration several fuselages were sized 
for 150 passengers with different seating and aisle configurations. The weight and drag coefficient of each fuselage was 
calculated and the result of this trade study was that the 6 abreast, single aisle, configuration had the lowest weight and 
nearly the lowest drag and was therefore chosen for this design. 

To begin sizing the wing and engines, a constraint diagram was generated. This illustrates what point performance 
constraints limit the design. The range capabilities of the Sparrow were determined by constructing the payload-range 
diagram shown below in Figure 3. The mission analysis tool plays a crucial role in the sizing of the aircraft. Using B737-
800 parameters, the mission analysis was computed and compared to the actual data. The predicted block fuel was very 
close to the actual data, as shown in Table 2.  
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Mission Length 737 Actual 
[lbs/seat] 

737 Predicted 
[lbs/seat] 

Table 2: Mission Analysis Validation 

500 nmi 46.6 45.4 

1000 nmi 83.3 84.6 

In order to optimize the aircraft it was 
important to understand how any change in one of 
the design variables would effect the ability to 
fulfill the requirements. As fuel burn was deemed 
the most important metric in the design of The 
Sparrow, it was necessary to investigate how small 
changes in configuration affected the fuel efficiency 
of the aircraft. Several partial derivatives of fuel 
burn with respect to design variables were 
calculated using finite differencing. 

From an aerodynamics perspective, 
increasing aspect ratio yields better range 
performance. However, wing weight also increases 
sharply with aspect ratio while maximum lift to 
drag ratio and cruise lift to drag ratio diverge. This 
indicates an optimization problem. Aspect ratio was 
varied while converging on both empty weight and  fuel burn to determine the optimum aspect ratio for this design. 850 nmi 
was used as an average mission length and the optimum aspect ratio was calculated to be 11. 

Figure 2: Constraint Diagram
�

Figure 3: Payload-Range Diagram 
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III. Noise 
The RFP requires 

community noise to be 20 dB below 
ICAO stage 4.  The cumulative noise 
is the sum of the noise levels from 
approach, sideline, and flyover, 
shown graphically in Figure 4. 

The ICAO requirements are 
a good starting point for quantifying 
aircraft noise, however the observer 
locations do not represent the entire 
community surrounding the airport. 
Using MATLAB to automate the 
noise simulation process through 
ANOPP, the noise footprints of the 
JS-3 and the B737-400 were 
generated, as shown in Figure 5. 

IV. Aerodynamics 

Aerodynamic twist was 
implemented to better tailor the wing 
to an elliptical lift distribution prior 
to any geometric twist. Figure 6 
shows a lift coefficient distribution 
corresponding to an elliptical lift 
distribution to produce the required 
lift at cruise. The red line shows 
how the design lift coefficients of the 
airfoils vary along the span. The 
numbers correspond to the different 
airfoils in Figure 7, which displays 
the airfoils NASA supercritical 
airfoils selected for the wing. In 
order to get an arbitrary planform to 
produce an arbitrary lift distribution, 
a method was created to 

3 
American Institute of Aeronautics and Astronautics 

Figure 4: Observer locations for ICAO stage 3 noise evaluation 

Figure 5: Noise signatures of the 737-400 and the JS-3 during takeoff 
and approach 

Figure 6: Lift and Airfoil Distributions 
Figure 7: Selected Airfoils 



                 
                    

 

 

 

 

 

              
             

 
            

 
          

              
 

            
              

            
              

 

 

 

geometrically twist a given planform to match a desired lift distribution. The twist optimization process involved twisting 
the wing with a known basis function. The lift distribution was then calculated using the NASA panel code PMARC 1 

automated using MATLAB2 . This was done for several twist distributions, the resulting lift distributions were superimposed 
to match the desired lift distribution. 

Table 3: Basis Function Buildup 

Basis Function
�

ΔCL*c 
Distribution 

Part CD,0 (Drag Counts) Percentage 

Table 4: Drag Count Buildup 

Fuselage 70 

V-Tail 14 

Horizontal Tail 17 

Nacelle 38 

Wing 73 

Total 212 88 

Pressure 11 

Wave 20 

Figure 8: Lift Distributions
�

29 

6 

7 

16 

30 

4 

8 

Total 243 100 

One of the first design tools that need to be generated was the drag 
polar. This is essential to many other design tools that flow down 
from it.  Initially, the first iteration of the drag polar consisted of very 
basic drag equations that did not include any component build up of 
the aircraft.  This is sufficient for the first iteration to begin sizing the 
aircraft. However, using this crude estimate wouldn't be sufficient 
for the remainder of the design. The next step was to use empirical 
formulas to compute the drag of each component on the aircraft.  The 
components of the aircraft included in the drag polar were the wing, 
fuselage, tail, and the nacelle. Figure 9 shows the drag polar of the 
aircraft in a clean configuration at a cruise condition at 35,000 feet 
and a Mach number of 0.78. It also shows the takeoff and landing 
drag polars. 

Figure 9: Drag Polars
�
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V. Propulsion 

Table 5: Propulsion system trade study 
Criteria Value Geared Turbofan Advanced Direct Drive Turbofan Unducted Fan 

Fuel Burn 
(Vs Current) 

60 
0 

-12% 
-1 

-8% 
2 

-25% 

Community Noise 
(Vs ICAO Stage 4) 

16 
0 

-20 dB 
-1 

-10 dB 
-5 

0 dB 

Fleet Productivity 14 0 2 -2 

Maintenance Cost 
(Vs Current) 

8 
0 

-10% 
2 

-15% 
-2 

Base 

Passenger Comfort 2 0 0 -5 

Total 100 0 -32 -14 

Candidate propulsion concepts are analyzed below 
with a graphical representation in Table 5. Quantitative 
values are included wherever possible to justify relative 
values assigned in the trade study (values range from +5 to 
-5).  

Based on the pre-established criteria, the baseline 
GTF wins out over the UDF and the LEAP56. The 
performance of Pratt & Whitney's PW1000G during the flight 
profile is shown in Figure 10. Even though the geared 
turbofan appears to be a very safe bet for a 2018 entry to 
service date, if the program does not produce the excepted 
success, a direct drive turbofan can easily be installed in its 
place because the size and performance of the turbofans are 
not radically different. 

With larger diameter engines, this poses a problem 
with ground clearance.  A couple ways to tackle this problems 
would be extend the landing gear and/or increase the dihedral 
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Figure 10: Geared Turbofan performance overview 

Figure 11: Lift to Drag with varying height Figure 12: Lift to Drag with varying chord 



                   
                    

                 
 

                     
                    

                 
                      
                      

                       

        
         

       
         

        
       

          
     

          
        

        
          

         
         

       
        

       
         

  
     
     

      
     
    

     
  

   
    

    
    

     
 

     
       

      
     

       
      

      

 

  

 

of the wing. Unfortunately, both will induce large unfavorable weight penalties. One of the most promising configurations 
is to place the engine over the wing. Over the wing nacelle (OWN) installations may prove increasingly necessary for 
future commercial aircraft as nacelle diameters continue to increase and noise regulations become stricter. Placing the 
nacelles over the wing will result in a noise reduction from the shielding of the jet exhaust by the wing. Although promising, 
this type of configuration has not been utilized very much in the past. One major reason is the unfavorable aerodynamic 
interference it creates at transonic cruise conditions. The presence of a nacelle and pylon disturbs the wing's upper surface 
pressure distribution which leads to excessive interference, badly misplaced shocks, and large flow separations. Figure 12 
shows how lift to drag changes with chord positions for various heights. Figure 11 shows how lift to drag changes with 
nacelle height for various chords positions. The trend appears to be that as the nacelles move further aft, lift to drag 
diminishes. From Figure 12 the best lift to drag occurs between a chord position of -1.00 and -0.80. Looking at Figure 11, 
the best lift to drag position occurs at -0.9 

VI. Structures 

One of the goals of performing a bending 
analysis on the JS-3 wing was to extract wing 
geometry from the bending moment, which was 
then used to determine the structural volume for the 
given loading conditions. Wing weight was then 
determined simply by specifying a material density. 
The wing was analyzed as a cantilever beam with a 
semi-monocoque structure. This structure was 
represented by a front and rear spar, with top and 
bottom skins assumed to have a minimum gauge 
thickness of 0.065 inches and a constant thickness 
to chord ratio of 12% along the span. This assumed 
wing structure accounts for taper in the wing, but 
does not account for wing sweep or twist. The 
forces included in this analysis were bending 
moments caused by an elliptical lift distribution, a 
linearly tapering wing weight model, fuel weight, 
all of which are distributed loads, and the engine, 
which is treated as a point load. 

Preliminary aeroelastic 
analysis was performed on the 
planform design to determine the 
implications it may have on the 
dynamic stability of the structure 
in-flight. Aeroelastic effects 
such as aileron reversal, flutter, 
aero-servoelasticity, and 
dynamic divergence have 
complicated response modes and 
require powerful calculation and 
simulation tools to accurately 
model. 

One of the key concepts 
of aeroelasticity is the location of 
the wing aerodynamic center in 
relation to the elastic axis of the 
wing. Ideally, the wing should 
be designed so the aerodynamic 
center is located at or behind the 
elastic axis of the local chord. 
Any loads applied at the location 

Figure 13: Elastic axis and aerodynamic center locations
�
along span
�

Figure 14: Internal and external materials utilization on JS-3 Sparrow 
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of the elastic axis will result in a pure bending response, limiting the stresses seen on the wing. 
It was important to construct the Sparrow out of light weight, high strength materials, that would perfom well 

throughout the lifespan of the aircraft, and not be environmentally damaging during the manufacture or disposal of the 
material at is end-of-life cycle. Some of the materials featured on The Sparrow are advanced, light weight, high strength 
aluminum alloys and advanced composite construction which include the utilization of carbon, glass, and Kevlar fibers.  

Recently composites have been playing a larger roll in aircraft construction. Their light weight and high tensile 
characteristics make it the ideal aircraft construction material. Newer aircraft such as the Boeing 787 feature a virtually all 
composite construction and seem to be leading an ever increasing trend to all composite construction. The merits of all 
composite construction were investigated for use on the Sparrow, and it was determined that the high cost of manufacture 
and repair, the unknown mechanical properties of composites, and the environmental impact of the disposal of hazardous 
construction materials such as resins and epoxies were too high of a risk to be implemented into the construction of the 
entire aircraft. This led to the investigation of more advanced applications of traditional construction materials. These 
materials include new, high strength, lightweight lithium aluminum and titanium alloys whose mechanical properties are 
well known, they are easily recyclable, and are less expensive to manufacture than composites. Figure 14 shows the internal 
and external implementation of materials on the Sparrow. 

Typically engine pylon mounts our constructed out of titanium or steel alloys in order to withstand the large loads 
generated from the engine. Ti 6-4 titanium alloy was selected as the construction material for the JS-3 pylon due to its 
exceptional tensile strength (150,000 psi), high strength to weight, resistance to fatigue, and ability to maintain structural 
strength and integrity under high temperatures inherit with engine operation. Because the engine pylon structure is 
subjected to large inertial and propulsive loads, it is necessary to design the pylon structure to withstand extreme loading 
cases. In order to ensure the Sparrow pylon design is able to withstand these extreme loads while maintaining structural 
integrity, some preliminary finite element analysis (FEA) was done on the pylon usi ng Abaqus CAE software3 . This 
allowed the magnitudes and locations of maximum stress concentration to be determined. The FEA analysis done on the 
pylon involved applying propulsive, side, and weight forces with sufficient load factors at the proposed engine-pylon 
mounting points.  The design load factors used in this analysis are summarized below in Table 6 from Niu, which cites the 
inertial load factors and conditions for the preliminary sizing of commercial transports. 

Condition Ultimate Load Factors 

Table 6: Load factors used in pylon FEA analysis 

Vertical 6.5 + 1.5 T(C) 

Thrust 3.0 T(max) + 3.0 vertical 

Side ± 3.0 

These load factors were 
applied in the FEA analysis on the 
pylon and determined the ultimate 
stresses the pylon would 
experience. In addition, this 
analysis shows how the pylon 
deforms and what failure criteria 
the structure undergoes. The 
results of this analysis are seen in 
Figure 15 which shows the Von 
Mises stresses (psf) and 
deformation of the structure with 
a deformation scale factor of 
twenty. This yields a maximum 
Von Mises stress in the members 
of 127,000 psi, which is within the yield stress of 150,000 psi for Ti 6-4 titanium alloy. It can also be seen that the main 
failure mode for the structure is the buckling of the stiffner spars and bulkheads in the aft section of the pylon. 

Figure 15: Abaqus FEA analysis (Scale deformation
�
factor = 20.0)
�
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VII. Mass Properties 

The JS-3 component weights breakdown using the previously developed hybrid wing weight model is seen in Figure 16. 
This yielded an empty weight of 78,600 pounds and a takeoff gross weight of 143,800 pounds, which includes a 31,200 
pound fuel weight and a 34,000 pound payload weight. In Figure 16, the red bars indicate the component weight before the 
advanced materials previously mentioned were implemented. Because structural components such as the wing, and 
fuselage comprise a large percentage of the total empty weight, it was importance to implement lightweight alloys to these 
components where their lightweight properties would have the greatest effect in reducing empty weight. The blue bars 
indicate the component weight after advanced materials were implemented.  The introduction of these materials resulted in 
an empty weight reduction from 84,500 pounds to 78,600 pounds, or a 6% reduction in structural weight. 

VIII. Stability and Controls 

It is required by the FAA that the Sparrow be 
stable in all axes, defined in FAR 25.173 and 25.177, and 
this was of primary concern when designing the aircraft's 
control system. Several control surface configurations 
were considered during preliminary design and 
investigated based on the figures of merit determined in 
the beginning of the design process. The V-tail was 
selected as the configuration best suited for this aircraft. In 
addition to reducing total tail area, resulting in reduced 
drag and weight, it removes the horizontal tail from the 
path of the engine exhaust which would cause increased 
scrub drag and possibly fatigue the material or reduce 
control surface effectiveness. 

The vortex lattice method AVL4, created by Mark 
Drela and Harold Youngren, was used to calculate the 
static stability of the aircraft for several tail sizes to 
produce the tail sizing plot shown in Figure 17 by varying 
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Figure 16: JS-3 component weight breakdown 

Figure 17: Tail Sizing Carpet Plot 
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Figure 18: Cruise Trim Diagram, 0.78 Mach, 35,000 ft. 

doubling time has no physical significance, as a result the time to halve amplitude is presented instead. 

Table 7: Dynamic Stability and Flying Qualities 

tail area and dihedral angle at constant aspect and taper 
ratios. Desired static stability values for this class of 
aircraft included a longitudinal static margin of 10% and 
a minimum yawing moment coefficient, Cnβ, of at least 
0.001 per degree as recommended by Roskam5 . This 
tail sizing approach resulted in a tail area of 550 ft2 with 
a dihedral angle of 57 degrees. 
In the trim diagram in Figure 18 it can be seen that the 
cruise Cl of 0.58 is achieved at an angle of attack of 3 
degrees with -2 degrees of elevator deflection assuming 
-3 degrees of tail incidence. 

The dynamic stability characteristics of The 
Sparrow were calculated using AVL which provides the 
frequency and damping ratio of all dynamic modes of 
the aircraft. These values along with the associated 
flying qualities as defined by MIL-F-8785C are 
presented in Table 7. It should be noted the the level 1 
requirement for the spiral mode is a doubling time of 
greater than 20 seconds which is an unstable condition. 
The Sparrow is stable in all modes 

Phase ωn (rad/sec) Ratio ξ Constant τ (s) Amplitude t1/2 (s) Requirement for Level 1 Quality 
Mode Flight Natural Frequency Damping Time Time to Half MIL-F 8785C Flying 

Phugoid Cruise 0.04
�

Approach 0.09
�

Short Cruise 11.4
�
Period
� Approach 3.01 

Dutch Cruise 3.65
�
Roll
� Approach 2.24 

Roll Cruise --

Approach --

Spiral Cruise --

Approach --

and therefore
�

0.07 

0.04 

0.56 

0.53 

0.81 

0.47 

0.02 

0.09 

27.77 

15.97 

ξ > 0.04	� Level 1 

Level 1 

0.30 < ξ < 2.0	� Level 1 

0.35 < ξ < 1.2 Level 1 

ξ > 0.08,  ωn > 0.40 Level 1 

ξ > 0.08, ωn > 1.0 Level 1 

τ < 1.4 Level 1 

Level 1 

t2 > 20s Level 1 

Level 1 

A simulator model of The Sparrow, shown in Figure 19, was 
constructed using X-Plane6 to further investigate the characteristics of 
the aircraft as well as validate the design and analysis that had been 
performed. X-Plane estimates the aerodynamic forces on the aircraft 
using blade element theory based on the geometry of the aircraft 
along with several corrections for compressibility, 3-D effects, etc. 
This results in a model which very closely represents the performance 
of the aircraft while also being sensitive to small changes in geometry 
or configuration. 

This simulator model was flown by several engineers as well 
as pilots, both private and commercial, with no reported deficiencies 
in either the stability or controllability of the aircraft. This serves as a 
validation of both the design as well as the stability and aerodynamic 
analyses that were performed. 
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Figure 19:  X-Plane Flight Simulator Model
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IX. Conclusion 

The compliance of The Sparrow with the main RFP requirements is shown in Table 8. 

Metric Requirement JS – 2 Status 

< 41 lbs/seat 40 lbs/seat 

- 20 db - 21 db 

> 8% decrease 8.5% decrease 

Table 8: RFP Compliance 

Fuel Burn √ 

Noise vs. Chapter 4 √ 

Operating Cost √ 

Flyaway Cost Maintain Decreased √ 

Passenger Comfort Maintain Maintained √ 

Range (Dual Class) 2800 nmi 2800 nmi √ 

Cruise Speed > 0.78 Mach > 0.8 Capable √ 

Takeoff Field Length < 7000 ft BFL < 7000 ft √ 

The Sparrow meets or exceeds all of the requirements, and is an optimal solution to this RFP. The Sparrow's unique 
configuration and technological improvements over current 150 passenger class airliners are the reasons it will perform well 
in this competitive industry. The Sparrow features high-bypass geared turbofan engines which provide improvements in 
both fuel efficiency and noise reduction. Advanced structural and aerodynamic design and analysis coupled with a noise 
shielding configuration result in a next generation commercial aircraft which is capable of operating within current 
infrastructure. The Jackson West Sparrow JS-3 is, indubitably, the aircraft of tomorrow. 
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