
Support for XML Markup of Image-based Electronic Editions

Alex Dekhtyar , Ionut E. Iacob , Jerzy W. Jaromczyk , Kevin Kiernan , Neil Moore , Dorothy Carr
Porter

Abstract. Image-based electronic editions enable
researchers to view and study in an electronic environ­
ment historical manuscript images intricately linked to
edition, transcript, glossary and apparatus files. Building
image-based electronic editions poses a two-fold chal­
lenge. For humanities scholars, it is important to be able
to use image and text to successfully encode the desired
features of the manuscripts. Computer Scientists must
find mechanisms for representing markup in its associ­
ation both with the images, text and other auxiliary files
and for making the representation available for efficient
querying. This paper addresses the architecture of one
such solution, that uses efficient data structures to store
image-based encodings in main memory and on disk.

1 Introduction

Image-Based Electronic Editions of historic documents
and document collections are beginning to emerge as im­
portant new resources for humanities scholars and the
general public. These editions can provide at the same
time any number of researchers simultaneous first-hand
access to digital images of unique and fragile material
that is not otherwise widely available for study.

The Image-Based Electronic Edition (IBEE) is dif­
ferent from most literary and historical humanities projects

undertaken to date. Traditionally, such projects either
present textual notes without direct access to the physical
object (or objects) on which the text is [1], or offer fac­
similes of primary resource material without direct ref­
erence to the text [2]. Those projects that have presented
both text and image have not used markup to associate
the text with the manuscript page [4], or they provide
markup that does not serve as a guide for the manuscript
page [12]. Our concept of the Image-based Electronic
Edition goes beyond simply viewing the image along­
side text, and instead strives to integrate image, text, and
markup.

The problems studied in this paper arose in our work
on the ARCHway Project, a collaboration of humanities
scholars and computer scientists with the aim to solve the
technological problems that arise from the highly com­
plex encoding required by the seamless integration of
images and text. ARCHway has worked to develop an
Edition Production Technology (EPT) to facilitate the
creation and maintenance of IBEEs. Our discussion of
IBEEs in this paper is based on extensive practical expe­
rience building editions from Old English manuscripts,
damaged by fire in the eighteenth century and now in the
British Library [17,3].

Electronic Beowulf (eBeo) (first released in 1999,
version 2.0 released in 2004)[23], is the prototype for one
concept of the image-based electronic edition. eBeo pro­
vides full-color, high-resolution images of the entire Be­
owulf Manuscript (as well as its composite codex British
Library Cotton Vitellius A. xv), including images taken
under ultraviolet and fiber-optic light. In addition, eBeo
includes a transcription and edition of the poetic text,
a complete glossary, facilities for searching through the
SGML-encoded source files, and links between text and
image on the folio level. The original SGML (now XML)

Editor

PresentationEditing
ToolsTools

Middlware

End User

Data Mgmt.

Fig. 1. The ARCHway project architecture for Image-Based Electronic
Editions.

encoding is extensive and includes markup for textual di­
visions as well as the interaction between the text and the
page: scribal corrections, damage that renders text dif­
ficult or impossible to read, paper frames that cover up
page edges, and other physical aspects of the manuscript.

An image-based electronic edition (IBEE), therefore,
is not simply an electronic version of a facing-page fac­
simile with, for example, an edited text in one frame and
a facsimile image in another. The creation of an IBEE,
then, involves more than simply placing a documentary
transcription (for example, an XML file translated with
XSLT to represent the manuscript page) side-by-side with
an image of the folio. In [24], we define the IBEE as

a complete collection of all manuscript images
intricately linked to edition, transcript, glossary,
and apparatus files to allow users to view, read,
compare, study, and search in an electronic envi­
ronment that maintains and encourages analysis
involving both the edited text and the actual im­
ages that establish that particular edition ... edi­
torial interventions become completely transpar­
ent by the availability of high-resolution images
alongside corresponding textual notes, explana­
tory notes, and bibliographical materials.

eBeo is a good first step in the development of fully
interactive editions with comprehensive links between
image and text. However, in order to develop IBEEs fur­
ther we must address open problems critical to their suc­
cess.

Figure 1 depicts the ARCHway approach to IBEEs.
The software architecture consists of three layers: appli­
cation, middleware, and data management. The top layer
divides into two parts: editorial tools for developing the
IBEE and presentation tools for displaying the prepared
electronic edition. Thus, we conceptually represent the
as a “Y” shape, with the left “arm” forming the Edition
Production Technology (EPT), and the right “arm” – the
IBEE deployment software. At the intersection of the Y
is the middleware, which integrates the different editorial
and presentation tools and provides a level of abstraction
between them and the data management layer. The lat­
ter layer contains the facilities for storage, maintenance
and retrieval of the accumulated information. The Y also
helps distinguish between the work of computer scien­
tists and software developers in the leg of the “Y” and
the work of the humanities scholars (editors), which in­
cludes the design of the editorial tools and the ultimate
use of the IBEE. Both “arms” of the “Y” share the bot­
tom layers of the software, while the applications resid­
ing on top of these layers are customized to perform spe­
cific editorial or presentation tasks.

This organization of IBEEs poses a number of unique
technical challenges. Among them, the problem of proper
management of continually accumulating data lies at the
heart of IBEE construction. As outlined above, the infor­
mation managed by the IBEE software consists of three
types of data: (a) images, (b) transcript and (c) edition:
the integrated XML encoding of image and transcript. To
create an IBEE, the editor studies the images and intro­
duces appropriate XML markup in the transcript, trans­
forming it in the process into an image-based edition.
Because the vast majority of all markup has its origin
in the images of the primary source, the manuscript, the
resulting XML encoding must somehow incorporate the
mapping between different regions of the image files and
XML encoding of the text.

Adding complexity to the problem of image-based
markup support is the fact that the collection of XML
tags used to encode document features forms multiple
XML hierarchies [30,9,10,13] and the encoding itself
contains conflicting markup that cannot be easily repre­
sented in a single XML document. Conflicting markup
occurs, for example, when the editor encodes both the fo­
lio lines of the manuscript and the verse lines and the sen­
tences of the edition. Many sentences begin and end in
the middle of a manuscript line, a situation that produces
malformed XML.[30]. Our solution is to encode multiple
XML hierarchies concurrently, using special processing
to output well-formed XML documents combining ele­
ments from one or more hierarchy.

In this paper we begin to address the problem of sup­
port for image-based markup. We propose data structures

and algorithms that allow us to store image-based encod­
ing in relation to both text and images. In particular, we
address the issues of storage and maintenance of such
encoding in both main memory and in secondary stor­
age. The solutions we propose include the use of seg­
ment trees [5,25] in main memory and of a modification
of R-trees [16], called folio R-trees in this paper, in sec­
ondary storage. These solutions are complementary: seg­
ment trees reside in the ARCHway middle layer, while
the folio-R trees are used in combination with a num­
ber of other index structures to preserve the information
in non-volatile storage at the data management layer. To
maintain efficiency of XML processing in main memory,
segment trees preserve the complete mapping between
images, text and concurrent (multihierarchical) markup;
they are the first data structure to support such a mapping
consistently throughout the lifecycle of an image-based
electronic edition. At the same time, we design folio R-
trees with a view of minimal changes to the structure of
an XML database management system, and, thus, encode
only the mapping between the image and the text. To de­
liver information about related markup, we rely on the
remainder of the database storage containing the XML
encoding of the text. Because they are optimized for sec­
ondary storage, folio R-trees easily support documents
too large to fit into memory. Segment trees for such doc­
uments, on the other hand, must be constructed and pro­
cessed in chunks which fit in main memory—say, 20
folios at a time. We do not deal with such extensions
to segment trees in this paper, as the text and markup
of the documents which concern us rarely exceed a few
megabytes in size.

The rest of the paper is organized as follows. In Sec­
tion 2 we describe in more detail the intricacies of image-
based electronic editions and the problems associated with
the management of concurrent image-based markup. Sec­
tion 3 discusses the notion of concurrent markup and
how it affects the problem of management of image-based
document-centric XML. Section 4 outlines the expecta­
tions from data structures employed to manage image-
based markup, and Sections 5 and 6, respectively, dis­
cuss the use of segment trees and folio R-trees for this
purpose.

2 Issues in Building Image-Based Electronic
Editions

The basis for all editions of medieval texts, whether print
or electronic, are the manuscripts that preserve them. Al­
though a print edition might include a few example fac­
simile images or a facsimile might include transcriptions,
it is not common practice to include a complete facsimile

and a complete edition in a single work. Such a book—
perhaps also including extensive notes, appendices, ref­
erences, and indices—would be unwieldy, complex, dif­
ficult to use, and extremely expensive. The IBEE not
only brings together many different types of files (image,
text, glossary and other apparatus), but also integrates
them with one another, forming a complete multimedia
edition. Such integration offers substantial benefits for
the edition’s end users—for example, an apparatus that
is easily available and interactive. An IBEE might have
an extensive search facility that can hunt for words or
topics across multiple areas of text and image. Serving
the same basic function as appendices in a print edition,
the electronic search enables the user to take advantage
of textual and image markup.

The other main content of IBEEs, in addition to
manuscript images, is text. As with traditional print edi­
tions, the editor must first make a transcription of the
text. However, creating a transcript is not always as sim­
ple as copying letters, words, and sentences line-by-line
from a manuscript page. Many manuscripts, such as those
burned in the Cotton Library fire[26] have sustained dam­
age that renders them partially or wholly illegible. UV
and fiber-optic backlighting often enhance portions of
damaged text, but there are instances where sections of
the manuscript are so damaged that there is no appar­
ent way to regain the lost writing. It is important for the
editor in this case to be able to place encoding in the tran­
scription that indicates exactly where the damaged areas
are in the manuscript image, and how much the damage
interferes with the textual readings. A user of the fin­
ished edition will want to know what text in the edition
comes directly from the manuscript, what text has been
slightly damaged, and what text has been damaged to the
point of illegibility and thus either copied from another
manuscript or conjecturally restored by the editor.

For the integration of IBEEs to work, it is vital to
create a mapping between folio images and the textual
markup based on those images. We approach the image­
to-text linking in two ways: 1) transcription markup must
include information about the condition and appearance
of the manuscript and 2) the edition must be able to use
this information to connect specific areas of the folio
with the textual transcription. While the focus of this pa­
per is the management of the markup, it will be helpful
to introduce some of the concepts that make our markup
so complex.

The dominating issue contributing to the complex­
ity of IBEE markup is conflicting markup. Conflicting
markup occurs when textual divisions (e.g., letter, word,
poetic line), manuscript organization (e.g., folio, folio
line), or manuscript features (e.g., damage, text visibil­
ity) overlap one another. As the editor encodes these fea­

Fig. 2. hæfde

tures, the resulting XML becomes inevitably not well-
formed. A simple example would be, as is common in
Old English
manuscripts, when a word like scyldingas below is di­
vided across a manuscript line:

<line> ... glæde<word>scyl</line>

<line>dingas</word> ... </line>

Another example is when damage affects portions of
one, or several words in a line:

<word>�a</word> <word>se</word>
<word> wis<dmg>dom</word>
<word>�</dmg>a</word>

Both of these instances disobey the most basic rule
of well-formed (single-hierarchy) XML: an element can­
not end before another element that started after it. How­
ever, it is precisely this “ill-formed” markup that gives
us the ability to fully describe the manuscript folio in
the textual transcription. When features overlap in the
manuscript, the elements describing them will overlap
in the markup. For an image-based work to turly serve
as a cultural road map for modern readers, the editor
must encode image and text in such a way as to bring
the manuscript to the forefront. The editor must connect
all significant features in the transcript to the folio page
on which it resides.

An editor of an ancient text might want to describe
individual letters. Although letters in a printed text never
overlap, letters often occur in ligatures and other forms
of overlapping in manuscripts.

In Figure 2, the three center characters overlap one
another in the word hæfde. The tongue of the æ, coming
out of the high e-head, joins the f to form its stem. The
ascender of the d then curves around over the f ; while
it is not connected to the f, the ascender is in its vertical
space. Textually, this is not a complicated example. We
have one word, consisting of five letters, and two of these
letters form a ligature.

An editor using our tagger tool to describe the pa­
leographical features of these letters would first draw
bounding boxes around the individual characters. In do­
ing so, he would inevitably include portions of the sur­
rounding words in these boxes. The boxes overlap freely;

there is no guiding method to their placement, other than
the appearance. In Figure 2 the box surrounding d also
encloses portions of the bars of f. This is quite different
from selecting a letter in a text file, where characters are
atomic and it is impossible in a text file to select only part
of a letter. Our technical approach recognizes that over­
lapping within the manuscript image is inevitable, and
takes that into account when mapping between text and
image.

Text and image mapping is central to the creation and
final deployment of the IBEE. In theory it is possible to
map between text and image by simply placing the co­
ordinates of a bounding box within attribute values as in
the following example from Figure 1 above:
<word x1="373" y1="224" x2="424" y2="307">

hæfde

</word>

Although this approach stores coordinate values, it
does not provide a mechanism for efficient lookup. The
data structures presented later in this paper allow for faster
access to information in the image-text mapping.

3 Concurrent XML Markup

As we have seen, conflicting markup, presents one of
the biggest challenges for development of a comprehen­
sive solution for the problem of management of image-
based, document-centric, XML markup. This presents
an outstanding challenge for a new framework, because
traditional XML processing techniques are tailored to­
wards data-centric XML data and are typically applied
to individual, well-formed XML documents, assuming
no markup conflicts.

3.1 Representing multiple hierarchies in textual form

Although for efficient processing we store markup in in­
ternal or external data structures, it often becomes neces­
sary to convert the markup into some kind of textual rep­
resentation, such as XML [7]. Standard XML, because it
describes a strictly hierarchical structure, is not sufficient
for representing multi-hierarchical markup. The text en­
coding community has recognized this problem, and the
latest guidelings of the Text Encoding Initiative (TEI P4)
suggest several approaches to dealing with conflicting
markup [30]. We can encode multiple hierarchies in a
single XML document by using special notation such
as fragmentation or milestone elements, as suggested by
TEI; we can extend the syntax of XML to create what is
really pseudo-XML, or we can store each hierarchy in a
separate XML file.

The milestone approach simulates multiple hierar­
chies with milestone elements, empty elements that mark
the beginning and/or end of a region of text:

W<rpr>i<dmg-st/>sd</rpr>o<dmg-end/>m

In the milestone approach to multihierarchical XML, some
of the markup ranges are represented by milestone ele­
ments at the beginning and end of the marked-up region
of text, rather than the normal opening and closing tags.
In some cases, one hierarchy is encoded as normal XML,
with milestones for the other hierarchies; an alternative
approach is to use milestones for all the markup.

Fragmentation is another way to incorporate multi­
ple hierarchies into a single XML file. In this approach,
whenever the scopes of two elements overlap, one of the
elements is fragmented, broken into two (or more) sub­
parts, each with its own start and end tags:

W<rpr>i<dmg link="1">sd</dmg></rpr>

<dmg link="1">o</dmg>m

The fragments are combined using special link attributes.
Link attributes can, as in the example above, simply pro­
vide unique identification for all fragments, or be used to
create a double-linked list of all fragments.

Yet another approach extends the syntax of XML to
allow overlapping elements [13]. This recourse is pseudo-
XML. Consider, for example, the following fragment:

W<rpr>i<dmg>sd</rpr>o</dmg>m

Here, the content Wisdom contains two overlapping tags,
<rpr> and <dmg> (this example is further presented in
Figure 5).

Pseudo-XML has the disadvantage that it cannot be
parsed with standard XML parsers. However, if we can
deduce from the name of an element the hierarchies to
which it belongs, we can use simple text-processing tools
to extract the markup belonging to a single hierarchy.
This insight underlies the “Just-In-Time-Trees” technique
described in [13]. In section 5.6, we show that pseudo-
XML can easily be parsed into a range-based represen­
tation.

Another way to approach concurrent hierarchies is to
store them concurrently, i.e., maintain a single XML file
for each markup hierarchy used in the encoding. This ap­
proach allows for the use of XML parsers to parse indi­
vidual hierarchies, but management of the overall markup
has to be facilitated by additional software. In [9,10] we
have described the maintenance apporach to concurrent
XML based on this idea. There, we have developed ef­
ficient algorithms for converting between XML docu­
ments stored in such distributed way and XML docu­
ments that employ fragmentation to store markup from
all hierarchies in the same file. And in [19] we described
the parser for the proposed distributed XML documents.

Pseudo-XML, as well as the straightforward mile­
stone approach, assumes that an element cannot overlap
with another element of the same name. If such an over­
lap occurred, the closing tag associated with the first ele­
ment could be misinterpreted as belonging to the second.
We can eliminate this ambiguity by assigning to each
start tag a unique ID, and by listing this ID in both the
start tag and corresponding end tag (perhaps as an at­
tribute). See [11] for one possible approach to using start
IDs and end IDs to connect milestone elements. How­
ever, if the document is required to conform to a set of
DTDs, this kind of overlap can be disallowed, as the two
elements are defined in the same DTD and are thus re­
quired to be well-formed with respect to one another.

The database community has recently recognized the
importance and complexity of the issues of management
of markup from concurrent hierarchies. In [20] Jagadish
et al. describe colorful XML – a mechanism to incorpo­
rate markup from multiple hierarchies in a single struc­
ture for data-centric XML encodings. Their work reflects
understainding of the same problems encountered by the
humanities scholars: there are times and situations when
the XML markup of the underlying data becomes too
complex for a single hierarchy to store it correctly and
efficiently, and for such situations, new data structures,
processing algorithms and software have to be devel­
oped.

4	 Data Structures to Support IBEEs: Overview

From the data management perspective the uniqueness
of Image-based Electronic editions lies in the way im­
ages guide the creation of the markup. In this section we
describe the issues we must resolve.

Preservation of the text-to-image and XML-to-image
mappings is facilitated by a number of the editorial tools
that reside in the application layer of the EPT (see Figure
1). Among these tools are a document-centric XML edi­
tor and image management tools. To be able to keep track
of the mapping, the image management tool provides the
editor with the functionality to highlight a region on the
image. This information is then shared with the XML
editor for the explicit purpose of associating the image
coordinates with the tagging task underway.

Thus, our goal is to provide efficient data manage­
ment support for the following tasks:

–	 storage of document-centric XML based on an exist­
ing (and potentially large) text file;

–	 insertion of image-based XML encoding;
–	 preservation of the image-to-XML and image-to-text

mapping established in the editorial tools;

–	 efficient retrieval of information related to the text/XML­
to-image mapping.

To address these issues, we consider two possible
scenarios. In the first scenario, all data storage and data
management occurs in main memory, while in the sec­
ond, all information resides in secondary storage. Both
scenarios are viable and, in fact, complementary. Main-
memory processing is bound to be more efficient, but has
certain limitations on the size of the objects. At the same
time, even when the XML constructed for an electronic
edition is large enough that it precludes storing all the
data in main memory at the same time, in-memory pro­
cessing can be used on buffered fragments. Secondary
storage processing ensures the scalability of the proposed
approach and alleviates the problem of information volatil­
ity.

Our approaches to storing data in main memory and
on disk differ somewhat. For main-memory processing
(Section 5), we choose to use the well-known in com­
putational geometry segment tree [25,5] data structure,
which will, in essence, replace the traditional DOM tree
in storing XML, with the additional benefit of linking
XML and text to the document images. The segment tree
insert and delete algorithms proposed in the next section
demonstrate how this structure can be efficiently main­
tained. We describe the stab algorithm to illustrate how
the proposed way of preserving the mapping efficiently
answers range queries: queries that find text/XML inside
a given region on an image, and find the region(s) on im­
ages that contain specific text/markup.

In contrast to the all-in-one approach of segment trees
to managing image-based XML, our secondary storage
data structures (Section 6) separate the storage of XML
from the index structure designed specifically to preserve
the text-to-image mapping. At present time, representa­
tion of XML in relational databases is an area or active
research[32,28,15,6]. In this paper, we factor out the
problem of representing XML in a relational database,
by taking the “black box” approach: we assume that XML
is stored in a manner that allows us to process efficiently
the following queries:

–	 Given a range in the text content (PCDATA), find all

XML elements whose content is a subset, superset or

overlaps the range;

–	 Given an XML element node, find its full content.

Adopting this assumption allows us to shift our at­
tention to the problem of preserving the text/XML-to­
image mapping in the secondary storage database. We
address the latter problem by introducing a data structure
called folio R-tree, an R-tree derivative, tailored for the
specifics of the manuscript images. The details of both
approaches are shown in the next two sections.

5 Using Segment Trees for the XML Markup
Process

A collection of data structures supporting successful markup
for the class of manuscripts that we are considering must
satisfy several requirements:

–	 it must be able to represent multi hierarchical XML

that corresponds to a set of document type definitions

selected for the given edition.

–	 it must lend itself to effective representation of the

geometry of manuscripts and its intuitive implemen­
tation in the user interface

–	 it must be dynamic to allow for additions, deletions

and modifications of the markup

–	 it must be efficient to provide quick response time
–	 it must support search queries
–	 it must support efficient conversion to XML, to allow

the use of standard XML processing utilities

The image-based approach to the tagging process sug­
gests that it is advantageous to use geometric structures
[27,21,22]. The choice of structures depends on the par­
ticular needs of the editorial process. Specifically, there
are manuscript features such as the shape and spatial dis­
tortion of the page that are best viewed in 3-dimensions.
Damage and restoration, as well as marginalia, are best
viewed as 2-dimensional features. Finally, we can view
the text and its linear structure in 1-dimensional space.
In this section we focus on this linear view of the text
and discuss how to incorporate 2-dimensional features.
In the rest of this section we describe and demonstrate
how we adopt and adapt the segment tree [5] structure to
this end.

5.1 The tagging process

In order to lay the groundwork for formal presentation,
we need to make a number of assumptions about the
structure of the document and the process of adding image-
based markup to the electronic edition (called “tagging”).
We consider markup that applies primarily to the text of
the manuscript. For our purposes it is presented as lines
of letters. Each line is marked by a curve below the line,
called a line trace. Because lines of text are often not ex­
actly horizontal (whether because of damage, page lay­
out, or scribal inconsistency), these traces need not be
straight or parallel.

Although our coordinate system is based on lines of
text, not all document structure easily conforms to the
layout of the text. These aspects of the manuscript re­
quire two-dimensional information for precise represen­
tation. It is possible, however, to partially encode these

Fig. 3. Fragment of a folio image with line traces

features within our textual coordinate system. For exam­
ple, text not included in the main body of the manuscript,
such as marginal notes, can be represented by markup
located at an appropriate point in the text, or at the be­
ginning or end of the page if no appropriate location ex­
ists. The content of the note could then be encoded as
an attribute of that markup. Damage to multiple lines
of text can be represented with a number of markup el­
ements, one per affected fragment of line. Large capi­
tal letters can be dealt with by adjusting the line traces
so that the letter is contained in only one line of text.
Finally, paleographical information, including complete
two-dimensional coordinates if necessary, can be stored
in attributes of the character representing the letter.

The tracer automatically divides each line into a num­
ber of elementary segments. The number of segments de­
pends on the manuscript. For example, if we wish our co­
ordinate system to remain independent of the resolutions
and scales of individual images, we may choose to have
elementary segments 1/72 of an inch in width. In other
cases it may be more natural to make each elementary
segment a certain number of pixels wide. At other times,
it may simplify matters to have each line, regardless of its
width, contain the same number of elementary segments.
With elementary segments established, the tracer identi­
fies the endpoint of each line with the beginning point of
the next. This establishes a one-dimensional coordinate
system on the manuscript page; if �� is the number of
elementary segments making up line �, the first line of
the page extends from position 0 to position � , the sec­�

ond from � to � � � , and so forth. If we furthermore � � �

identify the endpoint of the last line of each page with
the beginning point of the first line of the next page, we
have a single one-dimensional coordinate system capa­
ble of representing textual positions through the entire
document. Because lines are connected according to the
normal flow of text, we are able use a single interval to
represent a textual feature which wraps across multiple
lines or even pages.

We assume that the markup to be applied conforms
to a set of document type definitions (DTDs) [7] or XML

schemas [14]. In general, the sets of elements described
by each DTD or schema will be disjoint except for the
document root element and #PCDATA content, which
are present in each. Elements of a document which are
specified in the same DTD or schema must represent a
well-formed XML hierarchy. Furthermore, for interop­
erability with XML, we require that letters be atomic:
markup elements must contain whole letters and never
a part of a letter. Similarly, letters within the same line
must be separable: they must not overlap horizontally
with one another. Although sub-letter markup (such as
describing a part of a letter) and ligatures (where letters
overlap) appear to violate these conditions, we can rep­
resent them using attributes. Finally, if two markup el­
ements cover precisely the same interval, we leave the
order of nesting undefined. If an element must be con­
tained within another, and not the other way around, the
inner element should cover a smaller interval. These con­
ditions allow us to unambiguously represent the docu­
ment as a collection of XML documents, each with the
same content, or as a single multihierarchical XML-like
document. We discuss in section 5.5 methods for produc­
ing such XML representations.

Given these constraints on the structure of the doc­
ument, we can choose our data structures for the repre­
sentation of markup and content. If we have established
a one-dimensional order on the manuscript, as described
above, each letter and each markup element is repre­
sented as an interval in that coordinate system, possi­
bly spanning lines or even folios. One data structure that
efficiently represents a dynamic collection of intervals
is the segment tree [5], which we describe in section
5.3. We can use the segment tree to perform some types
of queries directly; other queries can be performed by
first constructing a document model (for example, using
the document object model [8]) containing the relevant
markup [13], and using standard document-processing
tools. In addition, the ability to define the size of elemen­
tary segments based on the manuscript images makes the
segment tree structure more flexible and better suited for
the image-based markup process than structures whose
region boundaries are determined by the markup data.

In our approach, the tagging process takes place in
a number of steps. First, images are combined to form
manuscript pages; for example, one page may consist of
the blended overlay of a daylight image and an ultraviolet-
enhanced image of the same leaf. These pages are ar­
ranged in textual order, and each page has its lines marked
with traces. Once these steps have been performed, the
editor uses a tagger tool to select ranges of the image and
describe them as content (letters) or as markup elements,
assigning attributes as appropriate.

5.2 Representing multiple hierarchies in textual form

Once a manuscript has been tagged and the segment tree
built, it often becomes necessary to convert the markup
to some kind of textual representation, such as XML
[14], to facilitate document interchange. Normal XML,
because it describes a strictly hierarchical structure, is
not sufficient for representing multi-hierarchical markup.
We can encode the hierarchies using special XML nota­
tion such as milestone elements; or we can extend the
syntax of XML to create what we call pseudo-XML.

Milestone elements, described in [29], are empty el­
ements marking the beginning and/or end of a region of
text. In the milestone-based approach to multihierarchi­
cal XML, much of the markup is indicated by milestone
elements at the beginning and end of the marked-up re­
gion of text. In some cases, one hierarchy is encoded as
normal XML, with milestones for the other hierarchies;
in others, milestones are used for all the markup.

Another approach, described in [13], is to extend the
syntax of XML to allow overlapping elements. We call
this representation pseudo-XML. An example of pseudo-
XML along with its XML segment tree representation is
presented later, in Figure 5.

Pseudo-XML has the disadvantage that it cannot be
parsed with standard XML parsers. However, if we can
deduce from the name of an element the hierarchies to
which it belongs, we can use text-processing tools to ex­
tract a single hierarchy. This insight underlies the “Just­
In-Time-Trees” technique described in [13]. In section
5.6, we show that pseudo-XML can easily be parsed into
a range-based representation.

Pseudo-XML, as well as the straightforward mile­
stone approach, assumes that an element cannot overlap
with another element of the same name. If such an over­
lap occurred, the closing tag associated with the first el­
ement could be misinterpreted as belonging to the sec­
ond. We can eliminate this ambiguity by assigning to
each start tag a unique ID, and by listing this ID in both
the start tag and corresponding end tag (perhaps as an at­
tribute). However, if the document is required to conform
to a set of DTDs, this kind of overlap can be disallowed,
as the two elements are defined in the same DTD and
are thus required to be well-formed with respect to one
another.

5.3 Segment trees for XML Markup

Our XML-segment tree data structure is based on seg­
ment trees. The segment tree was introduced in [5], [25]
as a geometric dynamic data structure to represent and
to perform a number of update (e.g., insert and delete)
and query operations on a set of segments. It is assumed

Wi<dmg>sdo</dmg>m

[0,63]

[0,31]	 [32,63]

[0,15] [16,31] [32,47] [48,63]

dmg

[8,15] [16,23] [24,31] [32,39] [40,47] [48,55] [56,63]

"W" "W" "m"

[24,27] [28,31] [32,35] [36,39][36,39] [40,43] [44,47]
"i" "s" "d" "o"

[30,31] [42,43]
dmg, "s" "o"

Fig. 4. Segment tree

that the coordinates of all the endpoints for the potential
segments, but not the segments themselves, are known
in advance. This corresponds in our case to marking en­
tities along a given line, where each point on the line
has its coordinate measured in some unit (pixels, points,
millimeters, etc.), and selecting in the marking process
ranges that bracket those entities.

The underlying structure for the segment tree is a
balanced binary tree with leaves representing atomic (or
smallest, indivisible) segments. Each node represents the
union of the atomic segments rooted in this nodes. For
example, the root of the tree represents all the atomic
segments. Intervals that belong to the collection repre­
sented in the segment tree are associated with nodes of
the tree and satisfy the following property: a node � stores
� if the union of its atomic segments is contained in � but
the union of the atomic segments associated with the par­
ent of � do not. Thanks to this property each segment is
associated with at most ����� �� nodes because it needs
to be represented at most twice on any level in the tree.

In our adaptation, each node � of the segment tree
contains:

–	 A pair �� min� � � max indicating the lower and upper
bounds of the interval covered by � .

–	 A list �� elements of those elements and characters
stored in � (as described above). We need to traverse
the list in sorted order; because of this, �� elements
may be better represented as some form of binary
search tree.

–	 Pointers �� left and �� right to the left and right sub-
trees, respectively, of � . If a subtree has not yet been
constructed, or if � represents an elementary seg­
ment, one or both of these pointers may be empty
(which we represent by the symbol �).

For our application, each atomic segment’s endpoints
correspond to two consecutive coordinates in the selected

positioning system for horizontal lines in an image (in
some cases we will use points as the atomic segments,
as well). Segments correspond to the tagged ranges and
they are named with the marking tags. A sample seg­
ment tree with atomic segments ��� ��� � � � � ���� ��� is
depicted in Figure 4. To save space, only nodes that are
marked or whose descendants are associated with marked
ranges, exist in the tree. New nodes are added to the tree
through insert operation if needed. One such node,
which corresponds to a potential union of atomic seg­
ments but is not actually present in the tree, is depicted
with dashed lines in Figure 4. This figure describes a set
of intervals corresponding to the XML fragment

“Wi<dmg>sdo</dmg>m”.

Each letter and each markup element is represented by a
segment, which typically spans a number of atomic seg­
ments. From the tree we can readily find the span of each
range. For example, the <dmg> tag covers a range from
�� to ��.

Insertion of a new interval � into a segment tree is
a simple operation of marking some nodes along the in­
sertion path in the tree. Basically, we want to mark the
smallest number of nodes whose union of the correspond­
ing atomic segments equals �. This is done by placing the
beginning and ending points of � among the nodes of the
segment tree in a fashion similar to the binary search, and
marking the topmost nodes that lie between them. In Fig­
ure 5, we show the segment tree after inserting a range
for <rpr> which spans the interval from �� to ��; the
affected nodes are highlighted. This could be represented
in pseudo-XML as

“W<rpr>i<dmg>sd</rpr>o</dmg>m”.

Note that elements located in the same node of the seg­
ment tree are listed with the longer interval first. As dis­
cussed earlier, this is needed for the correctness of the
traversal procedures to generate pseudo-XML documents
from the segment tree.

5.4 Operations on segment trees

Here we present two algorithms for manipulating seg­
ment trees. insert��� stores a new markup element � in
a segment tree; stab��� returns a list of all the stored in­
tervals which contain the point �. In the following pseu­
docode, � refers to the root of the segment tree. Given a
segment tree node �, we write �� interval for the interval
��� ���� �� ����, and ��������� �� for the midpoint of
that interval. Similarly, we write ��interval for the inter­
val ������� �� ���� of a markup element �.

The insert operation (Figure 6) first tests whether the
interval of the element � will fit into the segment tree

W<rpr>i<dmg>sd</rpr>o</dmg>m

[0,15]

[8,15]

"W"

[16,23]

"W"

[24,27]
"i"

[30,31]
dmg, "s"

[28,31]

[48,55]

"m"

[48,63]

[44,47]
"o"

[36,39][36,39]
"d"

[32,35]
"s"

[42,43]
"o"

[0,31]

[16,31]

[0,63]

[32,63]

[32,47]

dmg

[40,47]

[40,43]

[40,41]
rpr

[32,39]

rpr

[24,31]

rpr

Fig. 5. Modified segment tree

1 insert�Element ��

2 if ��interval � ��interval
3 insert-node��� ��

4 else report an error

5 insert-node�Node ��Element ��

6 if ��interval � ��interval
7 ��elements � ��elements � � ��
8 else
9 if ����� � �����������

10 if ��left � �
11 ��left � new Node�������������������

12 insert-node���left� ��

13 if ����� � �����������

14 if ��right � �
15 ��right � new Node������������ � � � ������

16 insert-node���right� ��

Fig. 6. Inserting a markup element into a segment tree

(line 2). If it does not, we report an error (line 4), al­
though we will see later how to expand the tree so that
it can store �. If � does fit, insert calls the recursive pro­
cedure insert-node on the root of the segment tree (line
3).

The insert-node procedure takes as arguments a node
� and the element � to be stored in the tree. If �’s inter­
val is contained in �’s interval, � is to be stored in �, and
is thus inserted into the elements list of � (line 7). In
this case, no descendant of � will store �, so insert-node
does not recurse into either subtree of �.

If, on the other hand, �’s interval does not contain
�’s interval, the procedure recurses into zero or more of
�’s children. If �’s interval contains part of the left half
of �’s interval (line 9), � is recursively inserted into �’s
left subtree (line 12). Furthermore, if �’s interval con­
tains part of the right half of �’s interval (line 13), � is
recursively inserted into the right subtree (line 16). If we

stab�Integer ��

if � � ��interval
return stab-node��� ��

else return �

stab-node�Node �� Integer ��

if � � ����������� � ��left �� �
return ��elements � stab-node���left�

else if � � ����������� � ��right �� �
return ��elements � stab-node���right �

else return ��elements

Fig. 7. Stabbing query

need to recurse into an uninstantiated node (lines 10 and
14), we first instantiate those nodes (lines 11 and 15).

The operation delete is implemented analogously to
insert, and is not presented in detail here. Insertions and
deletions are very efficient; they can be performed in
time proportional to ��� � where � is the total number
of atomic segments. For a manuscript with ��� pages,
each of which consists of �� lines of � inches each, us­
ing �� elementary segments per inch, ��� � is bounded
by ������� � �� � � � ��� � ��.

The pseudocode in Figure 7 implements stab, a ba­
sic query operation which returns a collection of all the
stored intervals which contain the point �. The recur­
sive search is guided by the position of � relative to the
midpoint of the current node. This query has logarithmic
cost, plus the size of the output.

5.5 Converting a segment tree into XML

For interoperability with existing tools and data sources,
it is important to be able to generate XML from a seg­
ment tree encoding a multihierarchical document. De­
pending on the nature of the data to be extracted, there
are a number of possible translations. We may need to
convert a segment tree into pseudo-XML or XML with
milestones, or to extract a single hierarchy into well-
formed XML. We may also extract a single hierarchy
into a document object model ([8]) for further process­
ing, skipping the textual XML representation altogether.

The traverse() procedure (Figure 8) can produce ei­
ther pseudo-XML or XML with milestones. To generate
pseudo-XML, the output-start-tag() and output-end­
tag() procedures should output XML-style start and end
tags. To produce XML with milestones, these procedures
should generate empty “milestone” elements.

In some cases we wish to extract a single document
hierarchy. In this case, we are given a list of element
names or a DTD and we output an XML document con­
taining all the markup elements with any of the given

traverse(�)
for each � � ��elements
if ����� � �����
if � is a character

output-char(�)
else

output-start-tag(�)

if left��� �� �

traverse(��left)

if right��� �� �

traverse(��right)

for each � � ����������elements�

if (� is an element) and ����� � �����

output-end-tag(�)

Fig. 8. Segment tree traversal

names, as well as all the document content. If the named
elements form a single hierarchy, this procedure should
produce well-formed XML. We can use this procedure to
partially validate a multihierarchical document with re­
spect to a DTD: first, extract all the elements specified in
the DTD, and run a validating XML parser on the result
and the given DTD. To extract a partial document struc­
ture such as this, we modify the output-start-tag() and
output-end-tag() procedures to output only the desired
tags.

In some cases, we may be unsure whether a collec­
tion of element names forms a hierarchy. We can use the
partial traversal procedure described above to test for hi­
erarchy, producing a well-formed XML document if pos­
sible. Each time we output a start tag, we push the ele­
ment in question onto a stack. Before generating an end
tag, we pop the top element from the stack and compare
it to the element whose end tag we are to generate. If the
elements are identical, we proceed; otherwise, the two
elements overlap and so cannot form a hierarchy. In the
latter case, we signal an error; if appropriate, we can at­
tempt to recover from the error, perhaps by removing one
of the overlapping tags from the output.

5.6 Parsing concurrent hierarchies

In some cases, it may be necessary to translate exist­
ing XML or pseudo-XML markup into a segment tree.
If the markup is already annotated with manuscript co­
ordinates, this is a straightforward process: insert each
element of the XML into the segment tree with the inter­
val specified by the annotation. In many cases, however,
we lack manuscript coordinates and wish to build a seg­

parse-pseudo-xml()
� � new LinkedList �Tag� Integer�
� � new SegmentTree
� � �

while � � get-next-token()

if � is a start tag

������������ ��

else if � is an end tag

for ��� �� � �

if ������ � ������

����������� ��

� � new Element�������� �� ������ ��� ���

�� insert���

� � � � �

break

(If no matching elements were found, report an error.)
else if � is a character

 � new CharElement��� �� � � ��

�� insert�
�

� � � � �

if � � �� ���
grow-segment-tree�� �

(If � is not empty, report an error.)

Fig. 9. Parsing pseudo-XML

ment tree which reflects the hierarchical structure of the
XML document.

To simplify discussion we ignore here XML features
such as entity references, comments, CDATA sections,
and processing instructions; these features do not tend to
interact with multiple hierarchies, and may be regarded
as special cases of character data or empty elements. We
tokenize the XML or pseudo-XML input into start-tags,
end-tags, empty-element tags, and characters. These con­
structs are defined in [7], and may be recognized by regu­
lar expressions. For simplicity, we translate each empty-
element tag token into the corresponding start-tag and
end-tag tokens.

We maintain a counter �, which indicates the num­
ber of characters and elements encountered so far. We
also maintain a linked list �, each element of which is
a tuple ��� �� ��; � is the name of an element, � is the
element’s attributes, and � is the position of the element
(i.e., the value of � at the element’s start-tag). We begin
with an empty segment tree covering an empty interval;
the procedure will grow the tree as appropriate.

When we encounter a start-tag, we push onto the be­
ginning of � the tuple ��� �� ��, where � and � are the
name and attributes, respectively, of the tag. When we
encounter a character
, we insert into the segment tree
the segment �� � � � annotated with
, then increment �. If
the new value of � is greater than the rightmost point of

the segment tree, we grow the segment tree to double its
previous size.

End-tags are somewhat more complicated to deal with.
When we reach an end-tag token with name �, we scan
through � for the most recently inserted tuple ��� �� ��

where � � �. If � contains no such tuples, the end-tag
does not have a corresponding start-tag, and we report an
error. Otherwise, we remove the tuple we located from
�. We insert into the segment tree the segment ��� �� an­
notated with � and �, then increment �. As before, we
grow the segment tree if the new value of � is greater
than the rightmost point in the segment tree.

If � is nonempty at the end of the document, there
were start-tags without corresponding end-tags. In this
case, we report an error. Otherwise, we have a complete
document, though it may not possess a root element (i.e.,
one which is an ancestor of all other elements and con­
tent). If necessary, we can insert a synthetic root element
which covers the segment tree’s entire range.

We can make use of the same procedure to parse
milestone-encoded XML. The only difference is in the
get-next-token() procedure; it should treat an opening
milestone as a start tag, and a closing milestone as an
end tag.

6 Using Folio R-trees For Indexing Image Content

When large manuscripts are encoded using a wide array
of markup elements, the size of the encoding description
becomes sufficiently large to justify the use of database
management techniques as the back-end for Electronic
Editions. As such, we must worry about the appropriate
storage of a large amount of information: XML markup,
glossary indexes, manuscript text, and text-to-image and
image-to-XML mappings.

Storage of XML in relational and other “native XML”
databases has been subject significant research in the past
5–7 years [32,28,15,6]. We note here that the XML stor­
age problem in the context of IBEEs is more complex
than what had been studied in most of the work cited
above. It is so for two reasons: (a) our XML is document-
centric, while most of the research to date concentrated
on storing data-centric XML in databases, and (b) we
need to store and efficiently access concurrent XML. We
are currently investigating the problem of storage and re­
trieval of concurrent XML from XML databases, prelim­
inary information can be found in [18].

In this section, we present our approach to indexing
the text-to-image mapping in a database system support­
ing IBEEs. Our concentration is on the following four
tasks:

–	 Storage: given a flow of information about a manuscript
folio image, create all necessary data structures in the
underlying database.

–	 Addition: given a collection of data structures in the

database and a new encoding, extend the structures

to store the new information.

–	 Text Range Query: given a manuscript folio image

and a rectangular box, find all the manuscript text and

encodings found inside the box.

–	 Image Range Query: Given some manuscript’s fo­
lio XML markup, find the corresponding folio image

region(s).

Out of the three tasks above, the first two serve to
create and maintain the necessary data structures, while
the third task retrieves information from the database.

In the most general case, XML markup of the manuscript
folio images can describe properties of arbitrary regions
and stand outside the one-dimensional flow of the manuscript
text. However, if, just as we did in the case of segment
trees, we make some restricting assumptions about the
nature of the XML markup used in the editing 1, we can
simplify the problem of storage of data significantly. In
particular, the representation method described in this
section assumes the following:

–	 The smallest (non-empty) unit of XML markup is a

single character of the manuscript text (and appropri­
ate 2D bounding box on the image).

–	 Any feature on the image is encoded in relation to

the transcribed text.

–	 Empty XML markup elements have uniquely identi­
fiable positions between the characters of the manuscript
text.

Under these assumptions, we note the following:

Proposition 1.

Under the assumptions above, the Text Range Query
problem can be solved by solving, in sequence the fol­
lowing two subproblems:

1.	 Image-to-text mapping: Find all text in the given
box;

2.	 XML Retrieval: Find all XML markup associated

with this text.

Proposition 2.

Under the assumptions above, the Image Range Query
problem can be solved by solving, in sequence the fol­
lowing two subproblems:

1 These assumptions hold true for the Electronic Editions we are

currently working on.

1.	 XML markup-to-text mapping: given XML markup,
find its content;

2.	 Text-to-image mapping: given text content, deter­
mine the folio image regions in which it is located.

We note that (a) Image-to-text mapping and Text­
to-image mapping and (b) XML Retrieval and XML
markup-to-text mapping are complements to each other.
In addition to that, the latter pair of operations, relating
markup and text is independent of the text-image rela­
tionship. The solution to this problem depends primarily
on the method of storage of XML markup in the database
that is employed. In this paper, we assume that no mat­
ter what method is chosen, a reasonably efficient mech­
anism for answering these two queries exists. We further
concentrate on dealing with image-text relationship.

6.1 Folio R-Trees

R-trees [16] have proved to be efficient and flexible in
storing information about objects in multidimensional
spaces. The defining feature of an R-tree is that the re­
gions described by two sibling nodes in the tree over­
lap. While this makes retrieval operations, such as range
queries, follow multiple paths through the tree, this is
well compensated by the flexibility R-trees afford in stor­
ing objects.

Informally, a folio R-tree, a data structure for text-to­
image and image-to-text mapping, consists of three lay­
ers of nodes. Nodes at the top layer, called folio nodes,
index individual folios. Since each folio is represented
by a separate image, then each folio record stored on
these nodes corresponds to a two-dimensional space of
its own. Nodes at the second layer, line nodes, index lines
found on a specific folio. Finally, the third layer of nodes,
character nodes, indexes characters of a single line. The
manuscript folios are sorted in ascending order, and each
folio is associated to a single entry in one folio node. This
entry contains a pointer to the page that indexes the lines
of the folio (the page of line nodes). Each entry in a line
node stores information about a single line of a folio. The
entry contains the id of the line (folio number, line num­
ber), the rectangular bounding box for the line and the
pointer to the character node which stores information
about the characters from the line. Each character node
entry contains the id of the character: (folio number, line
number, position in line), character itself and its bound­
ing box. The bounding box of the line is maintained as
the smallest rectangle that encloses all bounding boxes
for (currently known) characters in the line.

More formally, we define the data structures for the
folio R-trees as follows:

13

14

15

16

17

... ...

21

line# ptr bounding
box

... ...

1

Characters

bounding
box

value

CharID1 2 3 4 5 6 7 8 9 10 11 12 13 14

..

FolioID

Ptr

1r 1v ... 38v ...

Lines

Folios

Fig. 10. Folio R-trees for manuscript pages.

Definition 1.

A folio record is a record of the form:

�� ������� ������ ���� ������ ���� �������
�����

where � ������ stores the name of a specific manuscript
folio, ������ ��� is the name of the image file associ­
ated with the folio and ������ ��� and �������
���
are a disk page address and a record slot id on the disk
page respectively. A disk page consisting of folio records
is called a folio page or folio node.

A line record is a record of the form:

������������ � � � � � � � � � � � � � ������������

������
�����

where ���������� is the number (id) of the line on
its folio, ��� , ��� , ��� , and ��� are the coordi­
nates (upper left and lower right corners) of the bounding
box of the line on the folio image, and � ���� ��� and
� ���� �
��� are a disk page address and a record slot
id on the disk page respectively. A disk page consisting
of line records is called a line page or line node.

A character record is a tuple �� ����� , ����� ����,
��� , ��� , ��� , ��� �, where � ����� is the iden­
tifier for the character, � ���� ���� is the character value
itself2, and ��� , ��� , ��� , and ��� are the coor­
dinates (upper left and lower right corners) of the bound­
ing box of the character on the folio image. Disk pages

2 We assume that the character value is represented in Unicode.

consisting of folio, line and character records are called
folio, line, or character pages or nodes respectively.

The folio R-tree, then, can be defined as follows.

Definition 2.

Let � � � � � � � � � � � �� be a collection of manuscript fo­
lios and � be the text contained on these folios. By ����,
�� � � � �� we denote the substring of � contained
on folio ��. A folio R-tree � representing the manuscript
�� � � � is a collection of folio, line and character nodes,
such that

1. There exists a folio record for each folio � � � � ;
there exists a line record for each line ��� of each
folio �� and there exists a character record for each
character �� of �.

2. The bounding box of any line � is exactly the minimal
bounding box for all characters from this line.

3. All folio records are sorted in the order prescribed by
� ; all line records for a specific folio occupy consec­
utive records on consecutive line pages; all character
records for a specific line occupy consecutive records
on consecutive character pages.

4. In each folio record, ������ ��� and �������
���
point to the first line record for the given folio; in
each line record ����� ��� and ������
��� point
to the first character record for the given line.

A folio R-tree satisfying conditions 2,3 and 4 above,
but not condition 1 is called an incomplete folio R-tree
for the manuscript �� � � �.

Example 1.

Consider a fragment of a folio R-tree depicted in Fig­
ure 10. It shows how the folio R-tree is used to store
information about a manuscript folio. Each folio in the
manuscript gets a single entry in a folio node (lower right
corner) This node stores the folio Id, filename of the as­
sociated image (not shown for simplicity) and a pointer
(������, ������) to the first line record for the lines
of the folio. Each line record, in turn, stores the bound­
ing box for the line and the pointer to the first charac­
ter record for it. The bounding boxes may overlap, see,
e.g., bounding boxes for lines 15, 16 and 17 of the fo­
lio ���. Each character record stores the character id (in
our case just the ordinal for the character in the line, but
generally, it may be a unique id, such as the byte po­
sition of the character in the manuscript text), its value
(i.e., the actual Old English character) and its bounding
box. Bounding boxes for characters may also overlap as
boxes for characters 9 and 10 in line 21 do.

Suppose for a moment that a manuscript folio con­
tains 30 lines of text, each line consisting of at most 40
characters (each character is represented with 4 bytes in
Unicode). We also assume that a line id consists of two
integers (4 bytes total) and a character id consists in three
integers (6 bytes total). Each coordinate value is an inte­
ger of 2 bytes, each pointer to a disk page occupies 4
bytes. Then the space required for a character record is:
� � � bytes + � � � bytes + � � � bytes = 18 bytes.
A line record will occupy � � � bytes + � � � bytes +
� � � bytes + � � � bytes + 4 bytes = 20 bytes. For a
whole folio, all character records sum up to �� � �� � ��

bytes = 21600 bytes. To answer a Range Query for a fo­
lio, the folio record, all folio lines records, and all folio
characters records are to be retrieved (in the worst case).
For a disk page size ��� � �� � �� bytes � ��� bytes
(so that all folio line records reside on a single page), a
Range Query operation requires � � ����������� disk
reads (one for the folio record, one for line records, and
����������� for character records). The goal is to have
all this data fit into a disk page, so that a folio record can
be retrieved in one disk read.

A folio R-tree update operation (including insertion
and deletion) targets a character record in the folio R-
tree. Update operation takes as parameters the character
to be updated and its associated information and is to
be performed as follows: (i) scan for the character’s fo­
lio record page, (ii) search for the character’s line record
page and update the line record bounding box as needed,
and (iii) read the character record page and update the
record data. The pseudocode of the update algorithm is
given in Figure 11.

F-Tree-Update(� ,� � ��� ,��� � ,������,����� ����,� ��)

input:	 � : pointer to the root of folio R-tree;

� � ��� : folio ID;

����: line number;

� ����� : the character ID

� ���� ���� : the character value

� �� : character bounding box.

Scan � for record �, s.t., ��� ������ �� � � ��� ;
Scan �������� ���, starting with ���������
���,

to find line record � s.t. ������������ �� ����
//update line information
��� �� � ���������� ���������
��� �� � ���������� ������� ��
����� � ���������� ���������
����� � ���������� ������� ��
Scan ������� ���, starting with ��� �����
��� ,

to find character record
 s.t.
������� �� � �����
//update character information

������� � � ����� �
������ ���� � ����� ����

���� � ��������
���� � � ���� � � �

���� � ��������
���� � ������� �

Fig. 11. Algorithm for Folio R-tree Update

6.2 Range Queries Using Folio R-trees

Let � be a folio R-tree for some manuscript �� � � �. The
algorithms for solving the Range Query problems are
derived from the standard range query algorithm for R-
trees. To simplify notation, we will use �����������
to denote the quadruple of attributes ��� , ��� , ��� ,
��� in line and character nodes of folio R-trees.

Figure 12 shows the pseudocode of the algorithm for
Text Range Query problem. This pseudo-code makes a
simplifying assumption that there is only one folio node
in � . This assumption, however, is not necessary - if the
number of folios exceeds the capacity of a single disk
page, more pages can be used.

The algorithm proceeds as follows. At first stage (�
is the folio node that is the root of the folio R-tree), it
scans the folio page to find the record for the specified
folio. Upon finding it, the algorithm downloads the first
disk page on which the lines of the folio are stored. Start­
ing with the first line record for the folio, the algorithm
scans all line records for it (by the definition of the fo­
lio R-tree, they are stored in a sequence), downloading
any new line pages as needed, and compares the input
bounding box with the bounding box for each line in
turn. If a non-empty intersection is determined, the algo­
rithm downloads the disk page that stores the character
records for the given line and scans its character records

TextRangeQuery(� ,� � ��� ,� ��)

input: � : pointer to a folio R-tree node/record;
� � ��� : folio ID;
� �� : query range.

output: �: Set of character nodes intersecting � �� .

if (� is a folio page) then
Scan � for record �, s.t., ��� ������ �� � � ��� ;
� � � ��������� ���� ���������
�����
� � ���������������� �� ������ ����;

else if (� is a line page) then
� � � ;
for each � - line record for � � ���

if (������������� � � �� �� �) then
� � � �������� ���� ��������
����;
� � � � TextRangeQuery�� �� ������ ����;

endif
endfor

else if (� is a character page) then
� � � ;
for each
 - character record for current line

if (
������������ � � �� �� �) then

� � � � �
�;

endif
endfor

endif

return C;

Fig. 12. Algorithm for Text Range Query

for intersection with the input box. All characters that
are found to have such intersection are assembled in the
answer set.

The Image Range Query algorithm is shown in
Figure 13. The algorithm takes as input a pointer to a fo­
lio R-tree node, a folio, and a text range, � �������� =
(���������, �����������, �������, ���� �����), spec­
ified by characters starting and ending positions (lines
and offsets). It returns a set of bounding boxes for the
characters in the input text range.

The algorithm performs a search for the record of
the first character in the input text range, then retrieves
the bounding boxes of each character in the text range.
Due to the relative small sizes of folio records and line
records, searching for the first character record is per­
formed using few disk read operations. Retrieving bound­
ing boxes for all characters in the input text range re­
quires a number of disk readings proportional to the text
range and the number of character records per disk page.

ImageRangeQuery(� ,� � ��� ,� ��������)

input: � : pointer to a folio R-tree node/record;
� � ��� : folio ID;
� ��������: text range.

output: �: Set of character bounding boxes.

� � � ;

Scan � for record �, s.t., ��� ������ �� � � ��� ;

Scan �������� ���, starting with ���������
���,

to find line record � such that
������������ � � ������������������;

Scan ������� ���, starting with ��� �����
��� ,
to find character record
 such that

������� � � ��������������������;

while
 is in � ��������
� � � � � �
�����
�����
�����
���� ��;

 � next character record;

endwhile

return �;

Fig. 13. Algorithm for Image Range Query

7 Remarks and Conclusions

The data structures described here support, in different
ways, image-based XML encoding of manuscripts. Our
XML-segment tree data structure provides convenient sup­
port for non-hierarchical XML markup that originates
from an image and lends itself to efficient implemen­
tations for IBEE. Thanks to efficient translation proce­
dures between XML-segment trees and pseudo-XML or
XML with milestones, the XML-segment tree can be
used to effectively represent markup that originate from
both manuscripts and transcripts. Among other methods
to tackle non-hierarchical markup and/or concurrent hi­
erarchies, the closest to XML-segment trees is the Core
Range Algebra used in LMNL, the Layered Markup and
Annotation Language [31]. The primary difference is that
XML-segment trees directly support IBEE and can view
the text either as primary or secondary to the image, de­
pending on the needs of the editor; whereas Core Range
Algebra views documents primarily as strings over which
span a number of ranges, without adequate provision for
image-based tagging.

Where segment trees are used to represent markup in
main memory, folio R-trees are designed to store infor­
mation linking text to image on disk. Folio R-trees com­
plement traditional methods for storing XML in rela­
tional databases [32,28,15] and folio R-tree algorithms,
such as Text Range Query work in combination with
XML query processing algorithms on those structures to

deliver results that find XML markup associated with re­
gions on the manuscript folio images.

For the current applications of these data structures,
the size of the document’s markup and text are relatively
small—on the order of a megabyte—and our algorithms
appear to be suitably fast. This is supported by the the­
oretical asymptotic complexities discussed in sections 5
and 6. However, systematic experimental analysis is re­
quired, and will become feasible once sufficient case stud­
ies are available.

Acknowledgments

The article is based on work supported in part by the
National Science Foundation under Grant No. 0219924,
awarded pursuant to the authority of the NSF Act of 1950
(42 U.S.C. 1861 et. seq.). It is subject to GC-1 Grant
General Conditions (10/98) and is made in accordance
with the provisions of NSF 98-63, “Information Tech­
nology Research”. In addition, the work of the second,
fourth and sixth authors is supported in part by a Collab­
orative Research Award from the National Endowment
for the Humanities and the Andrew W. Mellon Founda­
tion.

References

1. Humanities	 Text Initiative (HTI).
http://www.hti.umich.edu/. University of Michigan.

2. Early	 Manuscripts at Oxford University.
http://image.ox.ac.uk/, 2000. Oxford University.

3. Alfred. Boethius: The consolation of philosophy.	 British
Library MS Cotton Otho A. vi.

4. M. Arnott, I. Beavan, M. Craig, J. Geddes, M. Gauld,
C. McLaren, and J. Pirie. The Aberdeen Bestiary
Project. http://www.clues.abdn.ac.uk:8080/bestiary old/
alt/comment/best toc.html. Aberdeen University, Historic
Collections, Special Libraries and Archives.

5. J.L. Bentley and D. Wood.	 An optimal worst case al­
gorithm for reporting intersections of rectangles. IEEE
Trans. Computers, 29(7):571–577, 1980.

6. A. Bonifati and S. Ceri. Comparative analysis of five xml
query languages. CoRR, cs.DB/9912015, 1999.

7. T. Bray, J. Paoli, C. M. Sperberg-McQueen,
E. Maler, François Yergeau, and John Cowan
(Eds.). Extensible Markup Language (XML) 1.1.
http://www.w3.org/TR/2004/REC-xml11-20040204, Feb
2004. W3C Recommendation 04 February 2004.

8. M. Champion, S. Byrne, G. Nicol, and L. Wood (Eds.).
Document Object Model (DOM) Level 1 Specifica­
tion. http://www.w3.org/TR/REC-DOM-Level-1/, Oct
1998. World Wide Web Consortium Recommendation,
REC-DOM-Level-1-19981001.

9. A. Dekhtyar and I. E. Iacob.	 A Framework for Manage­
ment of Concurrent XML Markup. In Proc. 1st Work­
shop on XML Data and Schemas (XSDM’2003), in M.J.
Jeusfeld, O. Pastor (Eds.), Proc., Conceptual Modeling for
Novel Application Domains, LNCS, volume 2814, pages
311–322, 2003.

10. A. Dekhtyar and I. E. Iacob.	 A Framework for Manage­
ment of Concurrent XML Markup. Data and Knowledge
Engineering, 52(2):185 – 208, 2005.

11. S. DeRose. Markup overlap: A review and a horse.	 Ex­
treme Markup Languages 2004: Proceedings, 2004.

12. P.	 Robinson (Dir.). Canterbury Tales Project.
http://www.cta.dmu.ac.uk/projects/ctp/, 1999. De
Monfort University.

13. P. Durusau and M.B. O’Donnell. Declaring trees: The fu­
ture of the evolution of markup? In Proc. Conference on
Extreme Markup Languages, 2002.

14. D.C.	 Fallside (Ed.). Extensible Markup Language
(XML) 1.0 (2nd Edition), XML Schema Part 0: Primer.
http://www.w3.org/TR/xmlschema-0, 2001.

15. D. Florescu and D. Kossmann. A Performance Evaluation
of Alternative Mapping Schemes for Storing XML Data
in a Relational Database. Technical Report 3680, INRIA,
1999.

16. A. Guttman. R-trees: A dynamic index structure for spatial
searching. In SIGMOD Conference, pages 47–57, 1984.

17. K.C. Hawley and K. Kiernan.	 An Image-Based Elec­
tronic Edition of Alfred the Great’s Old English Version
of Boethius’s Consolation of Philosophy. In Proc. Joint
International ALLS-ACH Conference, 2003.

18. I. Iacob, A. Dekhtyar,	 and W. Zhao. XPath Exten­
sion for Querying Concurrent XML Markup. Tech­
nical Report TR 394-04, University of Kentucky,
Department of Computer Science, February 2004.
http://www.cs.uky.edu/�dekhtyar/publications/
TR394-04.pdf.

19. I. E. Iacob, A. Dekhtyar, and K. Kaneko. Parsing concur­
rent xml. In Proc., 6th ACM International Workshop on
Web Information and Data Management (WIDM), pages
23–30, November 2004.

20. H. V. Jagadish, Laks V. S. Lakshmanan, M.Scannapieco,
D. Srivastava, and N. Wiwatwattana. Colorful xml: One
hierarchy isn’t enough. In Proc., ACM SIGMOD Confer­
ence, pages 251–262, 2004.

21. J. W. Jaromczyk and N. Moore. Geometric data struc­
tures for multihierarchical xml tagging of manuscripts. In
Proc. 18th European Workshop on Computational Geom­
etry, March 2004.

22. J. W. Jaromczyk and N. Moore. Geometric data structures
for multihierarchical xml tagging of manuscripts. Techni­
cal Report TR 404-04, University of Kentucky, USA, May
2004.

23. K. Kiernan and A. Prescott et al. (Eds.).	 Electronic Be­
owulf. CD-ROM, London: The British Library; Ann Ar­
bor: University of Michigan Press, 1999. Rev. ed. Elec­
tronic Beowulf 2.0, ed. Kevin Kiernan with Ionut Emil Ia­
cob. London: The British Library, 2004.

24. K. Kiernan, J. Jaromczyk, A. Dekhtyar, D. Porter, K. Haw-
ley, S. Bodapati, and I. Iacob. The ARCHway project:

Architecture for research in computing for humanities
through research, teaching, and learning. Literary and Lin­
guistic Computing, 2004. forthcoming.

25. F.P. Preparata and M.I. Shamos.	 Computational Geome­
try: an Introduction. New York: Springer-Verlag, 1985.

26. A. Prescott. Their Present Miserable State of Cremation.
In C.J. Wright, editor, Sir Robert Cotton as Collector: Es­
says on an Early Stuart Courtier and His Legacy. London:
British Library Publications, 1997.

27. H. Samet.	 Multidimensional Data Structures. In M. J.
Atallah, editor, Handbook of Algorithms and Theory of
Computation, CRC Press, 1999, chapter 18. CRC Press,
1999.

28. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D.J.
DeWitt, and J.F. Naughton. Relational Databases for
Querying XML Documents: Limitations and Opportuni­
ties. In The VLDB Journal, pages 302–314, 1999.

29. C.	 M. Sperberg-McQueen and L. Burnard(Eds.).
Guidelines for Text Encoding and Interchange (P4).
http://www.tei-c.org/P4X/index.html, 2001. The TEI
Consortium.

30. C. M. Sperberg-McQueen and L. Burnard(Eds.).	 Multi­
ple Hierarchies. http://www.tei-c.org/P4X/NH.html, 2001.
Chapter in Guidelines for Text Encoding and Interchange
(P4).

31. J. Tennison and W. Piez. The layered markup and anno­
tation language (lmal). In Proc. Conference on Extreme
Markup Languages, 2002.

32. Feng Tian, David J. DeWitt, Jianjun Chen, and Chun
Zhang. The design and performance evaluation of alter­
native xml storage strategies. SIGMOD Rec., 31(1):5–10,
March 2002.

