Informing Carbon in Arctic Reservoirs Vulnerability Experiment Flight Schedule based upon Soil and Vegetation Freeze and Thaw Event Variation along the Alaska Ecological Transect

By Jessica Potter
Mentors Kyle McDonald & Erika Podest
CSU STAR

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged.
Why Study Alaska?

• Boreal Forest: The Green Head Band of the Earth
 • Largest terrestrial ecosystem on Earth
 • Covers 11% of land area on the planet
 • Dominated by conifer trees
Why Study Alaska?

Boreal Forest in Alaska is found in the interior, between the Brooks Range in the north and the Alaska Range in the south.

Tundra surrounds the Boreal Forest.
Carbon Cycle

Water

CO₂

O₂

Water
Carbon Cycle
CARVE
Carbon in Arctic Reservoirs Vulnerability Experiment

- De Havilland DHC-6 Twin Otter Aircraft
- Remote sensing technology used to monitor:
 - Soil Moisture
 - Freeze/Thaw State
 - Surface Temperatures
 - Total atmospheric columns of carbon dioxide, methane, and carbon monoxide

http://science.nasa.gov/missions/carve/
CARVE
Carbon in Arctic Reservoirs Vulnerability Experiment

Goal: “CARVE will provide an integrated set of data that will provide unprecedented experimental insights into Arctic carbon cycling.”

Deployments: Spring, Summer, and Fall
Starting March 2012

http://science.nasa.gov/missions/carve/
ALECTRA: Alaska Ecological Transect
Monitoring Equipment

Diagram courtesy of Kyle McDonald
ALECTRA Study Sites

Dietrich Valley
(1) Coldfoot
(2) Treeline

Bonanza Creek

Courtesy of Google Maps
Freeze and Thaw Transitions

Alaska Site A1 - LTER 2 Bonanza Creek Experimental Forest

Spring Transition

Temperature (°C)

-10 -5 0 5 10 15 20

80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160

Picea glauca Soil

Litter

Fall Transition

Temperature (°C)

-10 -5 0 5 10 15 20

235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315

Picea glauca Soil

Litter

Day of Year, 2000
Methods for Statistical Analysis

Analysis of Variance (R)
Two-Way: Year & Location
Testing for differences in Freeze and Thaw Events over time and space

Regression Analysis (R)
Testing for relationships between Freeze and Thaw Events and Year
Results: Soil Thaw Events

Figure 1. Soil thaw began an average of eight days earlier in Bonanza Creek (A01) compared to Coldfoot (A07), and 16 days earlier compared to Dietrich Valley Treeline (A08).

Soil thaw ended an average of nine days earlier in Bonanza Creek (A01) compared to Coldfoot (A07), and 15 days earlier compared to Dietrich Valley Treeline (A08).
Results: Vegetation Thaw Events

*Data fails to meet the assumptions of normality and equal variance.

Figure 2. Vegetation tissue thaw began an average of six days earlier at Bonanza Creek compared to Coldfoot and 20 days earlier compared to Dietrich Valley Treeline. Vegetation tissue thaw ended an average of five days earlier at Bonanza Creek compared to Coldfoot and 19 days earlier compared to Dietrich Valley Treeline.
Results: Soil Freeze Events

Figure 3. Soil freeze began on average, seven days earlier at Dietrich Valley Treeline compared to Bonanza Creek and 16 days earlier compared to Coldfoot.

Soil freeze ended, on average, fourteen days earlier at Dietrich Valley Treeline compared to Bonanza Creek and 23 days earlier compared to Coldfoot.
Results: Vegetation Freeze Events

Figure 4. Vegetation tissue freeze began, on average, eight days earlier at Dietrich Valley Treeline (A08) compared to Bonanza Creek (A01) and nine days earlier compared to Coldfoot (A07).

Vegetation tissue freeze ended, on average, nine days earlier at Dietrich Valley Treeline (A08) compared to Coldfoot (A07) and 10 days earlier compared to Bonanza Creek (A01).

*Data fails to meet the assumptions of normality and equal variance.
Results

• Soil and vegetation freeze sooner and thaw later in the year at Dietrich Valley Treeline compared to Coldfoot and Bonanza Creek.

Results

There is evidence to suggest freeze events occurred later each year between 1996 and 2008.
Conclusions

Under the assumption that A01 Bonanza Creek is of priority due to its location in a long term experimental forest, recommended spring and fall flight dates are as follows:

Spring Flight:
April 20 (Day 110) to May 10 (Day 130)

Fall Flight:
October 2 (Day 275) to Oct 22 (Day 295)
Conclusions: Spring Flight Dates

Figure 5. Blue bars indicate dates ensuring CARVE’s observation of a nearly complete transition at Bonanza Creek, beginning 3 days after the average initiation of the thaw, a complete transition at Coldfoot, and observations would end 5 days earlier than the average end of the transition at Dietrich Valley Treeline
Conclusions: Fall Flight Dates

Figure 10. Blue bars indicate dates ensuring CARVE’s observation of a complete transition at Bonanza Creek, and nearly complete observations of Coldfoot and Dietrich Valley Treeline, finishing observations 5 days before the former’s mean date of final soil freeze and starting observations 6 days after the latter’s mean date of initial soil freeze.
Further Research

- Further ALECTRA Analysis
- SMAP
Acknowledgements

• Mentors Kyle McDonald and Erika Podest
• Fellow Interns, Cosmo Smith and Jami Norman
• 2011 JPL STAR Cohort
• Martin Mathews, Gerry Simila, and Petra Kneissl-Milanian